

MachXO 培训教程 2005年8月

英文网址: http://www.latticesemi.com
中文网址: http://www.latticesemi.com.cn

或

http://www.lattice.com.cn

MachX0 系列

MachXO 系列是新一代的跨越式可编程逻辑器件,支持传统上由高密度的 CPLD 或者低容量的 FPGA 所实现的应用,并且拥有更全面和高性能价格比的结构和工艺。通过采用 130nm 的非易失性嵌入式 Flash 处理工艺,以及用于逻辑实现的业界标准,4-输入查找表(LUT)的方法,这些新的器件能让系统设计者在单位逻辑功能上降低 50%的成本,而且在特性上有了很大的提升。

MachXO 器件不仅能用来处理传统的 CPLD 应用,在该系列的所有成员中都增加了分布式存贮器、一种低待机功耗的睡眠模式以及通过莱迪思特有的 TransFR 技术来透明地更新逻辑配置的功能。此外,在较大的系列成员中,增加了对嵌入式 RAM (EBR) 和锁相环 (PLL) 时钟电路以及 PCI 和 LVDS I/O 的支持,提供了通常仅在传统的 FPGA 结构中才有的功能。与此同时,还保留了莱迪思前几代 CPLD (如流行的 MACH®器件)的瞬时上电、单片和高速的优点。

MachXO 逻辑器件建立在低成本的 130nm 嵌入式 Flash 处理工艺上。它能够在单芯片中瞬时工作,这种特性对于许多 CPLD 应用来说是十分重要的。高达3.5ns 的管脚至管脚的延时使得器件能够满足当代系统设计的高速要求。MachXO 有两种类型, "E"型和 "C"型。 "E"型 MachXO 器件采用了 1.2V 逻辑核技术,适用于超低功耗的应用。一个片上的电压调整器使得 "C"型MachXO 器件可以支持 1.8V, 2.5V 或 3.3V 的外部电压,从而支持传统的系统电源要求。

在每个器件的内核中是一个查找表阵列,可以用来实现逻辑和小型的分布式存储器。这个阵列被灵活的 I/0 所包围,这些 I/0 能够实现多种流行的 I/0 标准,如 LVCMOS。在大一些的器件中,还支持 PCI 和 LVDS。

器件的睡眠模式可减少 100 倍的待机功耗,支持那些要求低功耗的应用。该器件还支持莱迪思特有的 TransFR (透明的现场重新配置) 技术,能够在器件使用 SRAM 配置存储器继续正常工作的情况下,对 Flash 配置存储器进行透明的编程。新的配置可以方便地在数毫秒中从 Flash 下载到 SRAM 块中。TransFR 技术使得器件能在不严重中断系统运行的情况下实现更新,确保了现场逻辑更新的灵活性。

应用

MachXO 器件适用于多种功能的实现,诸如总线桥接、接口、控制逻辑、时钟管理、电源及复位控制、粘合逻辑、存储器控制以及 ASIC 和 FPGA 配置。这些应用能广泛地用于多种终端市场,包括汽车、消费品、通信、计算、工业、医疗、军用和网络市场。

器件的主要特性

- 非易失, 无限次重构
 - 瞬时上电,数微秒
 - -单片, 无外部配置存储器
 - 很高的设计安全性,不能截取位流
 - 用数毫秒重构基于 SRAM 的逻辑
 - 通过系统配置和 JTAG 口对 SRAM 和非易失存储器编程
 - 支持非易失存储器的后台编程
- 睡眠模式 静态电流减小 100 倍
- TransFR 重构 系统正常工作时,可进行现场更新逻辑
- 大量 I/0
 - 256 到 2280 查找表
 - 73 到 271 个 I/O, 有多种封装选择
 - 支持密度迁移
 - 无铅的、符合 RoHS 标准的封装
- 嵌入式和分布式存储器
 - 27Kbits sysMEM 嵌入式 RAM 块
 - 7.7Kbits 分布式 RAM
 - 专用 FIFO 控制逻辑
- 灵活的 I/0 缓冲器

