
etting the best possible performance out of
an eight-bit microcontroller C compiler
isn’t always easy. This article concentrates
mainly on those microcontrollers that were
never designed to support high-level lan-
guages, such as the 8051 family, the 6800

family (including the 68HCll), and the PIC line of micro-
controllers. Newer eight-bit machines such as the Philips
8051XA and the Atmel Atmega series were designed explic-
itly to support HLLs, and as such, may not need all the tech-
niques I describe here. 

My emphasis is not on algorithm design, nor does it
depend on a specific microprocessor or compiler. Rather, I
describe general techniques that are widely applicable. In
many cases, these techniques work on larger machines,
although you may decide that the trade-offs involved aren’t
worthwhile.

Before jumping into the meat of the article, let’s briefly

digress with a discussion of the philosophy involved. The
microcontrollers I mentioned are popular for reasons of
size, price, power consumption, peripheral mix, and so on.
Notice that “ease of programming” is conspicuously missing
from this list. Traditionally, these microcontrollers have
been programmed in assembly language. In the last few
years, many vendors have recognized the desire of users to
increase their productivity, and have introduced C compil-
ers for these machines—many of which are extremely good.
However, it’s important to remember that no matter how
good the compiler, the underlying hardware has severe lim-
itations. Thus, to write efficient C for these targets, it’s
essential that we be aware of what the compiler can do eas-
ily and what requires compiler heroics. In presenting these
techniques, I have taken the attitude that I wish to solve a
problem by programming a microcontroller, and that the C
compiler is a tool, no different from an oscilloscope. In
other words, C is a means to an end, and not an end in
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itself. As a result, many of my com-
ments will seem heretical to the purists
out there.  

ANSI C
The first step to writing a realistic C
program for an eight-bit machine is to
dispense with the concept of writing
100% ANSI code. This concession is
necessary because I don’t believe it’s
possible, or even desirable, to write
100% ANSI code for any embedded
system, particularly for eight-bit sys-
tems. Some characteristics of eight-bit
systems that prevent ANSI compliance
are:

• Embedded systems interact with
hardware. ANSI C provides
extremely crude tools for address-
ing registers at fixed memory loca-
tions. Consequently, most compiler
vendors offer language extensions
to overcome these limitations

• All nontrivial systems use inter-
rupts. ANSI C doesn’t have a stan-
dard way of coding interrupt ser-
vice routines

• ANSI C has various type promotion
rules that are absolute perfor-
mance killers to an eight-bit
machine. Unless your system has
abundant CPU cycles, you will
quickly learn to defeat the ANSI
promotion rules

• Many microcontrollers have multi-
ple memory spaces, which have to
be specified in order to correctly
address the desired variable. Thus,
variable declarations tend to be
considerably more complex than
on the typical PC application

• Many microcontrollers have no
hardware support for a C stack.
Consequently, some compiler ven-
dors dispense with a stack-based
architecture, in the process elimi-
nating several key features of C

This is not to say that I advocate
junking the entire ANSI standard.
Indeed, some of the essential require-
ments of the standard, such as func-
tion prototyping, are invaluable.
Rather, I take the view that one should
use standard C as much as possible.
However, when it interferes with solv-
ing the problem at hand, do not hesi-
tate to bypass it. Does this interfere
with making code portable and
reusable? Absolutely. But portable,
reusable code that doesn’t get the job
done isn’t much use.

I’ve also noticed that every compil-
er has a switch that strictly enforces
ANSI C and disables all compiler
extensions. I suspect that this is done
purely so that a vendor can claim
ANSI compliance, even though this
feature is practically useless. I have
also observed that vendors who strong-
ly emphasize their ANSI compliance
often produce inferior code (perhaps
because the compiler has a generic
front end that is shared among multi-
ple targets) when compared to ven-
dors that emphasize their perfor-
mance and language extensions.

Enough on the ANSI standard—
let’s address specific actions that can
be taken to make your code run well
on an eight-bit microcontroller. The
most important, by far, is the choice of
data types.

Data types
Knowledge of the size of the underly-
ing data types, together with careful
data type selection, is essential for writ-
ing efficient code on eight-bit
machines. Furthermore, understand-
ing how the compiler handles expres-
sions involving your data types can
make a considerable difference in
your coding decisions. These topics
are discussed in the following para-
graphs.

