
© March 2009 Altera Corporation

NII51011-9.0.0
7. SPI Core
Core Overview
SPI is an industry-standard serial protocol commonly used in embedded systems to
connect microprocessors to a variety of off-chip sensor, conversion, memory, and
control devices. The SPI core with Avalon® interface implements the SPI protocol and
provides an Avalon Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When configured as a
master, the SPI core can control up to 32 independent SPI slaves. The width of the
receive and transmit registers are configurable between 1 and 32 bits. Longer transfer
lengths can be supported with software routines. The SPI core provides an interrupt
output that can flag an interrupt whenever a transfer completes.

The SPI core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the SPI Core in SOPC Builder” on page 7–5

■ “Device Support” on page 7–8

■ “Software Programming Model” on page 7–8

Functional Description
The SPI core communicates using two data lines, a control line, and a synchronization
clock:

■ Master Out Slave In (mosi)—Output data from the master to the inputs of the
slaves

■ Master In Slave Out (miso)—Output data from a slave to the input of the master

■ Serial Clock (sclk)—Clock driven by the master to slaves, used to synchronize the
data bits

■ Slave Select (ss_n)— Select signal (active low) driven by the master to individual
slaves, used to select the target slave

The SPI core has the following user-visible features:

■ A memory-mapped register space comprised of five registers: rxdata, txdata,
status, control, and slaveselect

■ Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the Avalon-MM
slave port. The sclk, ss_n, mosi, and miso ports provide the hardware interface to
other SPI devices. The behavior of sclk, ss_n, mosi, and miso depends on whether
the SPI core is configured as a master or slave.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–2 Chapter 7: SPI Core
Functional Description
Figure 7–1 shows a block diagram of the SPI core in master mode.

The SPI core logic is synchronous to the clock input provided by the Avalon-MM
interface. When configured as a master, the core divides the Avalon-MM clock to
generate the SCLK output. When configured as a slave, the core's receive logic is
synchronized to SCLK input. The core’s Avalon-MM interface is capable of
Avalon-MM transfers with flow control. The SPI core can be used in conjunction with
a DMA controller with flow control to automate continuous data transfers between,
for example, the SPI core and memory.

f For more details, refer to the Interval Timer Core chapter in volume 5 of the Quartus II
Handbook.

Example Configurations
Figure 7–1 and Figure 7–2 show two possible configurations. In Figure 7–2, the SPI
core provides a slave interface to an off-chip SPI master.

In Figure 7–1, the SPI core provides a master interface driving multiple off-chip slave
devices. Each slave device in Figure 7–1 must tristate its miso output whenever its
select signal is not asserted.

Figure 7–1. SPI Core Block Diagram

clock

control

 control

baud rate divisor*

IRQ

sclk

mosi

miso

ss_n0
ss_n1

ss_n15

 *Not present on SPI slave

 slaveselect*

Avalon-MM
slave

interface
to on-chip

logic

 txdata shift register

 status

 rxdata shift register

data

Figure 7–2. SPI Core Configured as a Slave

Altera FPGA

Avalon-MM
 interface
to on-chip
 logic

sclk
ss_n
mosi
miso

 SPI component
(configured as slave)

miso
mosi
ss
sclk

 SPI
Master
Device
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 7: SPI Core 7–3
Functional Description
The ss_n signal is active-low. However, any signal can be inverted inside the FPGA,
allowing the slave-select signals to be either active high or active low.

Transmitter Logic
The SPI core transmitter logic consists of a transmit holding register (txdata) and
transmit shift register, each n bits wide. The register width n is specified at system
generation time, and can be any integer value from 1 to 32. After a master peripheral
writes a value to the txdata register, the value is copied to the shift register and then
transmitted when the next operation starts.

The shift register and the txdata register provide double buffering during data
transmission. A new value can be written into the txdata register while the previous
data is being shifted out of the shift register. The transmitter logic automatically
transfers the txdata register to the shift register whenever a serial shift operation is
not currently in process.