可编程 sysIO 缓冲器支持多种接口

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- PCI
- LVDS、Bus-LVDS、LVPECL和RSDS
- 系统时钟 PLL
 - 多达两个模拟 PLL
 - 能够进行时钟分频、倍频和相移
- 系统级的支持
 - IEEE 标准 1149.1 边界扫描, 具有 ispTRCY 内部逻辑分析仪功能
 - 片内振荡器
 - 器件的电源电压为 3.3V、2,5V、1.8V 或 1.2V
 - 符合 IEEE 1532 在系统编程标准
 - 表 1 为 MachXO 系列产品选择指南。

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Bits)	0	0	9216	27648
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball fpBGA/ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

表 1 MachX0 系列产品选择指南

MachXO 能满足 CPLD 和低容量 FPGA 应用的需求,例如: 粘合逻辑、总线桥接、上电控制以及控制逻辑。在单个芯片上集成了 CPLD 和 FPGA 的最佳特性。

借助莱迪思的 ispLEVER[®]设计工具可以使 MachXO 系列高效地实现大型复杂设计。支持 MachXO 的综合库适用于流行的逻辑综合工具。 ispLEVER 工具采用综合工具的输出结果,并且配合软件中的 floor planning 工具的约束条件,在 MachXO 器件中进行布局布线。 ispLEVER 工具从布线中提取时序信息,并将它们反注到设计中来进行时序验证。

器件结构

MachXO 系列器件的中间是逻辑块阵列,器件的四周是可编程 I/O 单元 (Program I/O ,简称 PIO)。这个系列中的有些器件有 sysCLOCK PLL 和 sysMEM Embedded Block RAM (EBR)。图 1、2、3 展示了此系列中的各种器件。

逻辑块以行和列的形式来排列。EBR 块放在逻辑阵列左边的列中。PIO 分布在器件的外围。PIO 利用灵活的、被称为 sysIO 接口的 I/O 缓冲器来支持各种接口标准。这些块连接到许多垂直的和水平的布线通道资源。布局和布线软件工具自动地分配这些布线资源。

器件中有两种逻辑块:可编程功能单元 (Programmable Function Unit, 简称 PFU); 无 RAM 的可编程功能单元 (Programmable Function Unit without RAM, 简称 PFF)。 PFU 包含用于逻辑、算法、RAM/ROM 和寄存器的积木块。 PFF 包含用于逻辑、算法、ROM 的积木块。 优化的 PFU 和 PFF 能够灵活、有效地实现复杂设计。逻辑块以二维的阵列形式分布。器件中每行为一种类型的积木块。

MachXO 系列中,组 (bank) 的数目根据器件而定。不同的组有着不同类型的 I/O 缓冲器。SysMEM EBR 是大的、专用快速存储器块,仅在较大的器件中有这些块,可以配置成 RAM、ROM 或 FIFO。FIFO 支持包括专用的 FIFO 指针,以及用于 LUT 使用最小化的标志"硬"控制逻辑。

较大的 MachXO 结构提供多达 2 个 sysCLOCK 锁相环 (PLL)。这些块分布在存储器块的末端。PLL 有倍频、分频和相移功能,用来管理时钟的相位关系。

系列中的每种器件都有 JTAG 端口,支持编程、器件的配置和访问用户逻辑。MachXO 器件能工作于 3.3V、2.5V、1.8V 和 1.2V 的电压, 易于集成至整个系统。