Data type size
In the embedded world, knowing the
underlying representation of the vari-
ous data types is usually essential. I
have seen many discussions on this
topic, none of which has been particu-
larly satisfactory or portable. My pre-
ferred solution is to include a file,
<types.h>, an excerpt from which
appears below:

#ifndef TYPES_H

#define TYPES_H

#include <limits.h>

/* Assign a built in data type to 

BOOLEAN. This is compiler 

specific */

#ifdef _C51_

typedef bit BOOLEAN

#define FALSE 0

#define TRUE 1

#else

typedef enum {FALSE=0, TRUE=1}

BOOLEAN;

#endif

/* Assign a built in data type to 

type CHAR. This is an eight-bit 

signed variable */

#if (SCHAR_MAX == 127)

typedef char CHAR;

#elif (SCHAR_MAX == 255)

/* Implies that by default chars 

are unsigned */

typedef signed char CHAR;

#else

/* No eight bit data types */

#error Warning! Intrinsic data type 

char is not eight bits!!

#endif

/* Rest of the file goes here */

#endif

The concept is quite simple.
Types.h includes the ANSI-required
file limits.h. It then explicitly tests
each of the predefined data types for
the smallest type that matches signed
and unsigned one-, eight-, 16-, and 32-

To write efficient C for these targets, it is essential that we be 
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bit variables. The result is that my
data type UCHARis guaranteed to be an
eight-bit unsigned variable, INT is
guaranteed to be a 16-bit signed vari-
able, and so forth. In this manner, the
following data types are defined:
BOOLEAN, CHAR, UCHAR, INT, UINT, LONG,
and ULONG. Several points are worth
making:

• The definition of the BOOLEAN data
type is difficult. Many eight-bit
machines directly support single-
bit data types, and I wish to take
advantage of this if possible.
Unfortunately, since ANSI is silent
on this topic, it’s necessary to use
compiler-specific compilation

• Some compilers define a charas an
unsigned quantity, such that if a
signed eight-bit variable is
required, one has to use the unusu-
al declaration signed char

• Note the use of the error function
to force a compile error if I can’t
achieve my goal of having unam-
biguous definitions of BOOLEAN,
UCHAR, CHAR, UINT, INT, ULONG, and
LONG

In all of the following examples,
the types BOOLEAN, UCHAR, and so on will
be used to specify unambiguously the
size of the variable being used.

Data type selection
There are two rules for data type selec-
tion on eight-bit machines:

• Use the smallest possible type to
get the job done

• Use an unsigned type if possible

The reasons for this are simply that
many eight-bit machines have no
direct support for manipulating any-
thing more complicated than an
unsigned eight-bit variable. However,
unlike large machines, eight-bitters
often provide direct support for
manipulation of bits. Thus, the fastest
integer types to use on an eight-bit
machine are BOOLEAN and UCHAR.
Consider the typical C code:

int is_positive(int a)

{

(a>=0) ? return(1) : return (0);

}

The better implementation is:

BOOLEAN is_positive(int a)

{

(a>=0) ? return(TRUE) : return

(FALSE);

}

On an eight-bit machine we can get
a large performance boost by using
the BOOLEAN return type because the
compiler need only return a bit (typi-
cally via the carry flag), vs. a 16-bit
value stored in registers. The code is
also more readable.

Let’s take a look at a second exam-
ple. Consider the following code frag-
ment that is littered throughout most
C programs:

int j;

for(j=0; j<10; j++)

{

:

}

This fragment produces horribly
inefficient code on an 8051. The cor-
rect way to code this for eight-bit
machines is as follows:

UCHAR j;

for (j=0; j<10; j++)

{

:

}

The result is a huge boost in per-
formance because we are now using
an eight-bit unsigned variable (that
can be manipulated directly) vs. a
signed 16-bit quantity that will typical-
ly be handled by a library call. Note
also that no penalty exists for coding
this way on most big machines (with

the exception of some RISC proces-
sors. Furthermore, a strong case exists
for doing this on all machines. Those
of you who know Pascal are aware that
when declaring an integer variable, it’s
possible, and normally desirable, to
specify the allowable range that the
integer can take on. For example:

type loopindex = 0..9;

var j loopindex;

Upon rereading the code later,
you’ll have additional information
concerning the intended use of the
variable.  For our classical C code
above, the variable int jmay take on
values of at least –32768 to +32767. For
the case in which we have ucharj, we
inform others that this variable is
intended to have strictly positive val-
ues over a restricted range. Thus, this
simple change manages to combine
tighter code with improved maintain-
ability—not a bad combination.

