
Introduction to
Real-Time Process
Scheduling

郭大維教授
ktw@csie.ntu.edu.tw

嵌入式系統暨無線網路實驗室

(Embedded Systems and Wireless Networking Laboratory)

國立臺灣大學資訊工程學系

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Q: Many theories and algorithms in real-time process
scheduling seem to have simplified assumptions
without direct solutions to engineers’ problems. Why
should we know them?

A:
Provide insight in choosing a good system
design and scheduling algorithm.

Avoid poor or erroneous choices.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Checklist
⊕ What do we really know about the rate monotonic (RM)

and the earliest deadline first (EDF) scheduling?
⊕ What is known about uniprocessor real-time scheduling

problems?
⊕ What is known about multiprocessor real-time

scheduling problems?
⊕ What is known about energy-efficient real-time

scheduling problems?
⊕ What task-set characteristics cause NP-hard?
⊗ What is the impact of overloads on the scheduling

results?
⊗ What do we really know about theories for off-line

schedulability such as the rate monotonic analysis?

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Job Shop Scheduling

Independent Process Scheduling
(Liu & Layland, 1973, etc.)

Process Scheduling with
Non-Preemptable Resources

(Mok, 1983, Sha, Rajkumar, 1986, Baker, 1991, etc.)

Multiprocessor Process Scheduling
(Dhall, 1972-, etc.)

Process Scheduling with
End-to-End Delays
(Stankovic, Gerber, Lin, etc, since ?.)

Process Scheduling with
Probabilistic Guarantee
(Liu, Lehoczky, etc, since 1995.)

Time

Process Scheduling with
Realistic Task Characteristics

(Liu, Mok, etc, since 1996.)Process Scheduling
with Multiple Resources

(??)

Sporadic Process Scheduling
(Sprunt, 1989, etc.)

Non-preemptable Scheduling
(Baruah, 1990-, etc.)

Rate-Based Scheduling
(Buttazzo, Liu, Brauah, Kuo, etc, since 1995.)

Energy-Efficient Process Scheduling
(Mosse, Hakan Chen, Kuo, etc)

Multiprocessor Process Scheduling
(Barauh, Anderson, etc.)

Introduction to Real-Time Process
Scheduling

Uniprocessor Process Scheduling

• Rate Monotonic Scheduling
• Earliest Deadline First Scheduling
• Priority Ceiling Protocol
• Important Theories

Reading: Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
Krishna and Shin, “Real-TimeSystems,” McGRAW-HILL, 1997.

Copyright: No reproducing of this material in any form is allowed unless a formal permission from Prf. Tei-Wei Kuo is received.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Process Model

Periodic process
each periodic process arrives at a regular frequency - a
special case of demand.

r: ready time, d: relative deadline, p: period, c: maximum
computation time.

For example, maintaining a display

Sporadic process
An aperiodic process with bounded inter-arrival time p.

For example, turning on a light

Other requirements and issues:
process synchronization including precedence and
critical sections, process value, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Performance Metrics

Metrics for hard real-time processes:
Schedulability, etc.

Metrics for soft real-time processes:
Miss ratio

Accumulated value

Response time, etc.

Other metrics:
Optimality, overload handling, mode-change
handling, stability, jitter, etc.

Combinations of metrics.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Basic definitions:

Preemptive scheduling: allows process preemptions. (vs non-
preemptive scheduling)

Online scheduling: allocates resources for processes depending on

the current workload. (vs offline scheduling)

Static scheduling: operates on a fixed set of processes and produces

a single schedule that is fixed at all time. (vs dynamic scheduling)

Firm real-time process: will be killed after it misses its deadline. (vs
hard and soft real-time)

Fixed-priority scheduling: in which the priority of each process is

fixed for any instantiation. (vs dynamic-priority scheduling)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling Algorithm

Assumptions:
all periodic fixed-priority processes

relative deadline = period

independent process - no non-preemptable resources

Rate Monotonic (RM) Scheduling Algorithm
RM priority assignment: priority ~ 1/period.

preemptive priority-driven scheduling.

Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1)

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Critical Instant 1

An instant at which a request of the process have the
largest completion/response time.

An instance at which the process is requested
simultaneously with requests of all higher priority
processes

Usages

Worst-case analysis

Fully utilization of the processor power

Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1 2)

1 Liu and Layland, “Scheduling Algorithms for multiprogramming in a hard real-time Environment,” JACM, vol. 20, no. 1, January 1973, pp. 46-61.

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Schedulability Test:
A sufficient but not necessary condition

Achievable utilization factor α
of a scheduling policy P -> any process set with total
utilization factor no more than α is schedulable.

Given n processes, α =

Stability:
Let processes be sorted in RM order. The ith process
is schedulable if

An optimal fixed priority scheduling algorithm

c

p
i

i

∑
()n n2 11/ −

()c

p
ij

j
j

i i≤ −
=∑ 1

12 1/

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Rate Monotonic Analysis (RMA) 2

Basic Idea:

Before time t after the critical instance of process τi, a high
priority process τj may request amount of
computation time.

Formula:

A sufficient and necessary condition and many
extensions...

2 Sha, “An Intorduction to Rate Monotonic Analysis,” tutorial notes, SEI, CMU, 1992

Time

c
t

p
j

j

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

t

deadline of τi

t

p j

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

0

for some t in

⎡ ⎤{ | ,..., ; ,..., / }kp j i k p pj i j= =1 1
() i

i

j
j

ji dt
p

t
ctW ≤≤

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑ =1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

A RMA Example:
T1(20,100), T2(30,150), T3(80, 210), T4(100,400)
T1

c1 <= 100

T2
c1 + c2 <= 100 or

2c1 + c2 <= 150

T3
c1 + c2 + c3 <= 100 or

2c1 + c2 + c3 <= 150 or

2c1 + 2c2 + c3 <= 200 or

3c1 + 2c2 + c3 <= 210

T4
c1 + c2 + c3 + c4 <= 100 or

2c1 + c2 + c3 + c4 <= 150 or

....

Time

W3(t)

50 100 150 200

130

150

170

190

210

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

RM was chosen by
Space Station Freedom Project

FAA Advanced Automation System (AAS)

RM influenced
the specs of IEEE Futurebus+

RMA is widely used for off-line analysis
of time-critical systems.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Earliest Deadline First Scheduling
Algorithm

Assumptions (similar to RM):
all periodic dynamic-priority processes

relative deadline = period

independent process - no non-preemptable resources

Earliest Deadline First (EDF) Scheduling Algorithm:
EDF priority assignment: priority ~ absolute deadline.
i.e.,arrival time t + relative deadline d.

preemptive priority-driven scheduling

Example: T1(c1=1, p1=2), T2(c2=2, p2=7)

Time
T1 T2

0 1 2 3 4 5 6 7 8
T1 T1 T1T2 T2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Earliest Deadline First Scheduling
Algorithm

Schedulability Test:
A sufficient and necessary condition

Any process set is schedulable by EDF iff

EDF is optimal for any independent process
scheduling algorithms

However, its implementation has considerable
overheads on OS’s with a fixed-priority scheduler and
is bad for (transiently) overloaded systems.

c

p
j

j
j

i
≤

=∑ 1
1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol
Assumptions (as the same as RM for the first two):

all periodic fixed-priority processes
relative deadline = period
Non-preemptable resources guarded by semaphores

Basic Ideas and Mechanisms:
Bound the priority inversions by early blocking of
processes that could cause them, and
Minimize a priority inversion’s length by allowing a
temporary rise in the blocking process’s priority.

Contribution of the Priority Ceiling Protocol
Efficiently find a suboptimal solution with a clever
allocation policy, guaranteeing at the same time a
minimum level of performance.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

Pre-requirements: nested critical sections!