In master mode, the transmit shift register directly feeds the mosi output. In slave
mode, the transmit shift register directly feeds the miso output. Data shifts out LSB
first or MSB first, depending on the configuration of the SPI core.

Receiver Logic
The SPI core receive logic consists of a receive holding register (rxdata) and receive
shift register, each n bits wide. The register width n is specified at system generation
time, and can be any integer value from 1 to 16. A master peripheral reads received
data from the rxdata register after the shift register has captured a full n-bit value of
data.

The shift register and the rxdata register provide double buffering while receiving
data. The rxdata register can hold a previously received data value while
subsequent new data is shifting into the shift register. The receiver logic automatically
transfers the shift register content to the rxdata register when a serial shift operation
completes.

In master mode, the shift register is fed directly by the miso input. In slave mode, the
shift register is fed directly by the mosi input. The receiver logic expects input data to
arrive LSB first or MSB first, depending on the configuration of the SPI core.

Master and Slave Modes
At system generation time, the designer configures the SPI core in either master mode
or slave mode. The mode cannot be switched at runtime.

Master Mode Operation
In master mode, the SPI ports behave as shown in Table 7–1.

Table 7–1. Master Mode Port Configurations (Part 1 of 2)

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–4 Chapter 7: SPI Core
Functional Description
In master mode, an intelligent host (for example, a microprocessor) configures the SPI
core using the control and slaveselect registers, and then writes data to the
txdata buffer to initiate a transaction. A master peripheral can monitor the status of
the transaction by reading the status register. A master peripheral can enable
interrupts to notify the host whenever new data is received (for example, a transfer
has completed), or whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and receives data at
the same time. The master transmits a new data bit on the mosi output and the slave
drives a new data bit on the miso input for each active edge of sclk. The SPI core
divides the Avalon-MM system clock using a clock divider to generate the sclk
signal.

When the SPI core is configured to interface with multiple slaves, the core has one
ss_n signal for each slave, up to a maximum of sixteen slaves. During a transfer, the
master asserts ss_n to each slave specified in the slaveselect register. Note that
there can be no more than one slave transmitting data during any particular transfer,
or else there will be a contention on the miso input. The number of slave devices is
specified at system generation time.

Slave Mode Operation
In slave mode, the SPI ports behave as shown in Table 7–2.

In slave mode, the SPI core simply waits for the master to initiate transactions. Before
a transaction begins, the slave logic continuously polls the ss_n input. When the
master asserts ss_n, the slave logic immediately begins sending the transmit shift
register contents to the miso output. The slave logic also captures data on the mosi
input, and fills the receive shift register simultaneously.

An intelligent host such as a microprocessor writes data to the txdata registers, so
that it is transmitted the next time the master initiates an operation. A master
peripheral reads received data from the rxdata register. A master peripheral can
enable interrupts to notify the host whenever new data is received, or whenever the
transmit buffer is ready for new data.

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 15.

Table 7–1. Master Mode Port Configurations (Part 2 of 2)

Name Direction Description

Table 7–2. Slave Mode Port Configurations

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock

ss_n input Select signal
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 7: SPI Core 7–5
Instantiating the SPI Core in SOPC Builder
Multi-Slave Environments
When ss_n is not asserted, typical SPI cores set their miso output pins to high
impedance. The Altera®-provided SPI slave core drives an undefined high or low
value on its miso output when not selected. Special consideration is necessary to
avoid signal contention on the miso output, if the SPI core in slave mode is connected
to an off-chip SPI master device with multiple slaves. In this case, the ss_n input
should be used to control a tristate buffer on the miso signal. Figure 7–3 shows an
example of the SPI core in slave mode in an environment with two slaves.

Avalon-MM Interface
The SPI core’s Avalon-MM interface consists of a single Avalon-MM slave port. In
addition to fundamental slave read and write transfers, the SPI core supports
Avalon-MM read and write transfers with flow control.