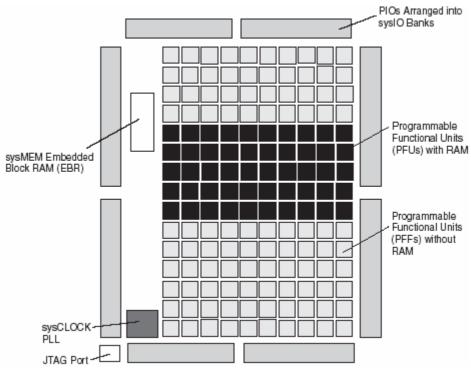
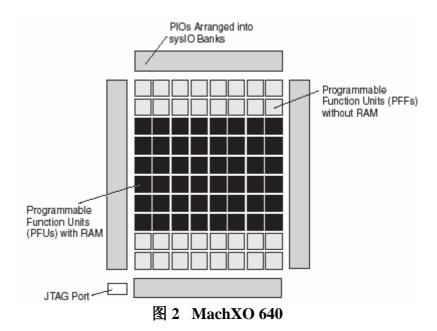



图 1 MachXO 1200

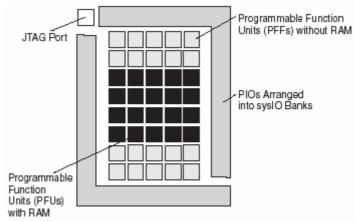


图 3 MachXO 256

PFU 和 PFF 块

MachXO 器件的核心是 PFU 和 PFF。 PFU 可以通过编程实现逻辑、算法、分布式 RAM、分布式 ROM 功能。 PFF 可以通过编程实现逻辑、算法、 ROM 功能。除非特别说明,本文接下来不再区分 PFU 和 PFF,都简称为 PFU。

每个 PFU 由 4 个互联的 slice 组成,如图 4 所示。所有与 PFU 的互联都来自布线区。每个 PFU 有 53 个输入,25 个输出。

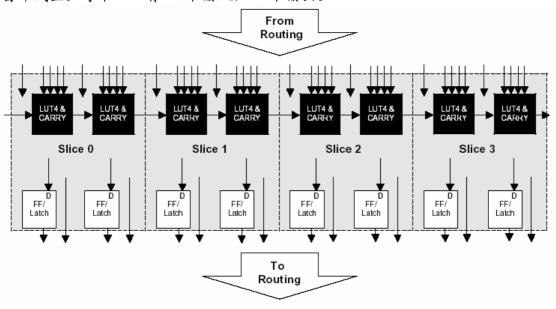


图 4 PFU 的结构

Slice

每个 slice 有两个 LUT4 查找表,其输出送入两个寄存器,这两个寄存器可以通过编程成为触发器或者锁存器模式。LUT 与相关的逻辑组合在一起可形成 LUT5、LUT6、LUT7 和 LUT8。器件中的控制逻辑执行 set/reset 功能(可编程为同步、异步模式)、时钟选择、片选和多种 RAM/ROM 功能。图 5 为 slice的内部逻辑示意图。Slice 内的寄存器可配置成正/负和边沿/电平时钟。有 14

个输入信号,13个来自布线区,一个来自邻近的 slice 或 PFU 的进位链。有7个输出,6个至布线区,一个至邻近 PFU 的进位链。

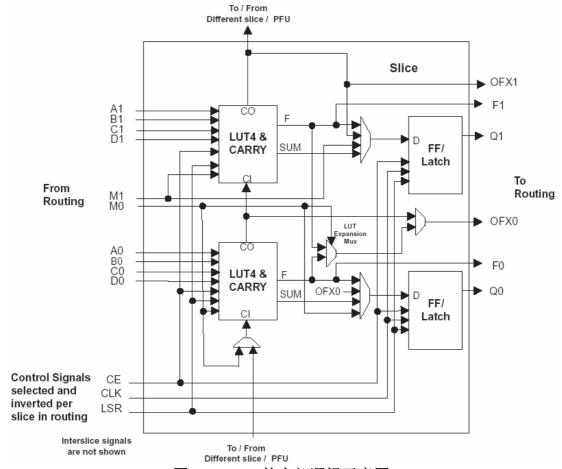


图 5 slice 的内部逻辑示意图

Slice 的工作模式

每个 slice 都能实现四种模式:逻辑、行波、RAM 和 ROM。在 PFF 中的 slice 可实现除 RAM 外的其余模式。表 2 列出了 slice 实现的各种模式。