Priority Ceiling Protocol (PCP):
Define a semaphore’s priority ceiling as the priority of
the highest priority process that may lock the
semaphore.

Lock request for a semaphore is granted only if the
requesting process’s priority is higher than the ceiling of
all semaphores concurrently locked by other processes.

In case of blocking, the task holding the lock inherits the
requesting process’s priority until it unlocks the
corresponding semaphore. (Def: priority inheritance)

1 Sha, Rajkumar, and Lehoczky, “Priority Inheritance Protocols: an Approach to Real-Time Synchronization,” IEEE Transactions on computers, Vol. 39, No. 9, Sept. 1990, pp. 1,175-1,185.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: deadlock avoidance

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

S1

t4

priority inheritance

unlock S1 and reset priority

S2 S1,S2

t6 t7

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: avoid chain blocking

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1

t2

attempt to lock S2

S1

t3

t4

priority inheritance

S2

unlock S1 and reset priority

S2 S1,S2

t5 t6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: one priority inversion

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

attempt to lock S1

S1

t3

t4

priority inheritance

S1

unlock S1 and reset priority

t5

S2 S1,S2

t6 t7

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

Important Properties:
A process is blocked at most once before it enters its critical
section.

PCP prevents deadlocks.

Schedulability Test of τi
worst case blocking time Bi - an approximation!

Let processes be sorted in the RM priority order

–– BSi = { τj | j > i & Max(s in Sj) (ceiling(s)) >= priority(τi)}

– Bi = Max(τj in BSi) |critical section|

– Sj = { S | semaphore S is accessed by τj }

()() /c

p

c B

p
ij

j

i i

i
j

i i+
+

≤ −
=

−∑ 1

1 12 1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Priority Ceiling Protocol

Variations of PCP:
Stack Resource Policy - not permitted to start
unless resources are all available.

multi-units per resource

dynamic and fixed priority assignments

Dynamic Priority Ceiling Protocol
extend PCP into an EDF scheduler.

2 Baker, “Stack-Based Scheduling of Real-Time Processes,” J. Real-Time Systems, Vol. 3, No. 1, March 1991, pp. 67-99.
3 Chen and Lin, “Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-time Systems,” J. Real-Time Systems, Vol. 2, No. 4, Nov. 1990, pp. 325-340.

Introduction to Real-Time Process
Scheduling

Multiprocessor Process Scheduling

• Important Theories
• Basic Approaches

Reading: Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
Krishna and Kang, “Real-TimeSystems,” McGRAW-HILL, 1997.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Process Scheduling

Checklist
⊕ Understand the boundary between polynomial and NP-

hard problems to provide insights into developing
useful heuristics.

⊕ Understand the fundamental limitations of on-line
algorithms to create robust system and avoid
misconceptions and serious anomalies.

⊕ Know the basic approaches in solving multiprocessing
scheduling

Remark: It is the area which we have very limited knowledge
because of its complexity and our minimal experiences with
multiprocessor systems.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Nonpreemptive Multiprocessor
Scheduling

Important Theorems1:
Conditions:

Single deadline, identical processors, ready at time 0

Theorems: (“_”-marked items causes NP-completeness!)

Processors Resources Ordering Computation Time Complexity
2 0 Arbitrary Unit Polynomial2

2 0 Independent Arbitrary NP-Complete3

2 0 Arbitrary 1 or 2 units NP-Complete3

2 1 Forest Unit NP-Complete3

3 1 Independent Unit NP-Complete3

N 0 Forest Unit Polynomial4

N 0 Arbitrary Unit NP-Complete5

1. Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
2. Coffman and Graham, “Optimal Scheduling for Two-Processor Systems,” ACTA Information, 1, 1972, pp.200-213.
3. Garey and Johnson, “Complexity Bounds for Multiprocessor Schedulingwith Resource Constraints,” SIAM J. Computing, Vol. 4, No.3, 1975, pp. 187-200.
4. Hu, “Parallel Scheduling and Assembly Line Problems,” Operating Research,, 9, Nov. 1961, pp. 841-848.
5. Ullman, “Polynomial Complete Scheduling Problem,” Proc. fourth Symp. Operating System Principles, ACM, 1973, pp. 96-101.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling

Theorem of McNaughton in 1959.
Goal: Compare preemption and non-preemption.