Instantiating the SPI Core in SOPC Builder
You can use the MegaWizard™ interface for the SPI core in SOPC Builder to configure
the hardware feature set. The following sections describe the available options.

Master/Slave Settings
The designer can select either master mode or slave mode to determine the role of the
SPI core. When master mode is selected, the following options are available: Number
of select (SS_n) signals, SPI clock rate, and Specify delay.

Number of Select (SS_n) Signals
This setting specifies how many slaves the SPI master connects to. The range is 1 to 32.
The SPI master core presents a unique ss_n signal for each slave.

SPI Clock (sclk) Rate
This setting determines the rate of the sclk signal that synchronizes data between
master and slaves. The target clock rate can be specified in units of Hz, kHz or MHz.
The SPI master core uses the Avalon-MM system clock and a clock divisor to generate
sclk.

Figure 7–3. SPI Core in a Multi-Slave Environment

 SPI
Master
Device

 sclk
 mosi
 miso
ss_n0
ss_01

sclk
 mosi
 miso
 ss_n0

 SPI component
(configured as slave)

 SPI
 Slave
DeviceSS_n

miso
mosi
sclk
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–6 Chapter 7: SPI Core
Instantiating the SPI Core in SOPC Builder
The actual frequency of sclk may not exactly match the desired target clock rate. The
achievable clock values are:

 <Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target value. For
example, if the system clock frequency is 50 MHz and the target value is 25 MHz, the
clock divisor is 2 and the actual sclk frequency achieves exactly 25 MHz.

Specify Delay
Turning on this option causes the SPI master to add a time delay between asserting
the ss_n signal and shifting the first bit of data. This delay is required by certain SPI
slave devices. If the delay option is on, you must also specify the delay time in units of
ns, µs or ms. An example is shown in Figure 7–4.

The delay generation logic uses a granularity of half the period of sclk. The actual
delay achieved is the desired target delay rounded up to the nearest multiple of half
the sclk period, as shown in Equation 7–1 and Equation 7–2:

Data Register Settings
The data register settings affect the size and behavior of the data registers in the SPI
core. There are two data register settings:

■ Width—This setting specifies the width of rxdata, txdata, and the receive and
transmit shift registers. The range is from 1 to 32.

■ Shift direction—This setting determines the direction that data shifts (MSB first or
LSB first) into and out of the shift registers.

Figure 7–4. Time Delay Between Asserting ss_n and Toggling sclk

Equation 7–1.

Equation 7–2.

p 1
2
--- period of sclk()×=

actual delay ceiling desired delay
p

-------------------------------⎝ ⎠
⎛ ⎞ p××=
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 7: SPI Core 7–7
Instantiating the SPI Core in SOPC Builder
Timing Settings
The timing settings affect the timing relationship between the ss_n, sclk, mosi and
miso signals. In this discussion the mosi and miso signals are referred to generically
as data. There are two timing settings:

■ Clock polarity—This setting can be 0 or 1. When clock polarity is set to 0, the idle
state for sclk is low. When clock polarity is set to 1, the idle state for sclk is high.

■ Clock phase—This setting can be 0 or 1. When clock phase is 0, data is latched on
the leading edge of sclk, and data changes on trailing edge. When clock phase is
1, data is latched on the trailing edge of sclk, and data changes on the leading
edge.

Figure 7–5 through Figure 7–8 demonstrate the behavior of signals in all possible
cases of clock polarity and clock phase.

Figure 7–5. Clock Polarity = 0, Clock Phase = 0

Figure 7–6. Clock Polarity = 0, Clock Phase = 1

Figure 7–7. Clock Polarity = 1, Clock Phase = 0

Figure 7–8. Clock Polarity = 1, Clock Phase = 1
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–8 Chapter 7: SPI Core
Device Support
Device Support
The SPI core supports all Altera® device families.