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SPR16x2	ROM16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM16x1 x 2

表 2 Slice 的工作模式

1. 逻辑模式

在这种模式中,每个 slice 的 LUT 配置成 4 输入的组合逻辑查找表。 一个 LUT4 有 16 种可能的输入组合。通过编程可以产生有 4 输入的任意逻辑 功能。每个 slice 中有两个 LUT4。在一个 slice 内可构成 LUT5。较大的查 找表诸如 LUT6、LUT7、LU8 可用级连 slice 而构成。

2. 行波模式

此方式能够有效地实现较小的算术功能。每个 slice 能完成如下功能。

- 2位加
- 2位减
- 使用动态控制的 2 位加/减
- 2位加法计数器
- 2位减法计数器
- 行波模式乘法器积木块
- 有 A 和 B 两组输入的比较功能
 - A 大于等于 B
 - A 不等于 B
 - A 小于等于 B

在这种模式中还有另外两个信号:进位和进位传递,允许级连的 slice 实现快速的算术功能。

3. RAM 模式

可用每个 LUT 块构成 16X1 位存储器的分布式 RAM。多个 LUT 和 slice 的组合可构成各种不同的存储器。

莱迪思的软件支持构成各种大小的存储器。表 3 说明了实现不同类型的存储器所需要的 slice 数目。图 6 为分布式存储器组件图。双口 RAM 需要用两个 slice,一个 slice 用作读写口,另一个用作只读口。

	SPR16x2	DPR16x2
Number of slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

表 3 实现不同类型的存储器所需要的 slice 数目

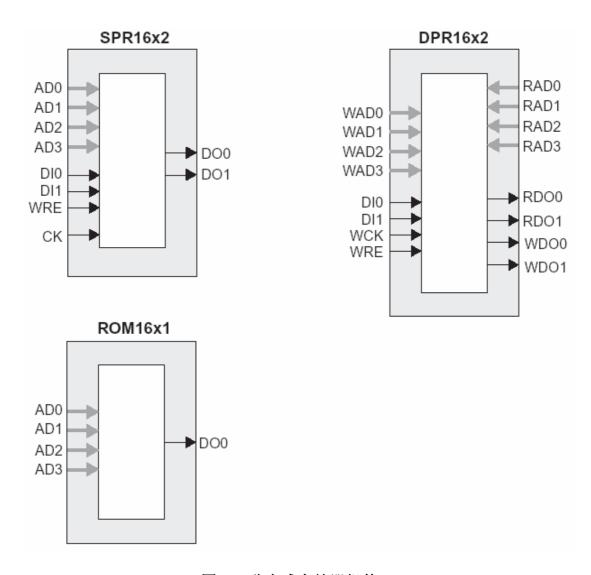


图 6 分布式存储器组件

4. ROM 模式

ROM 模式与 RAM 模式相似,只是少了写端口。在 ROM 中预置数据是通过配置期间编程接口来完成的。

PFU 的工作模式

一个 PFU 中的几个 Slices 可以合起来实现更大的功能。表 4 列出了 PFU 的几种工作模式。

Logic	Ripple	RAM ¹	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

^{1.} These modes are not available in PFF blocks

表 4 PFU 的工作模式

时钟/控制分布网络

MachX0 提供全局信号: 4个主时钟和 4个次级时钟。主时钟信号由 4个16:1 多路器产生,如图 7,8 所示。 MachX0256 和 MachX0640 有 4 个双功能时钟引脚,以及 12 个内部布线信号。MachX01200 和 MachX02280 有 4 个双功能时钟引脚,以及 6 个内部布线信号,以及 6 个 PLL 输出。

