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Note/Warning/Disclaimer: Segways, like any large machines, can be dangerous if appropriate safety precautions are not observed. 
DIY Segways, including this one, are particularly dangerous because they often lack the redundant safety features of commercial 
Segways. This technical documentation is intended for informational, not instructional, purposes. Attempt/build at your own risk!

Overview
Building a DIY Segway-like scooter was an 

incredibly fun project, and we would like to share 
the experience with others in as much detail as 
possible. The intention of the technical 
documentation is not to provide step-by-step 
instructions on how to build this particular machine, 
but to share some of the resources that made it 
possible. Hopefully, others will find these resources 
useful in their own projects, self-balancing or 
otherwise. If you have further questions or 
comments about our project, please contact: 

seg-info@mit.edu

Files
In segspecs.zip, you can find the following 

files:

 segspecs.pdf: This document.
 BOM.pdf: Bill of materials, including 

supplier and vendor information.
 PCB.zip: PCB manufacturing files, in 

gerber format.
 CAD.zip: All of the SolidWorks files, plus a 

few .dxf files of the base plate waterjet cut.
 SegwayDash.zip: The custom VB 

dashboard source (used for wireless 
debugging).

 controller.pdf: Some more visual notes on 
the custom controller.

 filter.pdf: A detailed explanation of the 
digital filter we used to estimate angle from 
sensors.

 segwaycode.c: The actual code 
implemented on the PIC microcontroller for 
control.

Quick Specifications:
Overall Footprint: 27”x15”
Wheel Diameter: 12.5”
Ground Clearance: 5”
Weight: 52 lbs. with battery, 39 lbs. without
Rider Capacity: 250 lbs.
Peak Motor Power: 343 W (0.46 HP) each
Peak Motor Torque: 2.45 N-m (347 ozf-in) each
Max. Continuous Motor Current: 40 A each
Gear ratio: 16:1
Theoretical Top Speed: 5 m/s (11 MPH)
Software-Limited Top Speed: ~3 m/s (~7 MPH)
Battery: 12V Sealed Lead-Acid, 18 A-hr
Normal-Usage Battery Life: ~45-60 min
Controller Update Rate: 100 Hz
Telemetry Transmit Rate: 15 Hz
Telemetry Transmit Range: 300 ft
Total Materials Cost: <$1,000
Number of Cup Holders: 2

mailto:seg-info@mit.edu
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Base Plate Design and Fabrication
The base plate is really the key to much of the 

mechanical construction of our machine. All of the 
tricky alignment of motors, gearboxes, and bearings 
was consolidated onto one piece to be precisely 
machined. The base is made from ¼”-thick 6061 
aluminum plate (vendor: McMaster Carr1). It has 
been pointed out to use several times that there are 
much cheaper alternative materials and/or vendors. 
One easy and inexpensive alternative is Big Blue 
Saw2, which offers waterjet cutting straight from
CAD files and has reasonable prices which include 
material costs. They offer a wide range of materials 
and thicknesses, as well. (Clear polycarbonate base, 
anyone?) The plate itself contributes only partially 
to the rigidity of the base. Most of the strength 
comes from two 1”x1”x1/8” aluminum box 
extrusion cross-beams. Placing the bearings as close 
as possible to the edge of the base ensures that the 
load is carried directly from the wheels into these 
two cross beams without causing significant 
deflection of the drive shaft or motors. 

The base plate was collaboratively designed in 
SolidWorks3 and cut on the waterjet at the MIT 
Hobby Shop4. Holes for mounting the motors, 
bearings, handlebar, electronics, and cross-beams 
were included, as well as the now-famous cup 
holders. It weighs approximately 7 lbs. A .dxf file 
of the plate is available in CAD.zip.

                                                
1 http://www.mcmaster.com
2 http://www.bigbluesaw.com
3http://solidworks.com/pages/products/edu/studenteditionsoft
ware.html
4 http://hobbyshop.mit.edu

Motors and Gearboxes
Picking motors was one of the first things we 

did. After briefly considering larger, more 
powerfully 24V NPC5 motors such as those used on 
Trevor Blackwell’s inspirational design6, we chose 
to use the familiar and inexpensive 12V CIM 
motors provided in the FIRST Robotics kit of parts. 
At just under ½ HP peak output each, they were a 
compromise that we thought would work okay with 
our lightweight design. They also offered the 
advantage of being compatible with a compact 16:1 
in-line planetary gearbox (vendor: BaneBots7).

