
DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 1

DIY Segway Technical Documentation
Rev. 0, 8/23/2007

Note/Warning/Disclaimer: Segways, like any large machines, can be dangerous if appropriate safety precautions are not observed.
DIY Segways, including this one, are particularly dangerous because they often lack the redundant safety features of commercial
Segways. This technical documentation is intended for informational, not instructional, purposes. Attempt/build at your own risk!

Overview
Building a DIY Segway-like scooter was an

incredibly fun project, and we would like to share
the experience with others in as much detail as
possible. The intention of the technical
documentation is not to provide step-by-step
instructions on how to build this particular machine,
but to share some of the resources that made it
possible. Hopefully, others will find these resources
useful in their own projects, self-balancing or
otherwise. If you have further questions or
comments about our project, please contact:

seg-info@mit.edu

Files
In segspecs.zip, you can find the following

files:

 segspecs.pdf: This document.
 BOM.pdf: Bill of materials, including

supplier and vendor information.
 PCB.zip: PCB manufacturing files, in

gerber format.
 CAD.zip: All of the SolidWorks files, plus a

few .dxf files of the base plate waterjet cut.
 SegwayDash.zip: The custom VB

dashboard source (used for wireless
debugging).

 controller.pdf: Some more visual notes on
the custom controller.

 filter.pdf: A detailed explanation of the
digital filter we used to estimate angle from
sensors.

 segwaycode.c: The actual code
implemented on the PIC microcontroller for
control.

Quick Specifications:
Overall Footprint: 27”x15”
Wheel Diameter: 12.5”
Ground Clearance: 5”
Weight: 52 lbs. with battery, 39 lbs. without
Rider Capacity: 250 lbs.
Peak Motor Power: 343 W (0.46 HP) each
Peak Motor Torque: 2.45 N-m (347 ozf-in) each
Max. Continuous Motor Current: 40 A each
Gear ratio: 16:1
Theoretical Top Speed: 5 m/s (11 MPH)
Software-Limited Top Speed: ~3 m/s (~7 MPH)
Battery: 12V Sealed Lead-Acid, 18 A-hr
Normal-Usage Battery Life: ~45-60 min
Controller Update Rate: 100 Hz
Telemetry Transmit Rate: 15 Hz
Telemetry Transmit Range: 300 ft
Total Materials Cost: <$1,000
Number of Cup Holders: 2

mailto:seg-info@mit.edu

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 2

Base Plate Design and Fabrication
The base plate is really the key to much of the

mechanical construction of our machine. All of the
tricky alignment of motors, gearboxes, and bearings
was consolidated onto one piece to be precisely
machined. The base is made from ¼”-thick 6061
aluminum plate (vendor: McMaster Carr1). It has
been pointed out to use several times that there are
much cheaper alternative materials and/or vendors.
One easy and inexpensive alternative is Big Blue
Saw2, which offers waterjet cutting straight from
CAD files and has reasonable prices which include
material costs. They offer a wide range of materials
and thicknesses, as well. (Clear polycarbonate base,
anyone?) The plate itself contributes only partially
to the rigidity of the base. Most of the strength
comes from two 1”x1”x1/8” aluminum box
extrusion cross-beams. Placing the bearings as close
as possible to the edge of the base ensures that the
load is carried directly from the wheels into these
two cross beams without causing significant
deflection of the drive shaft or motors.

The base plate was collaboratively designed in
SolidWorks3 and cut on the waterjet at the MIT
Hobby Shop4. Holes for mounting the motors,
bearings, handlebar, electronics, and cross-beams
were included, as well as the now-famous cup
holders. It weighs approximately 7 lbs. A .dxf file
of the plate is available in CAD.zip.

1 http://www.mcmaster.com
2 http://www.bigbluesaw.com
3http://solidworks.com/pages/products/edu/studenteditionsoft
ware.html
4 http://hobbyshop.mit.edu

Motors and Gearboxes
Picking motors was one of the first things we

did. After briefly considering larger, more
powerfully 24V NPC5 motors such as those used on
Trevor Blackwell’s inspirational design6, we chose
to use the familiar and inexpensive 12V CIM
motors provided in the FIRST Robotics kit of parts.
At just under ½ HP peak output each, they were a
compromise that we thought would work okay with
our lightweight design. They also offered the
advantage of being compatible with a compact 16:1
in-line planetary gearbox (vendor: BaneBots7).