Conditions:
identical processors.

Theorem 0: Given the metric to minimize the weighted
sum of completion times, i.e., Sum(wjcj), there exists a
schedule with no preemption for which the
performance is as good as for any schedule with a
finite number of preemptions.
Note: It is NP-hard to find an optimal schedule! If the metric
is to minimize the sum of completion times, the shortest-
processing-time-first greedy approach is optimal.

McNaughton, “Scheduling with Deadlines and Loss Functions,” Management Science, Vol. 6, No. 1, Oct. 1959, pp.1-12.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling

Theorem of Lawler in 1983.
Goal: Show that heuristics are needed for real-
time multiprocessor scheduling.
Conditions:

identical processors, different deadlines for
processes.

Theorem 0: The multiprocessing problem of
scheduling P processors with process
preemption allowed and with minimization of
the number of late processes is NP-hard.

Lawler, “Recent Results in the Theory of Machine Scheduling,” Mathmatical Programming: The state of the Art, A. Bachen et al., eds., Springer-Verlag, New York, 1983, pp. 202-233.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling

Theorems of Mok in 1983
Goal:Understand the limitations of EDF.

Conditions:
different ready times.

Theorem 0: Earliest-deadline-first scheduling is
not optimal in the multiprocessor case.
Example, T1(c=1,d=1), T2(c=1,d=2), T3(c=3,d=3.5), two
processors.

Theorem 1: For two or more processors, no deadline
scheduling algorithm can be optimal without complete
a priori knowledge of deadlines, computation times,
and process start times.

A.K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment,” Ph.D. Thesis, Dept. of Electrical Engineering and Computer science, MIT, May 1983.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Anomalies

Theorem of Graham in 1976.
Goal:Notice anomaly and provide better design.

Conditions;
A set of processes is optimally scheduled on a multiprocessor
with some priority order, fixed execution times, precedence
constraints, and a fixed number of processors.

Theorem 0: For the stated problem, changing the
priority list, increasing the number of processors,
reducing execution times, or weakening the
precedence constraints can increase the schedule
length.

R. Graham, “Bounds on the Performance of Scheduling Algorithms,” Computer and Job Shop Scheduling theory, E.G. Coffman, ed., John Wiley and Sons, 1976, pp. 165-227.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Anomalies

An Example

P1

P2

P1

P2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Scheduling -
Contemporary Approach

Motivation:
The multiprocessor scheduling problem is NP-hard
under any but the most simplifying assumptions.

The uniprocessor scheduling problem is usually
tractable.

Common Approach - 2 Steps
Assign processes to processors

Run a uniprocessor scheduling algorithm on each
processor.

Metrics:
Minimize the number of processors, fault tolerance, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Scheduling -
Contemporary Approach

However, the process assignment problem is again
NP-hard in most cases.

Heuristics:
Utilization balancing - balance workload of processors.1

Next-fit algorithm - used with RM. 2

Bin-packing algorithm - set with a threshold and used
with EDF 3, etc.

Other considerations:
precedence constraints, dynamic overload handling, etc.

1. J.A. Bannister and K.S. Trivedi, “Task Allocation in Fault-Tolerance Distributed systems,” Acta Informatica 20:261-281, 1983.
2. S. Davari and S.K. Dhall, “An On Line Algorithm for Real-Time Tasks Allocation,” IEEE Real-Time Systems Symposium, 1986, pp.194-200, Dhall’s Ph.D. thesis, UI.
3. D.S. Johnson, Near-Optimal Bin-Packing Algorithms,” Ph.D. thesis, MIT, 1974.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Multiprocessor Scheduling

Current Research
Classification: Migration(/Partition) & Static or
Dynamic Priorities

Some Recent Results:
Utilization Bound = 42% by a bin-packing
partitioning approach (JRTS, 1999)

Utilization Bound = 37.482% by RM-US –
processes with a utlization > bound is given the
highest priority; otherwise RM is adopted.