BaneBots also sells a two-motor adaptor for 
this gearbox, creating potential for a design with 
twice the power. Backlash in the gearbox is 
noticeable, but it is less than five degrees. Note that 
these gearboxes have some well-known assembly 
quirks, particularly the axial alignment of the motor 
pinion gear, so read the BaneBots documentation 
carefully.

Coupling, Axle, and Bearings
Our original design called for a flexible 

coupling between the 1/2” gearbox shaft and the 
5/8” drive shaft, to allow for misalignment and 
minimize shock loading on the gears. The problem 
we encountered with this design was that in order to 
accommodate two bearings, spaced out enough to 
support the drive shaft, our total width would be 

                                                
5 http://www.npcrobotics.com
6 http://www.tlb.org/scooter.html
7 http://www.banebots.com
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over 32”. Besides looking somewhat ridiculous, this 
would cause problems getting through doors.

We pretty quickly decided to give up on the 
flexible coupling in order to get the width under 
30”. With a rigid coupling between the gearbox and 
the drive shaft, the bearing on the gearbox provides 
a second point of support for the rigidly-coupled 
shafts. Quick calculations indicated that with a 5/8”
steel keyed drive shaft and bearing placed as close 
to the edge of the base as possible, there was 
enough support in the system so that the gearbox 
would not be damaged by deflection of the shaft.
(We’ve also seen these gearboxes survive under 
much less adequate constraints on FIRST robots.)

We did not know how the rigid coupling would 
affect alignment and shock loading transmitted to 
the gearbox. We bought some shim stock in case the 
alignment was a problem, but wound up not using 
it. As for shock loading, we’ll have to wait and see 

how well the carrier plates inside the gearbox hold 
up. So far, they seem okay.

One major design oversight was the fact that 
the motor actually sticks out a bit further than the 
edge of the gearbox. We had to shim up the gearbox 
and bearings with sheet metal to allow for this, 
although it could easily have been avoided by 
cutting a slot or milling a pocket on the base plate 
for the motor to rest in.

Wheels
Based on our motor torque/speed 

characteristics, we needed to use relatively small 
wheels to get adequate performance. We chose 
12.5” pneumatic wheels made by Skyway8 because 
they were inexpensive, light, and had the 5/8” keyed 
hub we needed. Skyway has been a long-time 
supplier for FIRST teams and offers special pricing 
for them.

Handlebar
The handlebar was supposed to be the easy 

part…until the decision to go for lean steering. 
Aside from that part, it is just a piece of 80/209

1”x2” extrusion. This stuff is great because it allows 
easy adjustment via sliding t-nuts, making height 
and angle modifications simple. We cut a few 
custom brackets for it on the waterjet out of the left-
over aluminum from the base plate (see CAD files).

As for the lean-steering joint, we went through 
a bunch of iterations, including one with a 
combination of compression and tension springs 
that sounded like an old Buick suspension. The 
current design uses four strips of ¼” polycarbonate 
as leaf springs to center the steering joint. The 
forward/backward rigidity of the joint is workable, 
but not great and is something to look at for future 
modification.

                                                
8 http://www.skywaytuffwheels.com
9 http://www.8020.net
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Battery and Power Electronics
All of the power electronics on our machine are 

FIRST-legal kit components. The power source is a 
12V, 18 A-h sealed lead-acid motorcycle battery 
that weighs 13 lbs. It is connected to a 120A main 
breaker with 6-gauge wire, then to a distribution 
block. Each motor line has a 40A circuit breaker. 
The controller also has a 40A breaker, but it is also 
protected by a 1A thermal polyswitch. The grounds 
are grouped together in the remaining slot of the 
distribution block. (Notice the aluminum ground 
jumper? Not the most elegant solution, but it 
works.) The chassis is not grounded.