Enumerated types
The use of enumerated data types was
a welcome addition to ANSI C.
Unfortunately, the standard calls for
the underlying data type of an enum
to be an int. Thus, on many compil-
ers, declaration of an enumerated type
forces the compiler to generate 16-bit
signed code, which, as I’ve mentioned,
is extremely inefficient. This is unfor-
tunate, especially as I have never seen
an enumerated type list go over a few
dozen elements, such that it could eas-
ily be fit in a UCHAR. To overcome this
limitation, several options exist, none
of which is palatable:

• Check your compiler documenta-
tion. It may allow you to specify via
a command line switch that enu-
merated types be put into the
smallest possible data type. The
downside is, of course, compiler-
dependant code
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• Accept the inefficiency as an
acceptable trade-off for readability

• Dispense with enumerated types
and resort to lists of manifest con-
stants

Integer promotion rules
The integer promotion rules of ANSI
C are probably the most heinous
crime committed against those of us
who labor in the eight-bit world. I have
no doubt that the standard is quite
detailed in this area. However, the two
most important rules in practice are
the following:

• Any expression involving integral
types smaller than an int have all
the variables automatically promot-
ed to int

• Any function call that passes an
integral type smaller than an int
automatically promotes the vari-
able to an int,  if the function is not
prototyped. (Yet another reason for
using function prototyping)

The key word here is automatically.
Unless you take explicit steps, the
compiler is unlikely to do what you
want. Consider the following code
fragment:

CHAR a,b,res;

:

res = a+b;

The compiler will promote a and b
to integers, perform a 16-bit addition,
and then assign the lower eight bits of
the result to res. Several ways around
this problem exist. First, many compil-
er vendors have seen the light, and
allow you to disable the ANSI auto-
matic integer promotion rules.
However, you’re then stuck with com-
piler-dependant code.

Alternatively, you can resort to very
clumsy casting, and hope that the
compiler’s optimizer works out what

you really want to do. The extent of
the casting required seems to vary
among compiler vendors. As a result, I
tend to go overboard:

res = (CHAR)((CHAR)a + (CHAR)b);

With complex expressions, the result
can be hideous.

More integer promotion
rules 
A third integer promotion rule that is
often overlooked concerns expres-
sions that contain both signed and
unsigned integers. In this case, signed
integers are promoted to unsigned
integers. Although this makes sense, it
can present problems in our eight-bit
environment, where the unsigned
integer rules. For example:

void demo(void)

{

UINT a = 6;

INT b = -20;

(a+b > 6) ? puts(“More than 6”)

: puts(“Less than or equal to 6”);

}

If you run this program, you may
be surprised to find that the output is
“More than 6.” This problem is a very
subtle one, and is even more difficult
to detect when you use enumerated
data types or other defined data
types that evaluate to a signed inte-
ger data type. Using the result of a
function call in an expression is also
problematic. 

The good news is that in the
embedded world, the percentage of
integral data types that must be signed
is quite low, thus the potential number
of expressions in which mixed types
occur is also low. The time to be cau-
tious is when reusing code that was
written by someone who didn’t believe
in unsigned data types.

Floating-point types
Floating-point arithmetic is required
in many applications. However, since
we’re normally dealing with real-world
data whose representation rarely goes
beyond 16 bits (a 20-bit atod on an
eight-bit machine is rare), the require-
ments for double-precision arithmetic
are tenuous, except in the strangest of
circumstances.  Again, the ANSI peo-
ple have handicapped us by requiring
that any floating-point expression be
promoted to double before execution.
Fortunately, a lot of compiler vendors
have done the sensible thing, and sim-
ply defined doubles to be the same as
floats, so that this promotion is
benign. Be warned, however, that
many reputable vendors have made a
virtue out of providing a genuine dou-
ble-precision data type. The result is
that unless you take great care, you
may end up computing values with
ridiculous levels of precision, and pay-
ing the price computationally. If
you’re considering a compiler that
offers double-precision math, study
the documentation carefully to ensure
that there is some way of disabling the
automatic promotion. If there isn’t,
look for another compiler.