BaneBots also sells a two-motor adaptor for
this gearbox, creating potential for a design with
twice the power. Backlash in the gearbox is
noticeable, but it is less than five degrees. Note that
these gearboxes have some well-known assembly
quirks, particularly the axial alignment of the motor
pinion gear, so read the BaneBots documentation
carefully.

Coupling, Axle, and Bearings
Our original design called for a flexible

coupling between the 1/2” gearbox shaft and the
5/8” drive shaft, to allow for misalignment and
minimize shock loading on the gears. The problem
we encountered with this design was that in order to
accommodate two bearings, spaced out enough to
support the drive shaft, our total width would be

5 http://www.npcrobotics.com
6 http://www.tlb.org/scooter.html
7 http://www.banebots.com

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 3

over 32”. Besides looking somewhat ridiculous, this
would cause problems getting through doors.

We pretty quickly decided to give up on the
flexible coupling in order to get the width under
30”. With a rigid coupling between the gearbox and
the drive shaft, the bearing on the gearbox provides
a second point of support for the rigidly-coupled
shafts. Quick calculations indicated that with a 5/8”
steel keyed drive shaft and bearing placed as close
to the edge of the base as possible, there was
enough support in the system so that the gearbox
would not be damaged by deflection of the shaft.
(We’ve also seen these gearboxes survive under
much less adequate constraints on FIRST robots.)

We did not know how the rigid coupling would
affect alignment and shock loading transmitted to
the gearbox. We bought some shim stock in case the
alignment was a problem, but wound up not using
it. As for shock loading, we’ll have to wait and see

how well the carrier plates inside the gearbox hold
up. So far, they seem okay.

One major design oversight was the fact that
the motor actually sticks out a bit further than the
edge of the gearbox. We had to shim up the gearbox
and bearings with sheet metal to allow for this,
although it could easily have been avoided by
cutting a slot or milling a pocket on the base plate
for the motor to rest in.

Wheels
Based on our motor torque/speed

characteristics, we needed to use relatively small
wheels to get adequate performance. We chose
12.5” pneumatic wheels made by Skyway8 because
they were inexpensive, light, and had the 5/8” keyed
hub we needed. Skyway has been a long-time
supplier for FIRST teams and offers special pricing
for them.

Handlebar
The handlebar was supposed to be the easy

part…until the decision to go for lean steering.
Aside from that part, it is just a piece of 80/209

1”x2” extrusion. This stuff is great because it allows
easy adjustment via sliding t-nuts, making height
and angle modifications simple. We cut a few
custom brackets for it on the waterjet out of the left-
over aluminum from the base plate (see CAD files).

As for the lean-steering joint, we went through
a bunch of iterations, including one with a
combination of compression and tension springs
that sounded like an old Buick suspension. The
current design uses four strips of ¼” polycarbonate
as leaf springs to center the steering joint. The
forward/backward rigidity of the joint is workable,
but not great and is something to look at for future
modification.

8 http://www.skywaytuffwheels.com
9 http://www.8020.net

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 4

Battery and Power Electronics
All of the power electronics on our machine are

FIRST-legal kit components. The power source is a
12V, 18 A-h sealed lead-acid motorcycle battery
that weighs 13 lbs. It is connected to a 120A main
breaker with 6-gauge wire, then to a distribution
block. Each motor line has a 40A circuit breaker.
The controller also has a 40A breaker, but it is also
protected by a 1A thermal polyswitch. The grounds
are grouped together in the remaining slot of the
distribution block. (Notice the aluminum ground
jumper? Not the most elegant solution, but it
works.) The chassis is not grounded.

The motor controllers are the reliable
Innovation First10 Victor 884 model found in the
FIRST kit. Aside from being virtually indestructible
(they have survived being rained on), they can
supply 40A continuous and much higher peak
currents without ever getting hot thanks to fans
directly cooling the MOSFETs. They are driven by

10 http://www.ifirobotics.com

1-2ms PWM signals, the same signal used by RC
servos. These signals are easily generated by the
PIC controller. The speed controllers can be
updated at up to 100Hz.