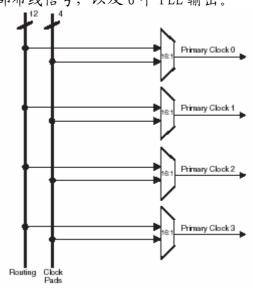


图 7 MachXO256 和 MachXO640 的主时钟

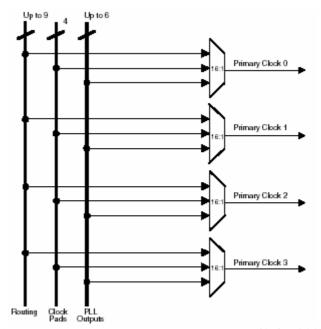


图 8 MachXO1200 和 MachXO2280 的主时钟

4个次级时钟由4个16:1多路器产生,如图 9所示。4个次级时钟源来自双功能时钟引脚,以及12个来自内部布线。

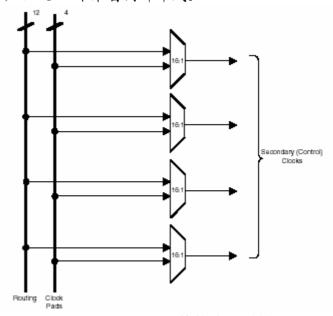


图 9 MachXO 器件的次级时钟

系统时钟锁相环

MachX01200 和 MachX02280 提供 PLL 支持。自引脚和布线区的时钟送至 PLL 的输入时钟分频器,有 4 个反馈信号送至反馈分频器,它们来自时钟网络、后定标分频器、布线区和外部引脚。PLL_LOCK 信号用来指出 VCO 已经锁定输入信号。图 10 为系统时钟锁相环的方框图。

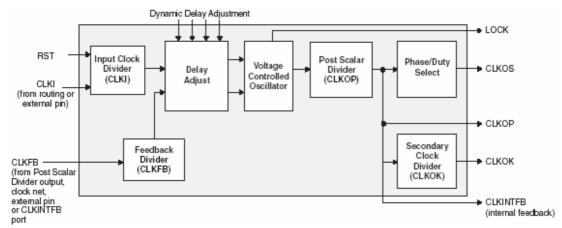


图 10 系统时钟锁相环的方框图

器件的建立和保持时间可以通过两种方式来改进: 在反馈中对延时进行编程; 或者在 PLL 的输入路径中相对于输入时钟提前或者延迟输出时钟。延时可以在配置期间配置或者动态调整。

系统时钟锁相环有综合时钟频率的能力。每个 PLL 有 4 个分频器:输入时钟分频器、反馈分频器、后定标分频器和次级时钟分频器。输入时钟分频器用于分频输入时钟信号,反馈分频器用于倍频输入信号,后定标分频器允许 VCO以高于输出时钟的频率运行,因此扩展了频率范围。次级时钟分频器用于得到较低的频率输出。PPL 的组件如图 11 所示。表 5 对各种 PLL 信号进行了描述。

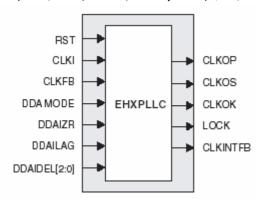


图 11 PLL 的组件

Signal	I/O	Description	
CLKI	I	Clock input from external pin or routing	
CLKFB	I	PLL feedback input from PLL output, clocknet, routing or external pin	
RST	I	"1" to reset input clock divider	
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)	
CLKOP	0	PLL output clock to clock tree (No phase shift)	
CLKOK	0	PLL output to clock tree through secondary clock divider	
LOCK	0	"1" indicates PLL LOCK to CLKI	
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)	
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on	
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead	
DDAIDEL[2:0]	I	Dynamic Delay Input	
DDAOZR	0	Dynamic Delay Zero Output	
DDAOLAG	0	Dynamic Delay Lag/Lead Output	
DDAODEL[2:0]	0	Dynamic Delay Output	