While we’re on this topic, I’d like to
air a pet peeve of mine. Years ago,
before decent compiler support for
eight-bit machines was available, I
would code in assembly language
using a bespoke floating-point library.
This library was always implemented
using three-byte floats, with a long
float consuming four bytes. I found
that this was more than adequate for
the real world. I’ve yet to find a com-
piler vendor that offers this as an
option. My guess is that the marketing
people insisted on a true ANSI float-
ing-point library, the real world be
damned. As a result, I can calculate
hyperbolic sines on my 68HC11, but I
can’t get the performance boost that
comes from using just a three-byte
float. 

Having moaned about the ANSI-
induced problems, let’s turn to an
area in which ANSI has helped a lot.

70 NOVEMBER 1998  Embedded Systems Programming

The integer promotion rules of ANSI C are probably the most heinous

crime committed against those of us who labor in the eight-bit world.



eight-bit code

I’m referring to the key words const
and volatile, which, together with
static, allow the production of better
code.

Key words
The three key words static, volatile,
and const together allow one to write
not only better code (in the sense of
information hiding and so forth) but
also tighter code.  

Static variables
When applied to variables, statichas
two primary functions. The first and
most common use is to declare a vari-
able that doesn’t disappear between
successive invocations of a function.
For example:

void func(void)

{

static UCHAR state = 0;

switch (state)

{

:

}

}

In this case, the use of staticis manda-
tory for the code to work.

The second use of static is to limit
the scope of a variable. A variable that
is declared staticat the module level
is accessible by all functions in the
module, but by no one else. This is
important because it allows us to gain
all the performance benefits of global
variables, while severely limiting the
well-known problems of globals. As a
result, if I have a data structure which
must be accessed frequently by a num-
ber of functions, I’ll put all of the
functions into the same module and
declare the structure static. Then all
of the functions that need to can
access the data without going through
the overhead of an access function,
while at the same time, code that has
no business knowing about the data

structure is prevented from accessing
it. This technique is an admission that
directly accessible variables are essen-
tial to gaining adequate performance
on small machines.

A few other potential benefits can
result from declaring module level
variables static (as opposed to leav-
ing them global). Static variables, by
definition, may only be accessed by a
specific set of functions. Consequently,
the compiler and linker are able to
make sensible choices concerning the
placement of the variables in memory.
For instance, with static variables, the
compiler/linker may choose to place
all of the static variables in a module
in contiguous locations, thus increas-
ing the chances of various optimiza-
tions, such as pointers being simply
incremented or decremented instead
of being reloaded. In contrast, global
variables are often placed in memory
locations that are designed to opti-
mize the compiler’s hashing algo-
rithms, thus eliminating potential
optimizations.

Static functions
A static function is only callable by
other functions within its module.
While the use of static functions is
good structured programming prac-
tice, you may also be surprised to learn
that static functions can result in
smaller and/or faster code. This is
possible because the compiler knows
at compile time exactly what functions
can call a given static function.
Therefore, the relative memory loca-
tions of functions can be adjusted such
that the static functions may be called
using a short version of the call or
jump instruction. For instance, the
8051 supports both an ACALL and an
LCALL op code. ACALL is a two-byte
instruction, and is limited to a 2K
address block. LCALL is a three-byte
instruction that can access the full
8051 address space. Thus, use of static

functions gives the compiler the
opportunity to use an ACALL where
otherwise it might use an LCALL.

The potential improvements are
even better, in which the compiler is
smart enough to replace calls with
jumps. For example:

void fa(void)

{

:

fb();

}

static void fb(void)

{

:

}

In this case, because function fb()
is the last line of function fa(), the
compiler can substitute a call with a
jump. Since fb() is static, and the
compiler knows its exact distance from
fa(), the compiler can use the shortest
jump instruction. For the Dallas
DS80C320, this is an SJMP instruction
(two bytes, three cycles) vs. an LCALL
(three bytes, four cycles).

On a recent project of mine, rigor-
ous application of the static modifier
to functions resulted in about a 1%
reduction in code size. When your
EPROM is 95% full (the normal case),
a 1% reduction is most welcome!