Software Programming Model
The following sections describe the software programming model for the SPI core,
including the register map and software constructs used to access the hardware. For
Nios® II processor users, Altera provides the HAL system library header file that
defines the SPI core registers. The SPI core does not match the generic device model
categories supported by the HAL, so it cannot be accessed via the HAL API or the
ANSI C standard library. Altera provides a routine to access the SPI hardware that is
specific to the SPI core.

Hardware Access Routines
Altera provides one access routine, alt_avalon_spi_command(), that provides
general-purpose access to an SPI core configured as a master.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 7: SPI Core 7–9
Software Programming Model
alt_avalon_spi_command()

Software Files
The SPI core is accompanied by the following software files. These files provide a
low-level interface to the hardware.

■ altera_avalon_spi.h—This file defines the core's register map, providing symbolic
constants to access the low-level hardware.

■ altera_avalon_spi.c—This file implements low-level routines to access the
hardware.

Register Map
An Avalon-MM master peripheral controls and communicates with the SPI core via
the six 32-bit registers, shown in Table 7–3. The table assumes an n-bit data width for
rxdata and txdata.

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,

alt_u32 write_length,
const alt_u8* wdata,

alt_u32 read_length,

alt_u8* read_data,

alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: alt_avalon_spi_command() is used to perform a control sequence on the SPI bus. This
routine is designed for SPI masters of 8-bit data width or less. Currently, it does not support
SPI hardware with data-width greater than 8 bits. A single call to this function writes a data
buffer of arbitrary length out the MOSI port, and then reads back an arbitrary amount of data
from the MISO port. The function performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select output is
numbered 0, the next is 1, etc.

(2) Transmits write_length bytes of data from wdata through the SPI interface,
discarding the incoming data on MISO.

(3) Reads read_length bytes of data, storing the data into the buffer pointed to by
read_data. MOSI is set to zero during the read transaction.

(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from scattered buffers then
you can call the function multiple times, specifying the merge flag on all the accesses except
the last.

This function is not thread safe. If you want to access the SPI bus from more than one thread,
you should use a semaphore or mutex to ensure that only one thread is executing within this
function at any time.

Returns: The number of bytes stored in the read_data buffer.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–10 Chapter 7: SPI Core
Software Programming Model
Reading undefined bits returns an undefined value. Writing to undefined bits has no
effect.

rxdata Register
A master peripheral reads received data from the rxdata register. When the receive
shift register receives a full n bits of data, the status register’s RRDY bit is set to 1
and the data is transferred into the rxdata register. Reading the rxdata register
clears the RRDY bit. Writing to the rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not the previous
data was retrieved. If RRDY is 1 when data is transferred into the rxdata register (that
is, the previous data was not retrieved), a receive-overrun error occurs and the
status register ’s ROE bit is set to 1. In this case, the contents of rxdata are
undefined.

txdata Register
A master peripheral writes data to be transmitted into the txdata register. When the
status register ’s TRDY bit is 1, it indicates that the txdata register is ready for new
data. The TRDY bit is set to 0 whenever the txdata register is written. The TRDY bit is
set to 1 after data is transferred from the txdata register into the transmitter shift
register, which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the transmitter is
ready for new data. If TRDY is 0 and a master peripheral writes new data to the
txdata register, a transmit-overrun error occurs and the status register’s TOE bit
is set to 1. In this case, the new data is ignored, and the content of txdata remains
unchanged.

