
Microcontroller Division 1999-07, Rev.1.0

Microcontrollers

ApNote AP2925

CAN Baudrate Detection with Infineon CAN devices

This paper describes two different methods to detect the CAN baudrate with Infineon CAN
devices. These methods allow non-initialized CAN nodes to connect to a running CAN
system, although the current baudrate is not known. Hereby the running CAN system is not
disturbed.

Author: Tobias Wenzel / Microcontroller Application Engineering

Edition 1999-07

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

Contents Page

Microcontroller Division 2 of 11 1999-07

CAN Baudrate Detection

1 Overview . 3
1.1 Detection with CAN Analyzing modes . 3
1.2 Measurements of dominant CAN bits via a Timer . 4
1.2.1 CAN Baudrate Detection with C16xC Microcontrollers . 5
1.2.2 Measurement of dominant CAN bits . 6
1.2.3 CAN Bit Time Configuration . 7
1.2.4 Program Code: baudrate detection . 9
1.2.4.1 Baudrate Detection Routine “bauddet.c” . 9
1.2.4.2 Dominant bit measurement “measure.c” . 10

Microcontroller Division 3 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

1 Overview

Usually in a CAN network each node participates in any CAN traffic when the Error management
state of the connected nodes is Error Active (normal operation state). The node transmitting a
message expects at the end of a CAN frame a dominant acknowledge bit from at least one other
CAN node. On the one hand on each transaction on the bus, the connected nodes, when they are
no transmitter and not Bus Off, react at least by transmitting the dominant acknowledge bit. On the
other hand it does not influence the CAN communication if one of the CAN receive nodes does not
acknowledge a transferred CAN frame as soon as another CAN receive node accepts the current
message. This behavior can be used for detecting the CAN baudrate from non-initialized CAN
nodes. These nodes monitor the bus traffic while detecting the CAN bit time, without any active
access to the CAN bus. The following chapters describe two methods for a baudrate detection with
Infineon CAN devices.

1.1 Detection with CAN Analyzing modes

In CAN Analyzing mode, which is implemented in the TwinCAN module, the CAN module is able to
monitor the CAN bus without participating in the CAN bus protocol. It allows for monitoring bus
transfers without any active transmission like acknowledge, active error frame or response to
remote frames.

When CAN Analyzing mode is enabled, the CAN controller is able to switch into several bit time
settings without transmitting error frames in case of faulty baudrate configuration. The CAN
controller tries different baudrate settings, configured by CPU, during CAN frame reception until the
suitable baudrate is found in the internal CAN bit time table. When one bit time setting matches, no
receive error conditions occur any more and the CAN interface is now ready for participating in CAN

Microcontroller Division 4 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

data transfers. The following flow chart describes CAN baudrate detection using the CAN Analyzing
mode.

1.2 Measurement of CAN baudrate via Timer module

When the CAN module does not support the Analyzing mode as described in the previous chapter,
an additional timer is needed for detecting the CAN baudrate. During the detection time, the non-
initialized CAN module is disabled in order to avoid disturbances on the CAN bus.

The task of the timer module is to measure the length of a single CAN bit. The main problem is to
filter a single CAN bit in the bit stream because CAN allows consecutive bits with the same polarity.
Only the dominant acknowledge bit is located between two recessive CAN bits, which are the CRC
delimiter and the acknowledge delimiter (see figure below). When the timer monitors all dominant

Figure 1 :CAN Baudrate Detection in Analyzing Mode

Set first baudrate

Enable CAN module in
Analyzing Mode

Bus Error
detected?

Valid Reception
(RXOK)

Switch to next baudrate
and re-initialize CAN

Module

No

No

Yes

CAN baudrate Detection
in Analyzing/ Silent Mode

Initialize CAN registers

Yes

baudrate found !

Microcontroller Division 5 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

bitfields for more than one CAN frame time, at least the single dominant acknowledge bit indicates
the baudrate of the running CAN system.

1.2.1 CAN Baudrate Detection with C166 Microcontrollers

The following example shows a procedure calculating the CAN baudrate with a timer. As an
example a CAN microcontroller of the Infineon C166 family is used. It allows the connection of the
non-initialized node into a running CAN system (hot plug in). Several CPU frequencies are
supported and no additional pin is required for the timer connection. The calculation software should

ACK ACKDelCRCDel

CRCDel: CRC delimiter
ACK: acknowledge slot
ACKDel: acknowledge delimiter

1 CAN Bit 1 CAN Bit 1 CAN Bit

CRC CHECKSUM END OF FRAME

recessive recessivedominant

Figure 2 : Dominant acknowledge bit between two recessive delimiter

Microcontroller Division 6 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

be executed either on the external bus in 16-bit demultiplexed mode or from internal memory for
reasons of execution time. The following flow chart describes the software structure.