Utilization Bound = m – [(m-1)*Umax] if Umax <=
0.5, where Umax = max Ui. Or Utilization Bound =
(m+1)/2+Umax if Umax > 0.5 – M-CBS (RTAS02)

Utilization Bound = 75% - EZDL (to appear)

Energy-Efficient Real-Time
Task Scheduling

郭大維教授
ktw@csie.ntu.edu.tw

嵌入式系統暨無線網路實驗室

(Embedded Systems and Wireless Networking Laboratory)

國立臺灣大學資訊工程學系

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction

Challenges in Embedded Systems Designs
Limited Resources

Limited Energy Supply

Variety in Product Designs

Strong Demands in Friendly User Interface

Strong Mutual Influence Between Hardware and
Software Designs

Limited Lifetime in Many Products

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction

Worlds are Getting More and More Complicated!
Processors with Voltage-Scaling Supports

I/O Devices with Different Voltage Supplies and
Operating Modes

Communication Devices with Different Operating
Modes

Where To Save Energy Consumption?
Hardware Designs

Operating Systems/System Components Designs

Application Systems/Programs Designs

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

System Design Issues – Energy-
Efficiency Designs

Operating System
Designs

Application Program
Designs

Application System
Designs Operating

Systems

Application Systems

Application
Programs
Application
Programs
Application
Programs

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Operating System Designs

Proper Voltage-Scaling Scheduling
HW Architectures, Task Characteristics, etc.

Task Scheduling, Multi-Resource Scheduling, etc.

Intelligent Event Management
Idle Time, Synchronization, Multi-Event Waiting,
etc.

Intelligent Device Management
Device Status Scheduling, Request Scheduling,
Polling-Style Programming, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

The Idle Task – uC/OS-II
The idle task is always the
lowest-priority task and can
not be deleted or suspended
by user tasks.

To reduce power dissipation,
you can issue a HALT-like
instruction in the idle task.

Suspend services in
OSTaskIdleHook()!!

void OS_TaskIdle (void *pdata)
{
#if OS_CRITICAL_METHOD == 3

OS_CPU_SR cpu_sr;
#endif

pdata = pdata;
for (;;) {

OS_ENTER_CRITICAL();
OSIdleCtr++;
OS_EXIT_CRITICAL();
OSTaskIdleHook();

}
}

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Application System Designs

Application Characteristics
Assumptions, Optimization Goals, Architecture
Choices, Topology Constraints, etc.

Standard Constraints
Design Flexibility, Restrictions, Quality-of-Services,
etc.

Cross-Layer Optimization
Coupling Strength, Modularity, Upgradeability, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Example Application System Designs –
Adaptive Sensor Networks

Power Management
Consider power-efficiency
for node and protocol
designs.

Mobility Management
Detect and manage
nodes with dynamic
movements.

Task Management
Schedule and balance
workloads performed by
nodes.

T
ask M

anagem
ent

P
ow

er M
anagem

ent

M
obility M

anagem
ent

Physical Layer

Data Link Layer

Application Layer

Transport Layer

Network Layer

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Application Program Designs

Application Characteristics
Design Logics, Hardware Supports,
Resource Utilization & Patterns, etc.

User/Process Behaviors
Bottleneck Identification, Program
Structures, User Access Patterns, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Case Study – Energy-Profiling of a Browser
Konqueror

An open-source web browser running on Linux built upon a Qt
application environment
A full-featured web browser

HTML 4 compliance

Cascading Style Sheets
(CSS1) and CSS2

JavaScript

Java Applet

Flash

SSL, etc.

Overheads
The profiling overheads were no more than 7% of the profiling
system (Profiling Frequency = 20,000HZ).

