
-

nce
ses to

l feed-

nts that

signed

u are
1.0 Verilog Synthesis Methodology
Finbarr O’Regan (finbarr@ee.ucd.ie) October 2001

 Synthesis is a contraint driven process i.e. the synthesis script needs timing constraints

 Follow the following methodology for best results

1. Draw a simple block diagram, labelling all signals, widths etc.

2. Draw a timing diagram with as much detail as possible

3. Code the HDL according to the synthesizable templates

4. Do a quick, low effort, compile- just to see if it is synthesizablebeforesimulating. Compare this to the block dia
gram. Look at the inference report:

• count the number of flip flops - is it the same as the number of flip flops in the code.

• check for latches - did you want them. If not, latches are inferred in combinational procedures - the inferre
report tells you which combinational procedure and the name of the latch. Fully specify all variables in all ca
eliminate latches.

• Check the case statement inferrence. Was it full/parallel?

• Check any incomplete event list warnings?

• Check to see if there are any combinational feedback loops (typically only after a compile). Combinationa
back loops can be identified by the signal names in the timing loop.

• Check the schematic - any ports unconnected?

• Check to see if Designware and Ambitware components have been built correctly. Are these the compone
you wanted? How many did you want?

• Never ignore any warning that the synthesis tool flags. All warnings need to be understood and typically
off.

5. Simulate and compare with the timing diagram

• If your design doesn’t meet timing by more than 10% of the clock period, then go back to the code. If yo
within 10% of the clock period, then try a different compile strategy.
October 18, 2001 1

2.0 Synthesizeable Templates

2.1 Combinational Logic

// Using a reg
// -----------------------------
wire a,b;
reg c;
always @ (a or b)
 c = a & b;

// Using a wire
// -----------------------------
wire a,b,c;
assign c = a & b;

// using a built in primitive (without instance name)
// -----------------------------
reg a,b;
wire c;
and (c,a,b); // output is always first in the list

// using a built in primitive (with instance name)
// -----------------------------
reg a,b;
wire c;
and u1 (c,a,b); // output is always first in the list

// if c is an output
// -----------------------------
output c;
reg a,b;
assign c = a & b;

a
b c
October 18, 2001 2

b

2.2 Multiplexers

2.2.1 Multiplexer using a procedure

2.2.2 Multiplexer using the ternary operator

2.2.3 Multiplexer using the case statement

// 1. using an always

always@(a or b or sel)

 if (sel == 1’b1)

 c = a;

 else

 c = b;

a

b

sel

1

0

Use default assignments
toprevent latches: every

// 2. using the ternary operator

wire c = sel ? a : b;

// 3. using the case statement

always @ (a or b or sel)

 case (sel)

 1’b1: c = a;

 1’b0: c = b;

 endcase

a

b

sel

1

0

c

c

October 18, 2001 3

2.3 Priority Decoders

2.3.1 Priority Decoder using a case statement

// 1. using a case statement

always @ (sl or a or b or c)

case (sel)

2’b11: d = a;

2’b10: d = b;

default: d = c;

endcase

1. Both case and if statements result in
priority structures.

2. The order of the variables determines
the priority

b

a

d

c

sel

2’b112’b10

==

1

0

1

0

2

October 18, 2001 4

2.3.2 Priority Decoder using an if/else statement

// 2. using an if statement

always @ (sl or a or b or c)

if (sel == 2’b11)

d = a;

else if (sel ==2’b10)

d = b;

else

d = c;

b

a

d

c

sel

2’b112’b10

==

1

0

1

0

2

October 18, 2001 5

2.4 Parallel Priority Decoders

2.4.1 Parallel Priority Decoders Using a Synthesis Directive

// using a synthesis directive

always @ (sl or a or b or c)

case (sel) // parallel_case

2’b11: d = a;

2’b10: d = b;

default:d = c;

endcase

b

a

c

sel

2’b11

2’b10

2’b0x

d

2

October 18, 2001 6

2.5 Bus Logic, Splitting and Reordering

2.5.1 Bus Enabling

enable

4
4

c[3:0]
d[3:0]

// A1. using a wire

wire [3:0] d = ({4{enable}} & c);

// A2. using a reg

reg [3:0] d;

always @ (c or enable)

 d = c & {4{enable}};
October 18, 2001 7

2.5.2 Bus Concatenation

a[3]

b[3]

e = {a[1],b[3:2]}

// B1. using a wire

wire [2:0] e = {a[1],b[3:2]};

// B2. using a reg

reg [2:0] e;

always @ (a or b)

 e = {a[1],b[3:2]};

b[2]
b[1]
b[0]

a[2]
a[1]
a[0]

e[2]
e[1]
e[0]
October 18, 2001 8

2.5.3 Bus Replication

a[0]

a[1]

b[0]

b[1]

b[2]

b[3]