1.2.2 Measurement of dominant CAN bits

For the measurement the PWM timer unit is used, because it supports the counting frequency with
the highest resolution. In order to achieve the best measurement results, the timer is clocked with
CPU frequency. The timer measures the duration of low levels on the CAN bus. When the bus is
IDLE (no bus traffic), the program waits until the next CAN communication is monitored.

Figure 3 :Detection with timer

Init timer

100 x

Compare lowest counter value
with tick range table

Wait for new active level
on CAN bus

Measure duration of
low level

store result

Match found?

Yes

No

CAN Baudrate detection
with timer

Find lowest counter value

Baudrate found !

Init CAN

Wait for RXOK OR Bus error

Error occured
(ERWN, LEC) ?

No

Yes

Microcontroller Division 7 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

The polling mechanism of pin CAN_RxD for one CAN low time is as follows:

• when a dominant level is detected on pin CAN_RxD, timer is started
• timer is stopped when a recessive level is detected again
• measured timer ticks are stored

This procedure is done 100 times in order to ensure measuring the dominant acknowledge bit on
each starting point.

1.2.3 CAN Bit Time Configuration

The lowest counter value stored during the measurement is assumed to be the time for one CAN bit.
This value is used for further calculation. The dependency between the timer ticks and the CAN bit
time is calculated with the following equation.

The predefined values for the CAN bit timing for various CPU frequencies are located in a ROM
table called CAN calculation table. On the one hand the CAN calculation table divides the timer ticks
in several ranges around the nominal timer tick value expected as result of the equation described
above. These ranges are needed because the handling of the timer by software leads to deviations
of the measured tick result. On the other hand the table contains CAN bit time settings for Tseg1
(Time Segment1=TSEG1+1), Tseg2 (Time Segment2=TSEG2+1) and CAN prescaler (BRP+1)
related to the timer ticks. The CAN settings are derived from CAN application layer specification like
sample point around 80% and SJW (synchronization jump width) of one time quanta.

As a result two different software versions are needed due to overlapping of timer tick ranges using
several CPU frequencies.

Below the CAN calculation tables for fcpu = 24/16/8 MHz and fcpu = 20/10/5 MHz are shown.

Table 1 : CAN calculation table - fcpu = 24, 16, 8 MHz

fcpu /
MHz

CAN
Baudrate
[kBaud]

(Tseg1+1)
/hex

(Tseg2+1)
/hex

(BRP+1)
/hex

Bit Timing
Register /

Hex

Sample
Point
in %

Expected
measured
timer ticks

24 1000 9 2 1 1800 80 20 < 24 < 27

24 500 9 2 2 1801 80 40 < 48 < 55

24 250 9 2 4 1803 80 86 < 96< 107

24 125 9 2 8 1807 80 180 < 192< 201

24 50 9 2 20 1814 80 470 < 480 < 489

PWM timer ticks m: m = fcpu * tcan

CAN bit time tcan: tcan = 1/CAN_baudrate

= 2(BRP+1) * [1 + (TSEG1+1) + (TSEG2+1)] / fcpu

m = 2(BRP+1) * [1 + (TSEG1+1) + (TSEG2+1)]

Microcontroller Division 8 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

16 1000 5 2 1 1400 75 10 < 16 < 19

16 500 C 3 1 2B00 81,2 28 < 32 < 39

16 250 C 3 2 2B01 81,2 56 < 64 < 69

16 125 C 3 4 2B03 81,2 120 < 128 < 139

16 50 C 3 10 2B09 81,2 310 < 320 < 329

8 500 5 2 1 1400 75 10 < 16 < 19

8 250 C 3 1 2B00 81,2 28 < 32 < 39

8 125 C 3 2 2B01 81,2 56 < 64 < 69

8 50 C 3 5 2B04 81,2 150 < 160 < 169

Table 2 : CAN calculation table - fcpu = 20,10,5 MHz

fcpu /
MHz

CAN
Baudrate
[kBaud]