IEEE WORDS 2004

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Motivations on Energy-Efficient Process
Scheduling

Energy-Efficiency Considerations for Battery-
Powered Embedded Systems

Operating Duration
Performance

Dimensions in Problem Formulation
Architecture Considerations, e.g.,
Homogeneous/Heterogeneous Multiprocessors
Process Models, e.g., Frame-Based Process
Sets
Processor Types, e.g., Available Processor Speeds

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Definitions – Voltage Scaling and
Power Consumption
A Dynamic Voltage/Speed Scaling (DVS) system is a
system that can execute tasks at different speeds.

A higher supply voltage results in a higher frequency
(or higher execution speed).

s = k * (Vdd-Vt)2/(Vdd), where
• s is the corresponding speed of the supply voltage Vdd , and Vt

is the threshold voltage

The dynamic power consumption function P() of the
execution speeds is a convex function:

P(s) = Cef Vdd
2 s

P(s) = Cef s3/k2 , when Vt = 0
Example Voltage Scaling Processors: Example Voltage Scaling Processors:

Intel Intel XScaleXScale, , StrongARMStrongARM, , TransmetaTransmeta, Intel , Intel CentrinoCentrino

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Dilemma – Performance versus
Energy Consumption

Definition: Energy-Efficient Process
Scheduling

Given a process set with timing
constraints and a set of processors
with available processor speeds (and
constraints), find a feasible schedule
such that the energy consumption is
minimized.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Task Models under Investigation
Frame-Based Real-Time tasks

All the tasks are ready at time 0 and share
a common deadline D.
Each task τi is associated with ci amount of
computation requirements.

Periodic Real-Time Tasks
The job of each task τi arrives periodically
in a period pi after the first job of τi releases
at time ai.
Each task τi is associated with ci amount of
computation requirements.
The relative deadline of τi is equal to pi.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Task Models under Investigation
Aperiodic Real-Time Tasks

The job of each task τi might arrive with a
minimum separation time pi after the first job
of τi releases at time ai.
Each task τi is associated with ci amount of
computation requirements.
The relative deadline of τi is given as a
constant di.

Periodic Multi-Framed Real-Time Tasks
Periodic Real-Time Tasks
Each task τi is associated with a regular
pattern of ci amount of computation
requirements in secutive periodis.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Our Roadmap on Energy-Efficient
Process Scheduling

Energy-Efficient Task
Scheduling and Synthesis

Task Scheduling
on A Single Processor

Task Scheduling
for Multiprocessors

Minimization on the
Energy Consumption CMP Processors

General-Purposed
Processors

Maximization on the
System Reward/

Performance

Tasks Have the Same
Power Consumption Functions

Tasks Have Different
Power Consumption Functions

Discrete Number of
Processor Speeds

No Speed Transition
During Execution of

Any Job

Allow Speed Transition
During Execution of

Any Job

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Potential Directions
Realistic Task Models

Leakage Current

Process Synchronization

Multi-Core System Architectures

I/O Peripherial Considerations

Complicated System Architectures

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Papers to Study

J. Stankovic, M. Spuri, M.D. Natale, G.C.
Buttazo,”Implications of Classical Scheduling
Results for Real-Time Systems,” IEEE
Computer, 1995
C.L. Liu and J.W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard Real-
Time Environments,” Journal of ACM, 1973.
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-
Time Synchronization,” IEEE Transactions on
Computers, 1990.
http://140.112.28.119

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Papers to Study

A.K. Mok, “The Design of Real-Time
Programming Systems Based on Process
Models,” IEEE Real-Time Systems
Symposium, Dec 1994.
T.W. Kuo, Y.H. Liu, K.J. Lin, “Efficient On-Line
Schedulability Tests for Priority Driven Real-
Time Systems," the IEEE Real-Time
Technology and Applications Symposium,
June 2000.
A.K. Mok, “A Graph-Based Computation Model
for Real-Time Systems,” IEEE International
Conference on Parallel Processing, Aug 1985.