The motor controllers are the reliable 
Innovation First10 Victor 884 model found in the 
FIRST kit. Aside from being virtually indestructible 
(they have survived being rained on), they can 
supply 40A continuous and much higher peak 
currents without ever getting hot thanks to fans 
directly cooling the MOSFETs. They are driven by 

                                                
10 http://www.ifirobotics.com

1-2ms PWM signals, the same signal used by RC 
servos. These signals are easily generated by the 
PIC controller. The speed controllers can be 
updated at up to 100Hz.

Sensors, Signal Electronics, and 
Controller

We made use of three sensors: a gyroscope and 
an accelerometer for balancing, and a second 
accelerometer for steering. Unlike the commercial 
Segway, ours has no redundant sensors – you pretty 
much need all three to be working correctly for it to 
be rideable.

The sensors are all from the Analog Devices11

iMEMS line (see B.O.M.). They report an analog 
voltage between 0V and 5V to the controller, with 
neutral angle or zero rate being near 2.5V, although 
each requires some calibration with regards to the 
exact offset. The gyroscope is used simply to 
measure angular rate. The accelerometer is used to 
indirectly measure the direction of the force of 
gravity, since it is really sensing force per unit mass
along a given axis. This, along with a small angle 
approximation, gives an estimate of the angle to 
horizontal.

The controller is based on the PIC16F877 
board of the Machine Science12 starter kit. It is 
protected by a 1A thermal polyswitch, a diode to 
prevent reversing polarity, and a large filter 
capacitor before the 5V regulator (LM7805). The 
PCB was drawn out it out in a freeware program 
called FreePCB13 and manufactured by Advanced 

                                                
11 http://www.analog.com
12 http://www.machinescience.org
13 http://www.freepcb.com
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Circuits14, which has an excellent student discount 
of $33/board. The PCB layout and Gerber files are 
available in PCB.zip.

The CPU clock for the PIC is generated by a 4
MHz oscillator. (Compare this to 4 GHz 
Pentiums…) The actual instruction and timer clock 
is ¼ of that, 1 MHz. This is relatively slow even for 
a microcontroller, and in a future upgrade we plan 
to move to a faster microprocessor. But even with 
the current setup and a good amount of floating-
point control math, we can keep our control loop 
running at 100 Hz.

One thing we think is fairly unique about our 
controller is that its interface is entirely wireless. It 
can be reprogrammed without attaching any cables 
to the Segway and can transmit data from the 
sensors or controller to a laptop for debugging. This 
is all done via MaxStream15’s XBee radios. In a 
future mod, it might even be capable of wireless 
self-balancing control with no rider.

                                                
14 http://www.4pcb.com
15 http://www.maxstream.net

Signal Filtering
There are a number of problems with using 

direct sensor data for control. For one, with two 
half-horsepower electric motors on the same power 
and ground line as the controller, there is bound to 
be noise in the system even with a 6800μF power 
supply filter capacitor for the controller. 

There are also physical reasons why the data 
from the accelerometers and gyroscope has to be 
filtered. The accelerometers measure a change in 
angle by the component of the force of gravity 
along their sensitive axis (horizontal). But they also 
report other horizontal accelerations from the 
motors or, in the case of steering, wiggling of the 
handlebar. The gyroscope measures angular rate 
and can be used to estimate angle by integration, 
multiplying the rate by the small time step to get the 
small change in angle each time through the 
program loop. But this method can lead to drift: the 
angle changes slowly over time if the sensor is not 
perfectly zeroed (which it never is).

For the steering, we implemented the simple 
hardware solution of adding capacitance to the 
output filter of the accelerometer, creating a “low-
pass filter” that smoothes out short periods of 
acceleration and lets through only the long term 
effects of gravity. The ADXL203 data sheet 
explains how to do this. We’ve been experimenting 
with capacitors in the 4.7-10μF range. 

For the balance controller, though, this method 
would cause too much lag in the angle estimate.
Most self-balancing robot / homemade Segway sites 
refer to some kind of digital filter which combines 
the accelerometer and gyroscope data to get a clean, 
fast angle estimate. The Kalman Filter is often 
offered as a possibility, although nobody ever seems 
to take the time to explain it. (And for good reason: 
It is mathematically complicated and would not run 
on a PIC.) Our solution is a much simpler software 
filter that we are just going to call a “digital 
complementary filter” for lack of any known 
technical reference to it. It is actually the same as 
the filter implemented in the Balancing Robot 
Wheeley16 project.