表 5 PLL 信号的描述。

系统存储器(sysMEM Memory)

MachX01200和 MachX02280器件含有若干个嵌入式 RAM 块(EBR), EBR 可组成 9K 位的 RAM,并有专用输入和输出寄存器。系统存储器块可构成单口、双口、准双口存储器或 FIFO,每个块可构成不同的深度和宽度,如表 6 所示。

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

表 6 sysMEM 块的配置

单口、双口、准双口以及 FIFO 模式

图 12 展示了 5 种基本的存储器配置,在所有的系统 RAM 模式中,对于端口的输入数据和地址在存储器的输入端是锁存的。存储器的输出数据是否锁存是可选的。

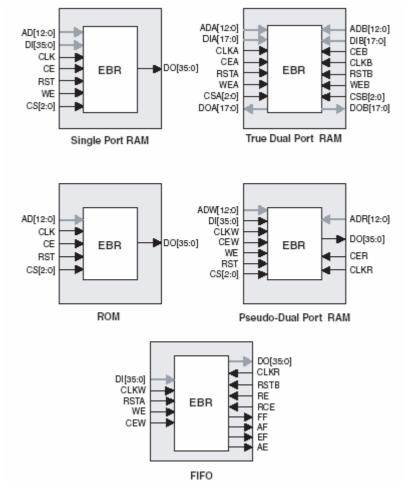


图 12 sysMEM EBR 组件

EBR 存储器支持对双口模式的三种写操作:

- 1. 常规: 输出的数据仅在读周期出现,在写周期,数据(当前地址)不出现在输出。
- 2. 写完成:输入数据出现在相同端口的输出。
- 3. 写前的读:新的数据写入时,地址的旧内容出现在输出。

PIO 群 (PIO Group)

在MachX0系列器件的组(bank)中,有两个PIO群。有6个PIO的一个群连到各自的sysyIO缓冲器,这个群位于底部和顶部的组。有4个PIO的一个群连到各自的sysyIO缓冲器,这个群位于左边和右边的组。SysIO缓冲器连接到各自的焊盘。

在这些群中,两个相邻的PIO可组成一个互补的I/O对,分别用T和C标出。MachX01200和MachX02280器件四边的相邻PIO为差分接收器。 MachX01200和MachX02280器件左边及右边一半的PIO可配置成LVDS发送、接

收对。其余的PIO为具有互补I/O性能的单端缓冲器。此外,MachX01200和MachX02280的顶部组提供PCI支持。

Four PIOS PIO D PADO 'C' PIO D PADO 'C' PADO 'C'

图 13 4个可编程 I/O 组成的群

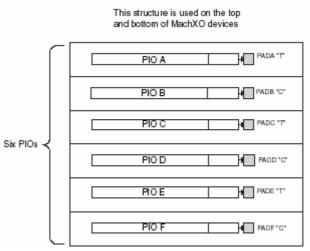


图 14 6个可编程 I/O 组成的群

MachXO 支持的标准

MachXO sys IO 支持单端和差分标准。单端标准可以进一步分为 LVCMOS,LVTTL 和其它标准。缓冲器支持 LVTTL、LVCMOS 1.2、1.5、1.8、2.5 和 3.3V 标准。在 LVCMOS 和 LVTTL 模式下,缓冲器有独立的配置选项,例如总线保持(弱上拉、弱下拉、总线保持锁存),以及开漏特性。所有器件均支持 BLVDS 和 LVPECL 输出仿效。

在 MachX01200 和 MachX02280 的左边和右边区中,大约 50%的 I/0 支持 LVDS 输出。所有 MachX01200 和 MachX02280 的区都支持 LVDS、BLVDS 和 LVPECS 差分接收标准。MachX01200 和 MachX02280 器件顶部的区支持 PCI。下面的表 7 总结了 MachX0 系列器件的 I/0 特性。