Table 7–3. Register Map for SPI Master Device

Internal
Address Register Name 32..11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata (1) RXDATA (n-1..0)

1 txdata (1) TXDATA (n-1..0)

2 status (2) E RRDY TRDY TMT TOE ROE

3 control SSO
(3)

IE IRRDY ITRDY ITOE IROE

4 Reserved

5 slaveselect (3) Slave Select Mask

Notes to Table 7–3:

(1) Bits 15 to n are undefined when n is less than 16.
(2) A write operation to the status register clears the ROE, TOE, and E bits.
(3) Present only in master mode.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 7: SPI Core 7–11
Software Programming Model
As an example, assume that the SPI core is idle (that is, the txdata register and
transmit shift register are empty), when a CPU writes a data value into the txdata
holding register. The TRDY bit is set to 0 momentarily, but after the data in txdata is
transferred into the transmitter shift register, TRDY returns to 1. The CPU writes a
second data value into the txdata register, and again the TRDY bit is set to 0. This
time the shift register is still busy transferring the original data value, so the TRDY bit
remains at 0 until the shift operation completes. When the operation completes, the
second data value is transferred into the transmitter shift register and the TRDY bit is
again set to 1.

status Register
The status register consists of bits that indicate status conditions in the SPI core.
Each bit is associated with a corresponding interrupt-enable bit in the control
register, as discussed in “control Register” on page 7–12. A master peripheral can read
status at any time without changing the value of any bits. Writing status does
clear the ROE, TOE and E bits. Table 7–4 describes the individual bits of the status
register.

Table 7–4. status Register Bits

Name Description

3 ROE Receive-overrun error

The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the RRDY bit
is 1). In this case, the new data overwrites the old. Writing to the status register clears the ROE bit to 0.

4 TOE Transmitter-overrun error

The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, while the
TRDY bit is 0). In this case, the new data is ignored. Writing to the status register clears the TOE bit
to 0.

5 TMT Transmitter shift-register empty

In master mode, the TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift
register is empty.

In slave mode, the TMT bit is set to 0 when the slave is selected (SS_n is low) or when the SPI Slave
register interface is not ready to receive data.

6 TRDY Transmitter ready

The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY Receiver ready

The RRDY bit is set to 1 when the rxdata register is full.

8 E Error

The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer to detect
error conditions. Writing to the status register clears the E bit to 0.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

7–12 Chapter 7: SPI Core
control Register
control Register
The control register consists of data bits to control the SPI core’s operation. A
master peripheral can read control at any time without changing the value of any
bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register control
interrupts for status conditions represented in the status register. For example, bit 1
of status is ROE (receiver-overrun error), and bit 1 of control is IROE, which enables
interrupts for the ROE condition. The SPI core asserts an interrupt request when the
corresponding bits in status and control are both 1.

The control register bits are shown in Table 7–5.

After reset, all bits of the control register are set to 0. All interrupts are disabled and
no ss_n signals are asserted.

slaveselect Register
The slaveselect register is a bit mask for the ss_n signals driven by an SPI master.
During a serial shift operation, the SPI master selects only the slave device(s) specified
in the slaveselect register.

The slaveselect register is only present when the SPI core is configured in master
mode. There is one bit in slaveselect for each ss_n output, as specified by the
designer at system generation time.

A master peripheral can set multiple bits of slaveselect simultaneously, causing
the SPI master to simultaneously select multiple slave devices as it performs a
transaction. For example, to enable communication with slave devices 1, 5, and 6, set
bits 1, 5, and 6 of slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after a device reset,
slave device 0 is automatically selected.

Referenced Documents
This chapter references the following documents:

■ AN 350: Upgrading Nios Processor Systems to the Nios II Processor

■ Interval Timer Core chapter in volume 5 of the Quartus II Handbook

Table 7–5. control Register Bits

Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial shift
operation is in progress or not. The slaveselect register controls which ss_n outputs are asserted. SSO
can be used to transmit or receive data of arbitrary size, for example, greater than 32 bits.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

http://www/literature/an/an350.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 7: SPI Core 7–13
Document Revision History
Document Revision History
Table 7–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 7–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Updated the width of the
parameters and signals from 16 to 32.

—

May 2008

v8.0.0

Updated the description of the TMT bit. Updates made to comply with the
Quartus II software version 8.0
release.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