A final point concerning static vari-
ables and debugging: for reasons that
I do not fully understand, with many
in-circuit emulators that support
source-level debug, static variables
and/or automatic variables in static
functions are not always accessible
symbolically. As a result, I tend to use
the following construct in my project-
wide include file:

#ifndef NDEBUG

#define STATIC

#else

#define STATIC static

#endif

I then use STATIC instead of stat-
ic to define static variables, so that
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while in debug mode, I can guarantee
symbolic access to the variables.

Volatile variables
A volatile variable is one whose value
may be changed outside the normal
program flow. In embedded systems,
the two main ways that this can hap-

pen is either via an interrupt service
routine, or as a consequence of hard-
ware action (for instance, a serial port
status register updates as a result of a
character being received via the serial
port). Most programmers are aware
that the compiler will not attempt to
optimize a volatile register, but rather

will reload it every time. The case to
watch out for is when compiler ven-
dors offer extensions for accessing
absolute memory locations, such as
hardware registers. Sometimes these
extensions have either an implicit or
an explicit declaration of volatility and
sometimes they don’t. The point is to
fully understand what the compiler is
doing. If you do not, you may end up
accessing a volatile variable when you
don’t want to and vice versa. For exam-
ple, the popular 8051 compiler from
Keil offers two ways of accessing a spe-
cific memory location. The first uses a
language extension, _at_, to specify
where a variable should be located.
The second method uses a macro such
as XBYTE[] to dereference a pointer.
The “volatility” of these two is differ-
ent. For example:

UCHAR status_register  _at_ 0xE000;

This method is simply a much more
convenient way of accessing a specific
memory location. However, volatile is
not implied here. Thus, the following
code is unlikely to work:

while(status_register)

; /* Wait for status register to

clear */

Instead, one needs to use the follow-
ing declaration:

volatile UCHAR status_register

_at_ 0xE000;

The second method that Keil offers
is the use of macros, such as the XBYTE
macro, as in:

status_register = XBYTE[0xE000];

Here, however, examination of the
XBYTE macro shows that volatile is
assumed:

#define XBYTE ((unsigned char

volatile xdata*)  0)

(The xdata is a memory space qualifi-
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er, which isn’t relevant to the discus-
sion here and may be ignored.)

Thus, the code:

while(status_register)

; /* Wait for status register to

clear */

will work as you would expect in this
case. However, in the case in which
you wish to access a variable at a spe-
cific location that is not volatile, the
use of the XBYTE macro is potentially
inefficient.

Const variables
The keyword const, the most badly
named keyword in the C language,
does not mean constant! Rather, it
means “read only.” In embedded sys-
tems, there is a huge difference, which
will become clear. 

Const variables vs.
manifest constants
Many texts recommend that instead of
using manifest constants, one should
use a constvariable. For instance:

const UCHAR nos_atod_channels = 8;

instead of

#define NOS_ATOD_CHANNELS 8

The rationale for this approach is
that inside a debugger, you can exam-
ine a const variable (since it should
appear in the symbol table), whereas a
manifest constant isn’t accessible.
Unfortunately, on many eight-bit
machines you’ll pay a significant price
for this benefit. The two main costs
are:

• The compiler creates a genuine
variable in RAM to hold the vari-
able. On RAM-limited systems, this
can be a significant penalty

• Some compilers, recognizing that
the variable is const, will store the
variable in ROM. However, the vari-
able is still treated as a variable and
is accessed as such, typically using

some form of indexed addressing.
Compared to immediate address-
ing, this method is normally much
slower

I recommend that you eschew the
use of const variables on eight-bit
machines, except in the following cer-
tain circumstances.
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Const function parameters
Declaring function parameters const
whenever possible not only makes for
better, safer code, but also has the
potential for generating tighter code.
This is best illustrated by an example:

void output_string(CHAR *cp)

{

while (*cp)

putchar(*cp++);

}

void demo(void)

{

char *str = “Hello, world”;

output_string(str);

if (‘H’ == str[0]) {

some_function();

}

}

In this case, there is no guarantee
that output_string() will not modify
our original string, str. As a result, the
compiler is forced to perform the test
in demo(). If instead, output_string is
correctly declared as follows:

void output_string(const char *cp)

{

while (*cp)

putchar(*cp++);

}

then the compiler knows that out-
put_string()cannot modify the origi-
nal string str, and as a result it can
dispense with the test and invoke
some_function() unconditionally.
Thus, I strongly recommend liberal
use of the const modifier on function
parameters.