(Tseg1+1)
/hex

(Tseg2+1)
/hex

(BRP+1)
/hex

Bit Timing
Register /

Hex

Sample
Point
in %

Expected
measured
timer ticks

20 1000 7 2 1 1600 80 14 < 20 < 27

20 500 F 4 1 3E00 80 34 < 40 < 47

20 250 F 4 2 3E01 80 74 < 80 < 87

20 125 F 4 4 3E03 80 154 < 160 < 167

20 50 F 4 10 3E09 80 390 < 400 < 409

10 500 7 2 1 1600 80 14 < 20 < 27

10 250 F 4 1 3E00 80 34 < 40 < 47

10 125 F 4 2 3E01 80 74 < 80 < 87

10 50 F 4 5 3E04 80 190 < 200 < 209

5 250 7 2 1 1600 80 14 < 20 < 27

5 125 F 4 1 3E00 80 34 < 40 < 47

5 50 7 2 5 1604 80 90 < 100 < 109

Table 1 : CAN calculation table - fcpu = 24, 16, 8 MHz

fcpu /
MHz

CAN
Baudrate
[kBaud]

(Tseg1+1)
/hex

(Tseg2+1)
/hex

(BRP+1)
/hex

Bit Timing
Register /

Hex

Sample
Point
in %

Expected
measured
timer ticks

Microcontroller Division 9 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

1.2.4 Program Code: baudrate detection

1.2.4.1 CAN Baudrate detection routine “bauddet”

/***
 Infineon Technologies (copyright 1999)
 Application Engineering Munich
 Program name: "bauddets.c"
 Compiler used:Keil µVision 1.24 compiler V3.x (DLL 1.24)
 Hardware requirements: C166 with integrated CAN interface and PWM timer unit

 Last modifications: 4/99
 Revision: 1.0
 Authors: Tobias Wenzel
 Christian Bauer
 DESCRIPTION: Main program of bauddets.prj :

Measure baudrate on bus
Init CAN / MOs
Send MO2 id 2 for acknowledgement

 ***/

#include <REG167.H> /* 2260 register definitions C167 */
#include <canr_16x.h>
#include <intrins.h>

#defineMeasures 100

extern unsigned int MeasCnt;
extern unsigned int *res_add;
extern void measurement();

void main ()
/*be careful with initialisation of global variables
(for correct work use original start167.a66(keil))*/
{
 unsigned int *msg2cp=0xef20;
 unsigned int *mptr;
 unsigned int bdrt;
 unsigned int i,j,min_dt,dt;
 unsigned int ticks[Measures]; // measurement result table

 /*PWM-init : */
 PWMCON0=0;
 PWMCON1=0;
 PWMIC=0;
 PP0=0xf000;

 DP4&=0xdf; // set P4.5 to input

 do { // until successfull initialisation of CAN

 CR=0x01; // switch off CAN
 SR=0; // clear status reg
 bdrt=0; // clear BTR result

 while(bdrt==0) { // until measurement successfull

 /*Measurement */
 MeasCnt=Measures; // 100 measurements
 res_add=ticks;
 measurement();

 /*Search for lowest count*/
 min_dt=ticks[0];
 for(i=1;i<Measures;i++) {
 dt=ticks[i]-ticks[i-1];
 if(dt<min_dt) min_dt=dt;
 }

 /*Comparison*/

 /*For 8,16,24 MHz : */
 /* if((min_dt>= 10)&&(min_dt< 20)) bdrt=0x1400; //16MHz, 1MBaud / 8MHz,500kBaud
 else if((min_dt>= 28)&&(min_dt< 40)) bdrt=0x3a00; //16MHz,500kBaud / 8MHz,250kBaud
 else if((min_dt>= 56)&&(min_dt< 70)) bdrt=0x3a01; //16MHz,250kBaud / 8MHz,125kBaud

Microcontroller Division 10 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

 else if((min_dt>=120)&&(min_dt<140)) bdrt=0x3a03; //16MHz,125kBaud
 else if((min_dt>=310)&&(min_dt<330)) bdrt=0x3a09; //16MHz, 50kBaud
 else if((min_dt>=150)&&(min_dt<170)) bdrt=0x3a04; // 8MHz, 50kBaud
 else if((min_dt>= 20)&&(min_dt< 28)) bdrt=0x2700; //24MHz, 1MBaud
 else if((min_dt>= 40)&&(min_dt< 56)) bdrt=0x6f00; //24MHz,500kBaud
 else if((min_dt>= 86)&&(min_dt<108)) bdrt=0x6f01; //24MHz,250kBaud
 else if((min_dt>=180)&&(min_dt<202)) bdrt=0x6f03; //24MHz,125kBaud
 else if((min_dt>=470)&&(min_dt<490)) bdrt=0x6f09; //24MHz, 50kBaud
 */
 /*For 5,10,20 MHz (don’t enable both parts !) :*/
 if((min_dt>= 14)&&(min_dt< 28)) bdrt=0x1600; //20MHz, 1MBaud / 10MHz,500kBaud /