// bus replication

wire [1:0] a;

wire [3:0] b;

assign b = {2{a}};
October 18, 2001 9

2.6 Comparators

4

4

c[3:0]

d
1

a[3:0]

// 1. using a wire

wire d;

assign d = (a == c);

// 2. using a reg

reg d;

always @ (a or c)

 d = (a == c);

=

October 18, 2001 10

2.7 D Type Flip Flops

// 1. positive edge triggered D flip flop

always @ (posedge clock)

q <= d;

// 2. negative edge triggered D flip flop

always @ (negedge clock)

q <= d;

d q

clock

d q

clock

Use non-blocking assignments (<=) in
clocked procedures.
October 18, 2001 11

2.8 Resettable D Type Flip Flops
// 1. synchronously resettable D flip flop

always @ (posedge clock)

if (reset)

q <= 1’b0;

else

q <= d;

// 2. asynchronously resettable D flip flop

// (active high async reset)

always @ (posedge clock or posedge reset)

if (reset)

q <= 1’b0;

else

q <= d;

d
q

clock

reset

1’b0

d q

clock

reset
October 18, 2001 12

// 3. asynchronously resettable D flip flop

// (active low reset)

always @ (posedge clock or negedge reset)

if (~reset)

q <= 1’b0;

else

q <= d; d q

clock

reset
October 18, 2001 13

2.9 Data Enabled and Clock Gated Flip Flops

// 1. data enabled flip flop

always @ (posedge clock)

if (enable)

q <= d;

// 2. D flip flop with gated clock

wire gclk = (clock && enable);

always @ (posedge gclk)

q <= d;

enable signal must be
glitch free

d
q

clock

enable

d q

clock
enable

gclk
October 18, 2001 14

2.10 Latches

// 1. latch

always @ (enable or d)

 if (enable)

 q = d;

// 2.resettable latch

always @ (enable or d or reset)

 if (reset)

q = 1’b0;

else if (enable)

q = d;

d q

enable

e

d q

enable

reset

e

October 18, 2001 15

2.11 Tri-state Drivers

enable

d y

// 1. using a reg

reg y;

always @ (d or enable)

 if (enable)

y = d;

else

y = 1’bz;

// 2. using a wire

wire y;

assign y = enable ? d : 1’bz;

// 3. using a primitive

bufif1 (y,d,enable);
October 18, 2001 16

, 5,
2.12 Counter

3 bit asynchronously resettable counter which counts 0, 1, 2, 3, 4

// 3 bit asynchronously resettable

// partial range counter

always @ (posedge clock or posedge reset)

if (reset)

count <= 3’b0;

else

if (count == 3’b101)

count <= 3’b0;

else

count <= count + 3’b001;

count

clock

enable

3’b000
1
0

3’b001

3’b101

=

3
3

reset
October 18, 2001 17

2.13 Enabled Shift Register

module enabled_shift_reg (clock,enable,data_in,data_out);
input clock;
input enable;
input [3:0] data_in;
output [3:0] data_out;

reg [3:0] data_out;
reg [3:0] shift_reg_1;
reg [3:0] shift_reg_2;
reg [3:0] shift_reg_2;

always @ (posedge clock)
 if (enable)
 begin
 shift_reg_1 <= data_in;
 shift_reg_2 <= shift_reg_1;
 shift_reg_3 <= shift_reg_2;
 data_out <= shift_reg_3;
 end

endmodule

enable
clock

data_in
data_out
October 18, 2001 18

 special
2.14 Unsigned Adders and Multipliers

Note that the * and + and - signs give you unsigned arithmetic. If you need signed arithmetic, you may need
instaces recognizable to the synthesis tool.

• Adding two five bit numbers gives a siz bit result (the extra bit is the carry out bit).

• The multiplication of two number means that the output is twice the width of the inputs.

wire [5:0] c = a + b;
wire [11:0] e = c * d;

a

b

c

d

e

5

5

6

6

12
October 18, 2001 19

ck the

 read

ctional

n read-
3.0 Coding Guidelines
These coding guidelines assume that you are able to write correct synthesizeable code. You can always che
synthesizeablilty of your code by parsing it using the synthesis tool.

• Use non-blocking assignments (<=) in clocked procedures. Don’t use blocking assignments (=).
always @ (posedge clock)
 q <= d;

• Use blocking assignments (=) in combinational procedures:
always @ (a or b or sl)
 if (sl)
 d = a;
 else
 d = b;

• Make sure that the event lists are complete
always @ (a or b) // this event list is missing signal sl
 if (sl)
 d = a;
 else
 d = b;

• Take care of indentation. Develop your own identation guidelines and stick to them. Make sure others can
them. It helps readability and debugging greatly if it is done properly.