Const volatile variables
We now come to an esoteric topic.
Can a variable be both const and

volatile, and if so, what does that
mean and how might you use it? The
answer is, of course, yes (why else
would it have been asked?), and it
should be used on any memory loca-
tion that can change unexpectedly
(hence the need for the volatile
qualifier) and that is read-only (hence
the const). The most obvious example
of this is a hardware status register.
Thus, returning to the status_regis-
ter example above, a better declara-
tion for our status register is:

const volatile UCHAR status_reg-

ister _at_ 0xE000;

Typed data pointers
We now come to another area in
which a major trade-off exists between
writing portable code and writing effi-
cient code—namely the use of typed
data pointers, which are pointers that
are constrained in some way with
respect to the type and/or size of
memory that they can access. For
example, those of you who have pro-
grammed the x86 architecture are
undoubtedly familiar with the concept
of using the __near and __far modi-
fiers on pointers. These are examples
of typed data pointers. Often the mod-
ifier is implied, based on the memory
model being used. Sometimes the
modifier is mandatory, such as in the
prototype of an interrupt handler:

void __interrupt __far 

cntr_int7();

The requirement for the near and
far modifiers comes about from the
segmented x86 architecture. In the
embedded eight-bit world, the situa-
tion is often far more complex.
Microcontrollers typically require
typed data pointers because they offer
a number of disparate memory spaces,
each of which may require the use of
different addressing modes. The worst

offender is the 8051 family, with at
least five different memory spaces.
However, even the 68HC11 has at least
two different memory spaces (zero
page and everything else), together
with the EEPROM, pointers to which
typically require an address space
modifier.

The most obvious characteristic of
typed data pointers is their inherent
lack of portability. They also tend to
lead to some horrific data declara-
tions. For example, consider the fol-
lowing declaration from the
Whitesmiths 68HC11 compiler:

@dir INT * @dir

zpage_ptr_to_zero_page;

This declares a pointer to an INT.
However, both the pointer and its
object reside in the zero page (as indi-
cated by the Whitesmith extension,
@dir). If you were to add a constqual-
ifier or two, such as:

@dir const INT * @dir const con-

stant_zpage_ptr_to_constant_zero_p

age_data;

then the declarations can quickly
become quite intimidating. Conse-
quently, you may be tempted to simply
ignore the use of typed pointers.
Indeed, coding an application on a
68HC11 without ever using a typed
data pointer is quite possible.
However, by doing so the application’s
performance will take an enormous
hit because the zero page offers con-
siderably faster access than the rest of
memory.

This area is so critical to perfor-
mance that all hope of portability is
lost. For example, consider two lead-
ing 8051 compiler vendors, Keil and
Tasking. Keil supports a three-byte
generic pointer that may be used to
point to any of the 8051 address
spaces, together with typed data point-
ers that are strictly limited to a specific
data space. Keil strongly recommends
the use of typed data pointers, but
doesn’t require it. By contrast, Tasking
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takes the attitude that generic pointers
are so horribly inefficient that it man-
dates the use of typed pointers (an
argument to which I am extremely
sympathetic). 

To get a feel for the magnitude of
the difference, consider the following
code, intended for use on an 8051:

void main(void)

{

UCHAR array[16];  /* array is in 

the data space by default */

UCHAR data *ptr = array; /* Note 

use of data qualifier */

UCHAR i;

for(i=0; i<16; i++)

*ptr++ = i;

}

Using a generic pointer, this code
requires 571 cycles and 88 bytes. Using
a typed data pointer, it needs just 196
cycles and 52 bytes. (The memory sizes
include the startup code, and the exe-
cution times are just those for execut-
ing main()).

With these sorts of performance
increases, I recommend always using
explicitly typed pointers, and paying
the price in loss of portability and
readability.

Use of assert
The assert() macro is commonly
used on PC platforms, but almost
never used on small embedded sys-
tems. There are several reasons for
this:

• Many reputable compiler vendors
don’t bother to supply an assert
macro

• Vendors that do supply the macro
often provide it in an almost useless
form

• Most embedded systems don’t sup-
port a stderr to which the error
may be printed

These limitations notwithstanding,
it’s possible to gain the benefits of the
assert() macro on even the smallest
systems if you’re prepared to take a
pragmatic approach.