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all four sides)	Single-ended (all four sides)	Single-ended (all four sides) Differential Receivers (all four sides)	Single-ended (all four sides) Differential Receivers (all four sides)
Types of Output Buffers	Single-ended buffers with complementary outputs (all four sides)	Single-ended buffers with complementary outputs (all four sides)	Single-ended buffers with complementary outputs (all four sides) Differential buffers with true LVDS outputs (50% on left and right side)	Single-ended buffers with complementary outputs (all four sides) Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All four sides	All four sides	All four sides	All four sides
PCI Support	No	No	Top side only	Top side only

表 7 MachXO 支持的 I/O 标准

表 8 和表 9 分别为 MachXO 器件支持的输入和输出 I/O 标准。

	VCCIO (NOM)				
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces					
LVTTL	√	√	√	√	√
LVTTL	√	√	√	√	√
LVCMOS33	√	√	√	√	√
LVCMOS33	√	√	√	√	√
LVCMOS25	√	√	√	√	√
LVCMOS25	√	√	√	√	√
LVCMOS18			√		
LVCMOS15				√	
LVCMOS12	√	√	√	√	√
PCI1	√				
Differential Interfaces					
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	√				

Top banks of MachXO1200 and MachXO2280 devices only.
 MachXO1200 and MachXO2280 devices only.

表 8 支持的输入标准

Output Standard	Drive	V _{CCIO} (Nom.)			
Single-ended Interfaces					
LVTTL	4mA, 8mA, 12mA, 16mA	3.3			
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3			
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5			
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8			
LVCMOS15	4mA, 8mA	1.5			
LVCMOS12	2mA, 6mA	1.2			
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	_			
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	_			
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	_			
LVCMOS15, Open Drain	4mA, 8mA	_			
LVCMOS12, Open Drain	2mA, 6mA	_			
PCl33 ³	N/A	3.3			
Differential Interfaces					
LVDS ^{1,2}	N/A	2.5			
BLVDS ²	N/A	2.5			
RSDS ² , LVPECL ²	N/A	3.3			

- 1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.
- 2. These interfaces can be emulated with external resistors in all devices.
- 3. Top banks of MachXO1200 and MachXO2280 devices only.

表 9 支持的输出标准

sysIO 缓冲区

这个系列的器件有不同数目的组。较大的两个器件 MachX01200 和 MachX02280 的周围有 8 个组。MachX0640 的周围有 4 个组,MachX0256 的周围只有 2 个组。它们分别如下列图所示。