Sensors, Signal Electronics, and
Controller

We made use of three sensors: a gyroscope and
an accelerometer for balancing, and a second
accelerometer for steering. Unlike the commercial
Segway, ours has no redundant sensors – you pretty
much need all three to be working correctly for it to
be rideable.

The sensors are all from the Analog Devices11

iMEMS line (see B.O.M.). They report an analog
voltage between 0V and 5V to the controller, with
neutral angle or zero rate being near 2.5V, although
each requires some calibration with regards to the
exact offset. The gyroscope is used simply to
measure angular rate. The accelerometer is used to
indirectly measure the direction of the force of
gravity, since it is really sensing force per unit mass
along a given axis. This, along with a small angle
approximation, gives an estimate of the angle to
horizontal.

The controller is based on the PIC16F877
board of the Machine Science12 starter kit. It is
protected by a 1A thermal polyswitch, a diode to
prevent reversing polarity, and a large filter
capacitor before the 5V regulator (LM7805). The
PCB was drawn out it out in a freeware program
called FreePCB13 and manufactured by Advanced

11 http://www.analog.com
12 http://www.machinescience.org
13 http://www.freepcb.com

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 5

Circuits14, which has an excellent student discount
of $33/board. The PCB layout and Gerber files are
available in PCB.zip.

The CPU clock for the PIC is generated by a 4
MHz oscillator. (Compare this to 4 GHz
Pentiums…) The actual instruction and timer clock
is ¼ of that, 1 MHz. This is relatively slow even for
a microcontroller, and in a future upgrade we plan
to move to a faster microprocessor. But even with
the current setup and a good amount of floating-
point control math, we can keep our control loop
running at 100 Hz.

One thing we think is fairly unique about our
controller is that its interface is entirely wireless. It
can be reprogrammed without attaching any cables
to the Segway and can transmit data from the
sensors or controller to a laptop for debugging. This
is all done via MaxStream15’s XBee radios. In a
future mod, it might even be capable of wireless
self-balancing control with no rider.

14 http://www.4pcb.com
15 http://www.maxstream.net

Signal Filtering
There are a number of problems with using

direct sensor data for control. For one, with two
half-horsepower electric motors on the same power
and ground line as the controller, there is bound to
be noise in the system even with a 6800μF power
supply filter capacitor for the controller.

There are also physical reasons why the data
from the accelerometers and gyroscope has to be
filtered. The accelerometers measure a change in
angle by the component of the force of gravity
along their sensitive axis (horizontal). But they also
report other horizontal accelerations from the
motors or, in the case of steering, wiggling of the
handlebar. The gyroscope measures angular rate
and can be used to estimate angle by integration,
multiplying the rate by the small time step to get the
small change in angle each time through the
program loop. But this method can lead to drift: the
angle changes slowly over time if the sensor is not
perfectly zeroed (which it never is).

For the steering, we implemented the simple
hardware solution of adding capacitance to the
output filter of the accelerometer, creating a “low-
pass filter” that smoothes out short periods of
acceleration and lets through only the long term
effects of gravity. The ADXL203 data sheet
explains how to do this. We’ve been experimenting
with capacitors in the 4.7-10μF range.

For the balance controller, though, this method
would cause too much lag in the angle estimate.
Most self-balancing robot / homemade Segway sites
refer to some kind of digital filter which combines
the accelerometer and gyroscope data to get a clean,
fast angle estimate. The Kalman Filter is often
offered as a possibility, although nobody ever seems
to take the time to explain it. (And for good reason:
It is mathematically complicated and would not run
on a PIC.) Our solution is a much simpler software
filter that we are just going to call a “digital
complementary filter” for lack of any known
technical reference to it. It is actually the same as
the filter implemented in the Balancing Robot
Wheeley16 project.

16 http://www.dena.demon.nl/balansbot.html

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 6

“After a lot of trials and calibration the
performance of the Kalman filter was not
satisfying. I developed another simple filter again
on trial and error.”

-Balancing Robot Wheeley page

Although it is fairly simple to explain, we will
leave it out of this document and instead point you
to filter.pdf for a more colorful explanation.