                                                
16 http://www.dena.demon.nl/balansbot.html
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“After a lot of trials and calibration the 
performance of the Kalman filter was not 
satisfying. I developed another simple filter again 
on trial and error.”

-Balancing Robot Wheeley page

Although it is fairly simple to explain, we will 
leave it out of this document and instead point you 
to filter.pdf for a more colorful explanation.

Balance Control
For all the controller setup (timers, wireless 

communication, etc.) and signal conditioning, the 
actual balance control is a fairly short bit of code:

motor += (KP * angle) + (KD * (float)gz_vel);

It’s a “PD” controller, standing for Proportional + 
Derivative. The motor output is scaled 
proportionally to the (filtered) angle estimate and its 
derivative, the angular velocity measurement. Using 
the angle alone would have a similar effect, but with 
more oscillations. This of it this way: The angle 
term provides a spring-like effect (F = kx) restoring 
the base to the horizontal position, while the angular 
velocity term is more like a damper. There are a lot 
of great references17 available on PID control 
theory.

There is more to be done after the simple PD 
controller, some of which we’ve gotten to and some 
of which we are still working on. For one, steering 
must be taken into account. This is done simply by 
adding an offset to one motor and subtracting it 
from the other. Also, motor values must be limited 
so as not to overflow their variable types or exceed 
the limits of the motor controllers.

                                                
17 http://www.chiefdelphi.com/media/papers/1823
    http://www.chiefdelphi.com/media/papers/1911

One major piece of control that we have yet to 
add to our code is the speed limiter. Ideally, the 
controller should push back harder if you try to lean 
forward/backwards at high speed, to prevent you 
from getting into a condition where the motors can 
no longer catch up to you. Testing this bit is 
difficult, so we’ve put it off so far and worked only 
at low speeds. Do not try to take a DIY Segway 
up to high speeds without a helmet/pads/etc. 
because you are almost guaranteed to fall off.
Best to think of it as an extreme sport…

The current controller code, with comments, is 
in this zip: segwaycode.c.

Design Notes
If you’ve made it this far through the 

documentation, you deserve a nice summary of 
what worked and what still needs work on this 
project. This way, when you are working on your 
own project, you can learn from our successes and 
not-so-successes. So, in no particular order, things 
that worked really well:

 The base. It is light, but wonderfully rigid 
and easily supports the load of the rider 
jumping on, even with the simpler one-
bearing setup. The cross-beams take all of
the weight and the bearing/gearbox 
alignment stays true. Designing it in 
SolidWorks and machining it on the waterjet 
paid off big time.

 The sensors. Yes, they are noisy analog 
sensors. But with some signal conditioning, 
they absolutely work. They are also tiny and 
dirt cheap now. We had an ADIS16350 
digital IMU, but decided not to use it 
because these are far simpler.

 The XBee radios. These things are so easy 
to use and cut debugging time in half, easily.

 The Victor884 speed controllers. After an 
hour of riding, the motors get pretty hot, but 
the speed controllers are always cool to the 
touch. They are incredibly efficient and 
robust. Only minor issue is the dead band, 
but we accommodate for that in software.
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And things that could be better:
 The motors. They may be just a bit 

underpowered for this type of application. 
For normal operation on flat surfaces, they 
work great. Speed bumps, turning on rough 
terrain, etc, not as well. But they are 
consistent with the lightweight, compact 
design and serve their purpose.

 The microcontroller. The Machine Science 
online IDE is excellent, but we are eager to 
move from the PIC to their new 
development environment for the Atmel 
AVR line. These have more code space and 
are significantly faster (and cheaper).

 Steering. A combination of mechanical and 
control problems still need to be worked out. 
We got the kinks out of the joint, finally, but 
are still working on getting the steering to be 
smooth and controlled at any speed. The 
dead band on the motor drivers makes 
turning while coasting a somewhat 
involuntary adventure, but that should be 
fixable in software.

Wrap-Up
This was a great project and we think proves 

that even seemingly complicated technology is 
within reach for high school-level engineering 
projects. We’re not suggesting that everyone go out 
and build a Segway (although wouldn’t that be 
interesting), but the technologies we used can be 
applied to any number of cool projects that we can’t 
wait to see.
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