Benchmarking hints

How to tune
IAR Embedded Workbench
for best performance

SYSTEMS Benchmarking hints © Copyright IAR Systems 2005

DIFFERENT ARCHITECTURES.

SIAR

SYSTEMS

DIFFERENT ARCHITECTURES.
‘ONE SOLUTION,

www.iar.com

Optimization goal

Size or Speed?

Optimization level and type can be specified for the
entire application and for individual files. In source
code, the #pragma optimize directive allows
you to do this even for individual functions.

The purpose of optimization is to reduce the code
size and to improve the execution speed. When
only one of these two goals can be satisfied, the
compiler prioritizes according to the settings you

specify.

Exploring the effects of the different transformations
may lead to a better result. For example, the fact
that Function inlining is more aggressive on speed
optimization makes some programs smaller on the
speed setting than on the size setting.

Lanhguage Code IEIutputI Lizt I F'reprn:n::essn:nrl Diagnn:nstin:sl [THR I "I

— Optimizations
" Size
% Speed |High (Masimum optimization) j
Mone [Best debug support)
Lo

Mediurn

High [Maximum optimization]

Enabled try

[w]Loop unr
[w]Function inlining

[w|Code mation
[w]Type-bazed alias analysis

Code zegment; |CODE

Benchmarking hints © Copyright IAR Systems 2005 2

Memory model

Choose the smallest possible memory model

Benefits:

*Smaller addresses
*Smaller instructions
*Smaller pointers

—More efficient
—Less code

SIAR

SYSTEMS Benchmarking hints

DIFFERENT ARCHITECTURES.
ONE SOLUTION,

www.iar.com

Memory model

— Processor variant
% Core 1
" Caore 2
" Coel

~ Code model
& Momal
= Fosition independent
i~ Large

Target I Dutputl Library Configuration | Libram Elptiu:unsl FISHA EI

— D'ata model
&+ Tiny
" Small
i Large

™ Use short address mode

© Copyright IAR Systems 2005

SIAR

SYSTEMS

DIFFERENT ARCHITECTURES.
‘ONE SOLUTION,

www.iar.com

Runtime environment

Adapting the runtime environment

By default, the runtime libraries are compiled at

highest size optimization level. You should

rebuild them if you are optimizing for speed!

Select the required level of support for certain

standard library functionality like,

locale, file descriptors, and

mu ltibytes by choosing the appropriate
library configuration.

«Select library options for scant input and

printf output formatters according to your
needs. The smallest formatters are not selected

by default.

Benchmarking hints

Target | Output Library Canfiguration | Library Dptions | MISRA C |

Librany: Drezcription:

Marmal DLIB j IJze the normal configuration of the CAEC++

None runtime library. Mo locale interface, C locale, no
file degcriptar support, Ao multibytes 0 prink and

Full DLIE zcanf, and no hes floats in striod.

Cuztorn DLIB

[Library files

Canfiguration file;

|$T OOLEIT_DIR$MLIBNdIZE-thn. 85

|$T OOLEIT_DIR $MLIB4dIZE-thn.h

L
L

Targetl Dutputl Library Configuration Libramy Options | kIS FA EI

— Printf formatter

ITin_l,l

-

flagz.

Ma zpecifier a or A, no zpecifier n, na flaat, no

— Scanf formatter

| Small

|

Mo specifier n, no float, no scan zet, no
azzighment sLppressing,

© Copyright IAR Systems 2005

Data types

Data types have big influence on code

size/speed
Double floating-point zize
[¥ 32 btz —‘

" 64 bits

*Choose the smallest data types

*Use unsigned char if possible
—> Allows bit operations to be performed instead of

arithmetic Plain 'char' iz
|Vr' Signed

£+ Unsigned

SIAR

SYSTEMS Benchmarking hints © Copyright IAR Systems 2005

DIFFERENT ARCHITECTURES.
‘ONE SOLUTION,

www.iar.com

SIAR

SYSTEMS

DIFFERENT ARCHITECTURES.
‘ONE SOLUTION,

www.iar.com

Target-specific options

Check for target-specific options that
gain performance

Example:

oEfficient addressing modes
—>efficient memory accesses

sLocking registers for constants/variables
—more efficient code for operations on registers
than on memory

Even align functions entries
—>even aligned instructions gain speed

*Byte align objects
—>requires less memory for storage but might give
bigger code

Benchmarking hints © Copyright IAR Systems 2005

[T Use short addrez: mode

™ Byte align objects Shart address wark area

[~ ‘word align function entries ¥ Enable work area

IEEI_ Bytes

— |Jze of registers
Mr of locked reqizters:

Two l

[Put constants
255 and B5535

into regizters

[Compatible with
modules locking

fewer regizters

Mumber of registers to lack for global variables: |2 [F14.R15]j

Benchmark code

Use relevant benchmark code

*Embedded systems benchmarks shall address the
characteristics of embedded programs.

*Real applications are usually good for benchmarks
but, make sure that the code can execute. IAR
XLINK will remove un-referenced code and
variables but not all linkers have this ability.

*Make sure that the test code is not affected by the unsigned long fih(unsigned long x|
test harness (test support functions). The example {_f :
to the right is actually benchmarking printf(). D etEmeldin %15 4f Tost harmese

return(fibi(x-1)+fib(x-2);
else

eCompare linked code. One compiler may inline return(1j;
code where another makes a library call. /

*Use an application that you are familiar with!

SYSTEMS Benchmarking hints © Copyright IAR Systems 2005

DIFFERENT ARCHITECTURES.
‘ONE SOLUTION,

www.iar.com