Balance Control
For all the controller setup (timers, wireless

communication, etc.) and signal conditioning, the
actual balance control is a fairly short bit of code:

motor += (KP * angle) + (KD * (float)gz_vel);

It’s a “PD” controller, standing for Proportional +
Derivative. The motor output is scaled
proportionally to the (filtered) angle estimate and its
derivative, the angular velocity measurement. Using
the angle alone would have a similar effect, but with
more oscillations. This of it this way: The angle
term provides a spring-like effect (F = kx) restoring
the base to the horizontal position, while the angular
velocity term is more like a damper. There are a lot
of great references17 available on PID control
theory.

There is more to be done after the simple PD
controller, some of which we’ve gotten to and some
of which we are still working on. For one, steering
must be taken into account. This is done simply by
adding an offset to one motor and subtracting it
from the other. Also, motor values must be limited
so as not to overflow their variable types or exceed
the limits of the motor controllers.

17 http://www.chiefdelphi.com/media/papers/1823
 http://www.chiefdelphi.com/media/papers/1911

One major piece of control that we have yet to
add to our code is the speed limiter. Ideally, the
controller should push back harder if you try to lean
forward/backwards at high speed, to prevent you
from getting into a condition where the motors can
no longer catch up to you. Testing this bit is
difficult, so we’ve put it off so far and worked only
at low speeds. Do not try to take a DIY Segway
up to high speeds without a helmet/pads/etc.
because you are almost guaranteed to fall off.
Best to think of it as an extreme sport…

The current controller code, with comments, is
in this zip: segwaycode.c.

Design Notes
If you’ve made it this far through the

documentation, you deserve a nice summary of
what worked and what still needs work on this
project. This way, when you are working on your
own project, you can learn from our successes and
not-so-successes. So, in no particular order, things
that worked really well:

 The base. It is light, but wonderfully rigid
and easily supports the load of the rider
jumping on, even with the simpler one-
bearing setup. The cross-beams take all of
the weight and the bearing/gearbox
alignment stays true. Designing it in
SolidWorks and machining it on the waterjet
paid off big time.

 The sensors. Yes, they are noisy analog
sensors. But with some signal conditioning,
they absolutely work. They are also tiny and
dirt cheap now. We had an ADIS16350
digital IMU, but decided not to use it
because these are far simpler.

 The XBee radios. These things are so easy
to use and cut debugging time in half, easily.

 The Victor884 speed controllers. After an
hour of riding, the motors get pretty hot, but
the speed controllers are always cool to the
touch. They are incredibly efficient and
robust. Only minor issue is the dead band,
but we accommodate for that in software.

DIY Segway Technical Documentation
http://web.mit.edu/first/segway

DIY Segway Technical Documentation 7

And things that could be better:
 The motors. They may be just a bit

underpowered for this type of application.
For normal operation on flat surfaces, they
work great. Speed bumps, turning on rough
terrain, etc, not as well. But they are
consistent with the lightweight, compact
design and serve their purpose.

 The microcontroller. The Machine Science
online IDE is excellent, but we are eager to
move from the PIC to their new
development environment for the Atmel
AVR line. These have more code space and
are significantly faster (and cheaper).

 Steering. A combination of mechanical and
control problems still need to be worked out.
We got the kinks out of the joint, finally, but
are still working on getting the steering to be
smooth and controlled at any speed. The
dead band on the motor drivers makes
turning while coasting a somewhat
involuntary adventure, but that should be
fixable in software.

Wrap-Up
This was a great project and we think proves

that even seemingly complicated technology is
within reach for high school-level engineering
projects. We’re not suggesting that everyone go out
and build a Segway (although wouldn’t that be
interesting), but the technologies we used can be
applied to any number of cool projects that we can’t
wait to see.

	Overview
	Files
	Quick Specifications:
	Base Plate Design and Fabrication
	Motorsand Gearboxes
	Coupling, Axle, and Bearings
	Wheels
	Handlebar
	Battery and Power Electronics
	Sensors, Signal Electronics, and Controller
	Signal Filtering
	Balance Control
	Design Notes
	Wrap-Up

