
Benchmarking hints © Copyright IAR Systems 2005 1

Benchmarking hints

How to tune 
IAR Embedded Workbench 
for best performance



Benchmarking hints © Copyright IAR Systems 2005 2

Optimization goal

Size or Speed?

Optimization level and type can be specified for the 
entire application and for individual files. In source 
code, the #pragma optimize directive allows 
you to do this even for individual functions.

The purpose of optimization is to reduce the code 
size and to improve the execution speed. When 
only one of these two goals can be satisfied, the 
compiler prioritizes according to the settings you 
specify.

Exploring the effects of the different transformations 
may lead to a better result. For example, the fact 
that Function inlining is more aggressive on speed 
optimization makes some programs smaller on the 
speed setting than on the size setting.



Benchmarking hints © Copyright IAR Systems 2005 3

Memory model

Memory model

Choose the smallest possible memory model

Benefits:
•Smaller addresses
•Smaller instructions
•Smaller pointers

⇒More efficient
⇒Less code



Benchmarking hints © Copyright IAR Systems 2005 4

Runtime environment

Adapting the runtime environment 

•By default, the runtime libraries are compiled at 
highest size optimization level. You should 
rebuild them if you are optimizing for speed!

•Select the required level of support for certain 
standard library functionality like,
locale, file descriptors, and 
multibytes by choosing the appropriate 
library configuration.

•Select library options for scanf input and 
printf output formatters according to your 
needs. The smallest formatters are not selected 
by default.



Benchmarking hints © Copyright IAR Systems 2005 5

Data types

Data types have big influence on code 
size/speed

•Choose the smallest data types
•Use unsigned char if possible 

⇒ Allows bit operations to be performed instead of 
arithmetic



Benchmarking hints © Copyright IAR Systems 2005 6

Target-specific options

Check for target-specific options that 
gain performance

Example:
•Efficient addressing modes 

⇒efficient memory accesses
•Locking registers for constants/variables 

⇒more efficient code for operations on registers 
than on memory

•Even align functions entries
⇒even aligned instructions gain speed

•Byte align objects 
⇒requires less memory for storage but might give 
bigger code



Benchmarking hints © Copyright IAR Systems 2005 7

Benchmark code

Use relevant benchmark code

•Embedded systems benchmarks shall address the 
characteristics of embedded programs.

•Real applications are usually good for benchmarks 
but, make sure that the code can execute. IAR 
XLINK will remove un-referenced code and 
variables but not all linkers have this ability.

•Make sure that the test code is not affected by the 
test harness (test support functions). The example 
to the right is actually benchmarking printf().

•Compare linked code. One compiler may inline 
code where another makes a library call. 

•Use an application that you are familiar with! 