Before I discuss possible imple-
mentations, mentioning why assert()
is important (even in embedded sys-
tems) is worthwhile. Over the years,
I’ve built up a library of drivers to var-
ious pieces of hardware such as LCDs,
ADCs, and so on. These drivers typi-
cally require various parameters to be
passed to them. For example, an LCD
driver that displays a text string on a
panel would expect the row, the col-
umn, a pointer to the string, and per-
haps an attribute parameter. When
writing the driver, it is obviously
important that the passed parameters
are correct. One way of ensuring this is
to include code such as this:

void Lcd_Write_Str(UCHAR row, 

UCHAR column, CHAR *str, UCHAR 

attr)

{

row &= MAX_ROW;

column &= MAX_COLUMN;

attr &= ALLOWABLE_ATTRIBUTES;

if (NULL == str)

return;

/* The real work of the driver 

goes here */

}

This code clips the parameters to
allowable ranges, checks for a null
pointer assignment, and so on.
However, on a functioning system,
executing this code every time the dri-
ver is invoked is extremely costly. But if
the code is discarded, reuse of the dri-
ver in another project becomes a lot
more difficult because errors in the
driver invocation are tougher to
detect.

The preferred solution is the liber-

al use of an assert macro. For example:
void Lcd_Write_Str(UCHAR row, 

UCHAR column, CHAR *str, UCHAR 

attr)

{

assert (row < MAX_ROW);

assert (column < MAX_COLUMN);

assert (attr < 

ALLOWABLE_ATTRIBUTES);

assert (str != NULL);

/* The real work of the driver

goes here */

}

This is a practical approach if
you’re prepared to redefine the assert
macro. The level of resources in your
system will control the sophistication
of this macro, as shown in the exam-
ples below.

Assert #1
This example assumes that you have
no spare RAM, no spare port pins, and
virtually no ROM to spare. In this case,
assert.h becomes:

#ifndef assert_h

#define assert_h

#ifndef NDEBUG

#define assert(expr) \

if (expr) {\

while (1);\

}

#else

#define assert(expr)

#endif

#endif

Here, if the assertion fails, we sim-
ply enter an infinite loop. The only
utility of this case is that, assuming
you’re running a debug session on an
ICE, you will eventually notice that the
system is no longer running. In which
case, breaking the emulator and
examining the program counter will
give you a good indication of which
assertion failed. As a possible refine-
ment, if your system is interrupt-dri-
ven, inserting a “disable all interrupts”
command prior to the while(1) may
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be necessary, just to ensure that the
system’s failure is obvious.

Assert #2
This case is the same as assert #1,
except that in #2 you have a spare port
pin on the microcontroller to which
an error LED is attached. This LED is
lit if an error occurs, thus giving you
instant feedback that an assertion has
failed. Assert.h now becomes:

#ifndef assert_h

#define assert_h

#define ERROR_LED_ON() /* Put 

expression for turning LED on 

here */

#define INTERRUPTS_OFF() /* Put 

expression for interrupts off 

here */

#ifndef NDEBUG

#define assert(expr) \

if (expr) {\

ERROR_LED_ON();\

INTERRUPTS_OFF();\

while (1);\

}

#else

#define assert(expr)

#endif

#endif

Assert #3
This example builds on assert #2. But
in this case, we have sufficient RAM to
define an error message buffer, into
which the assert macro can sprintf()
the exact failure. While debugging on
an ICE, if a permanent watch point is
associated with this buffer, then break-
ing the ICE will give you instant infor-
mation on where the failure occurred.
Assert.h for this case becomes:

#ifndef assert_h

#define assert_h

#define ERROR_LED_ON() /* Put 

expression for turning LED on

here */

#define INTERRUPTS_OFF()/* Put 

expression for interrupts off 

here */

#ifndef NDEBUG

extern char error_buf[80];

#define assert(expr) \

if (expr) {\

ERROR_LED_ON();\

INTERRUPTS_OFF();\

sprintf(error_buf,”Assert 

failed: “ #expr “ (file %s 

line %d)\n”,     

__FILE__, (int) __LINE__ );\

while (1);\

}

#else

#define assert(expr)

#endif

#endif

Obviously, this requires that you
define error_buffer[80] somewhere
else in your code.

I don’t expect that these three
examples will cover everyone’s needs.
Rather, I hope they give you some
ideas on how to create your own assert
macros to get the maximum debug-
ging information within the con-
straints of your embedded system.