//5Mhz,250kBaud
 else if((min_dt>= 34)&&(min_dt< 48)) bdrt=0x3e00; //20MHz,500kBaud / 10MHz,250kBaud /

//5MHz,125kBaud
 else if((min_dt>= 74)&&(min_dt< 88)) bdrt=0x3e01; //20MHz,250kBaud / 10MHz,125kBaud
 else if((min_dt>=154)&&(min_dt<168)) bdrt=0x3e03; //20MHz,125kBaud
 else if((min_dt>=390)&&(min_dt<410)) bdrt=0x3e09; //20MHz, 50kBaud
 else if((min_dt>=190)&&(min_dt<210)) bdrt=0x3e04; //10MHz, 50kBaud
 else if((min_dt>= 90)&&(min_dt<110)) bdrt=0x1604; // 5MHz, 50kBaud

 }

 /*INIT CAN : */
 bfld (P4, 0x0060, 0x0060); // Port
 bfld (DP4, 0x0060, 0x0040); // init
 CR=0x41;// set CCE and INIT in Control Register (EF00h)
 SR=0x00;// Clear Status Partition (EF01h)
 BTR=bdrt; // set baudrate
 GMS=0xe0ff;// Global Mask Short (EF06h) each bit of standard ID must match to store msg
 UGML=0xffff;// Upper Global Mask Long (EF08h)
 LGML=0xf8ff;// Lower Global Mask Long (EF0Ah) each bit of extended ID must match to store msg
 UMLM=0x0000;// Upper Mask of Last Message (EF0Ch)
 LMLM=0x0000;// Lower Mask of Last Message (EF0Eh) every message into MO 15 (Basic CAN Feature)
 // reset msg obj regs
 mptr=0xef10;
 for(i=1;i<16;i++) {
 *mptr++=0x5555; // msg object ctrl reg
 for(j=1;j<8;j++) *mptr++=0x0000; // msg oblect regs
 }
 mptr=0xeff0;*mptr=0x5595; // Define MO15 for acception of undefined messages (not necessary
 // if detection takes place during other nodes communictate)

 CR = 0x00; // end initialization (CCE=0, INIT=0); Interrupts EIE=0, SIE=0, IE=0 :

 while(!(SR&0x17)) {} // wait for RXOK or error(LEC)

 } while((SR&0x07)); // if LEC>0 measure again

 /*DEFINE MOs 2,15 :
 nr|xtd| id|dir|dlc|txie|rxie
 --+---+-----+---+---+----+----
 2| 0|0x002| 1| 8| 0| 0*/

 mptr=0xef22;*mptr=0x4000; // Arbitration reg
 mptr=0xef20;*mptr=0x5595; // MsgCtrl reg
 mptr=0xef26;*mptr=0x0088; // MsgConf reg

 XP0IC=0x44; // load CAN-Module Interrupt Register
 IEN = 1; // global interrupt enable

 *msg2cp=0xfaff; // set NEWDAT,CPUUPD
 *msg2cp=0xf7ff; // clear CPUUPD
 *msg2cp=0xefff; // send MO 2

 while(1) {}
}

1.2.4.2 Dominant bit measurement “measure.c”

#pragma src

void measurement();

unsigned int *res_add;
unsigned int MeasCnt;

void measurement() {

Microcontroller Division 11 of 11 CAN Baudrate Detection 1999-07

CAN Baudrate Detection

#pragma asm
 P4DEFR 0FFC8H
 P7 DEFR 0FFD0H

PT0 DEFR 0F030H
PWMCON0 DEFR 0FF30H
BUSCON0 DEFR 0FF0CH

MOV R5,res_add
MOV R6,MeasCnt
SHL R6,#1
ADD R6,R5 ; calculate last result address(R6)

MOV R7,BUSCON0; save BUSCON0
MOV BUSCON0,#004AFH; set fast bus mode

EXTR #1
MOV PT0,#0

Beg: XOR P7,#1
Lp1: JNB P4.5,Lp1 ; wait for end of current low level
Lp2: JB P4.5,Lp2 ; wait for new low level

BSET PWMCON0.0 ; start timer
Lp3: JNB P4.5,Lp3 ; wait for end of low level

BCLR PWMCON0.0 ; stop timer

MOV [R5],PT0 ; save measurement
ADD R5,#2

CMP R5,R6
JMPR cc_C,Beg

MOV BUSCON0,R7; restore BUSCON0

#pragma endasm

}