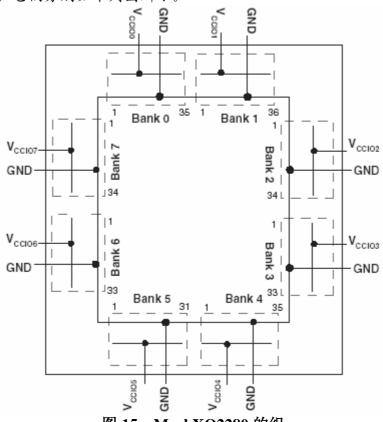


图 15 MachXO2280 的组

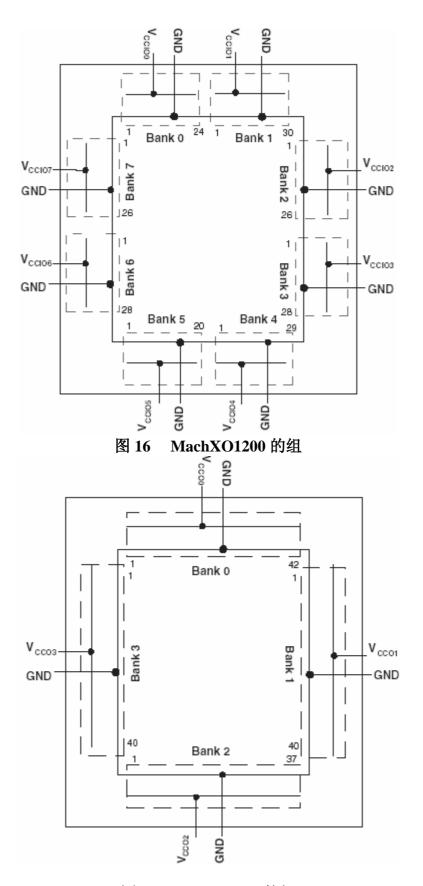


图 17 MachXO640 的组

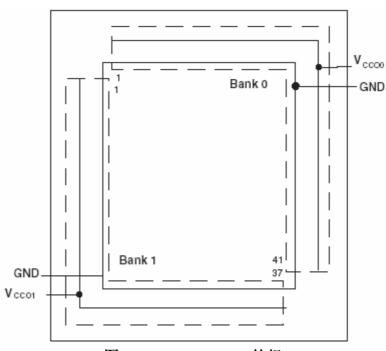


图 18 MachXO256 的组

睡眠模式

MachXO 的 "C"型器件(Vcc=1.8/2.5/3.3V)具有睡眠模式,在器件不工作时,使待机电流减少两个数量级。睡眠模式由 SLEEPN 引脚进行控制。

睡眠模式期间,逻辑部分不工作,寄存器和 EBR 内容不保留, I/0 处于三态。对器件编程或配置时,不要使用睡眠模式。在睡眠模式,电源处于正常工作范围,表 10 对正常、关闭和睡眠模式特性进行了比较。

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	_	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

表 10 正常, 关闭和睡眠模式特性

器件的配置

所有的 MachXO 器件都含有一个端口用来实现器件的配置和编程。测试接入端口(TAP)支持位宽的配置方式。

MachXO 中的非易失存储器可以用两种不同的模式来配置:

• 在1532模式下通过1149.1端口来配置。在此模式下,器件脱机, I/0 连至BSCAN 寄存器。

• 在后台模式下通过1149.1 端口来配置。在此方式下重新编程时,器件可以同时进行工作。

MachXO 中的 SRAM 配置存储器可以用三种不同的模式来配置:

- 在上电时通过片上的非易失存储器来配置。
- 经由 IEEE 1149.1 端口发送一条刷新命令命令来实现这种配置。
- 在 IEEE 1532 模式下通过 IEEE 1149.1 端口来配置。

图 19 展示了 MachXO 器件中不同的编程模式。上电时,采用 IEEE 1532 协议,经 IEEE 1149.1 串行 TAP 端口对 SRAM 进行配置。

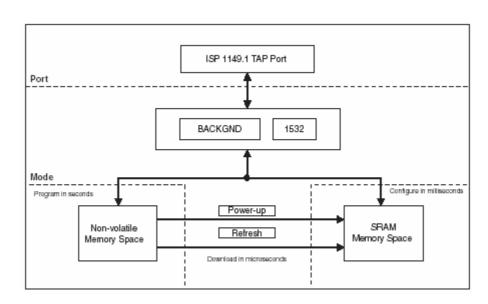


图 19 MachXO 器件配置和编程示意图

I/O 控制

用 IEEE 1532 模式对非易失存储器编程、SRAM 配置或者发送刷新命令时,用户可以指定 I/0 为高电平、低电平、三态或保持当前状态。这为实现需要重新配置和重复编程的系统提供了很好的灵活性。

TransFR

TransFr 是 Lattice 特有的技术,用户可以在现场更新逻辑而不中断系统的运行。

安全性

MachXO 系列器件有闪存 RAM 和配置 SRAM。可以从 TAP 端口读回这两种存储器的内容。SRAM 和闪存的位流均可以被保护而免受未经许可的读回。MachXO 器件中闪存 RAM 和配置 SRAM 有多个安全熔丝,用于阻止未经许可的读回。一旦保密位设置后,消除保密位的的唯一办法是擦除存储器内容。从加密后的器件读回的内容全部为 0。