Heretical comments
So far, all of my suggestions have been
about actively doing things to improve
the code quality. Now, let’s address
those areas of the C language that
should be avoided, except in highly
unusual circumstances. For some of
you, the suggestions that follow will
border on heresy.

Recursion
Recursion is a wonderful technique
that solves certain problems in an ele-
gant manner. It has no place on an
eight-bit microcontroller. The reasons
for this are quite simple:

• Recursion relies on a stack-based
approach to passing variables.
Many small machines have no
hardware support for a stack.
Consequently, either the compiler
will simply refuse to support reen-
trancy, or else it will resort to a soft-
ware stack in order to solve the
problem, resulting in dreadful
code quality

• Recursion relies on a “virtual stack”
that purportedly has no real mem-
ory constraints. How many small
machines can realistically support
virtual memory?

If you find yourself using recursion
on a small machine, I respectfully sug-
gest that you are either a) doing some-
thing really weird, or b) you don’t
understand the sum total of the con-
straints with which you’re working. If
it is the former, then please contact
me, as I will be fascinated to see what
you are doing.

Variable length argument
lists
You should avoid variable length argu-
ment lists because they too rely on a
stack-based approach to passing vari-
ables. What about sprintf() and its
cousins, you all cry? Well, if possible,
you should consider avoiding the use
of these library functions. The reasons
for this are as follows:

• If you use sprintf(), take a look at
the linker output and see how
much library code it pulls in. On
one of my compilers, sprintf(),
without floating-point support,
consumes about 1K. If you’re using
a masked micro with a code space
of 8K, this penalty is huge

• On some compilers, use of
sprintf()implies the use of a float-
ing-point library, even if you never
use the library. Consequently, the
code penalty quickly becomes
enormous

• If the compiler doesn’t support a
stack, but rather passes variables in
registers or fixed memory loca-
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tions, then use of variable length
argument functions forces the
compiler to reserve a healthy block
of memory simply to provide space
for variables that you may decide to
use. For instance, if your compiler
vendor assumes that the maximum
number of arguments you can pass
is 10, then the compiler will reserve
40 bytes (assuming four bytes per
longest intrinsic data type)

Fortunately, many vendors are
aware of these issues and have taken
steps to mitigate the effects of using
sprintf(). Notwithstanding these
actions, taking a close look at your
code is still worthwhile. For instance,
writing my own wrstr() and wrint()
functions (to ouput strings and ints
respectively) generated half the code
of using sprintf. Thus, if all you need
to format are strings and base 10 inte-
gers, then the roll-your-own approach
is beneficial (while still being
portable).

Dynamic memory allocation
When you’re programming an appli-
cation for a PC, using dynamic memo-
ry allocation makes sense. The charac-
teristics of PCs that permit and/or
require dynamic memory allocation
include:

• When writing an application, you
may not know how much memory
will be available. Dynamic alloca-
tion provides a way of gracefully
handling this problem

• The PC has an operating system,
which provides memory allocation
services

• The PC has a user interface, such
that if an application runs out of
memory, it can at least tell the user
and attempt a relatively graceful
shutdown

In contrast, small embedded sys-

tems typically have none of these char-
acteristics. Therefore, I think that the
use of dynamic memory allocation on
these targets is silly. First, the amount
of memory available is fixed, and is
typically known at design time. Thus
static allocation of all the required
and/or available memory may be
done at compile time.

Second, the execution time over-
head of malloc(), free(), and so on is
not only quite high, but also variable,
depending on the degree of memory
fragmentation.

Third, use of malloc(), free(), and
so on consumes valuable EPROM
space. And lastly, dynamic memory
allocation is fraught with danger (wit-
ness the recent series from P.J. Plauger
on garbage collection in the January
1998, March 1998, and April 1998
issues of ESP).

Consequently, I strongly recom-
mend that you not use dynamic mem-
ory allocation on small systems.

Final thoughts
I have attempted to illustrate how judi-
cious use of both ANSI constructs and
compiler-specific constructs can help
generate tighter code on small micro-
controllers. Often, though, these
improvements come at the expense of
portability and/or readability. If you
are in the fortunate position of being
able to use less efficient code, then
you can ignore these suggestions. If,
however, you are severely resource-
constrained, then give a few of these
techniques a try. I think you’ll be
pleasantly surprised. esp
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