• Comment code properly. The theory about good commenting is that you should be able to remove all fun
code and the comments remaining should almost document the block you are designing.

// example of bad comments
// add a and b together
always @ (a or b)
 c = a + b;

// Good commenting
// 8 bit unsigned adder for data signals ‘a’ and ‘b’
// output is sent to UART2
always @ (a or b)
 c = a + b;

• Always completely specify literals.
always @ (c)
 if (c == 4’b0101)
 a = 2’bxx;
 else
 a = 2’b10;

• Use named port mapping when instantiating.
state_machine u1 (
 .sm_in (in1),
 .sm_clock (clk),
 .reset (reset),
 .sm_out (data_mux)
);

• Don’t make the code any more complicated than it needs to be. Your priorities should be correctness, the
ability and finally code efficiency.
October 18, 2001 20

 the out-

cked
4.0 State Machine Guidelines

4.1 Guidelines
• Draw a state diagram.

• Label the states.

• Allocate state encoding.

• Label the transition conditions.

• Label the output values.

• Use parameters for the state variables.

• Use two procedures (one clocked for the state register and one combinational for the next state logic and
put decode logic).

• Use a case statement in the combinational procedure.

• Have a reset strategy (asynchronous or synchronous).

• Use default assignments and then corner cases.

• Keep state machine code separate from other code (i.e. don’t mix other logic in with the state machine clo
and combinational procedures).
October 18, 2001 21

4.2 State Diagram

IDLE

RUN

PAUSE

FINISH

start

transmit

wait

stop

ack = 1’b0
offline = 1’b1
online = 1’b0

ack = 1’b0
offline = 1’b0
online = 1’b1

ack = 1’b1
offline = 1’b0
online = 1’b1

ack = 1’b1
offline = 1’b0
online = 1’b1

state encoding

state label

output values

2’b00

2’b01

2’b10

2’b11

transition condition

stop
October 18, 2001 22

4.3 State Machine Verilog Code
module state_machine (clock,reset,start,transmit,wait,stop,ack,offline,online);
// parameter declarations
parameter pIDLE = 2’b10; // state labels and state encoding
parameter pRUN = 2’b00;
parameter pPAUSE = 2’b01;
parameter pFINISH = 2’b11;

// IO declaration section
input clock;
input reset;
input start, transmit, wait, stop;
output ack, offline, online;
// interal variables declaration section
reg [1:0] state, next_state;
reg ack, offline, online;

// clocked procedure with synchronous reset
always @ (posedge clock)
if (reset) // reset strategy
 state <= pIDLE;
else
 state <= next_state;

// combinational procedure with case statement and output logic
always @ (start or transmit or stop or wait or state)
 begin
 next_state = state; // default assignment to state and output variables
 ack = 1’b0;
 offline = 1’b0;
 online = 1’b1;
 case (state)
 pIDLE:
 begin
 offline = 1’b1;
 online = 1’b0;
 if (start)
 next_state = pRUN;
 end
 pRUN:
 begin
 if (wait)
 next_state = pPAUSE;
 if (stop)
 next_state = pFINISH; // this has priority over the wait transition
 end
 pPAUSE:
 begin
 ack = 1’b1;
 if (transmit)
 next_state = pRUN;
 if (stop)
 next_state = pFINISH;
 end
 pFINISH:
 ack = 1’b1;
 endcase
 end

endmodule
October 18, 2001 23

	1.0 Verilog Synthesis Methodology
	2.0 Synthesizeable Templates
	2.1 Combinational Logic
	2.2 Multiplexers
	2.2.1 Multiplexer using a procedure
	2.2.2 Multiplexer using the ternary operator
	2.2.3 Multiplexer using the case statement
	2.3.1 Priority Decoder using a case statement
	2.3.2 Priority Decoder using an if/else statement
	2.4.1 Parallel Priority Decoders Using a Synthesis Directive

	2.5 Bus Logic, Splitting and Reordering
	2.5.1 Bus Enabling
	2.5.2 Bus Concatenation
	2.5.3 Bus Replication

	2.6 Comparators
	2.8 Resettable D Type Flip Flops
	2.9 Data Enabled and Clock Gated Flip Flops
	2.10 Latches
	2.11 Tri-state Drivers
	2.12 Counter
	2.14 Unsigned Adders and Multipliers

	3.0 Coding Guidelines
	4.0 State Machine Guidelines
	4.1 Guidelines
	4.2 State Diagram
	4.3 State Machine Verilog Code

