
CooCox CoOS User's Guide

Revision 1.0

August, 2009
www.coocox.com

www.coocox.com

2

CONTENTS

1 OverView.. 1
1.1 About CooCox CoOS... 1
1.2 CooCox CoOS getting started .. 3

2 Task Management .. 9
2.1 Task... 9
2.2 Task State ...10
2.3 Task Control Blocks ...12
2.4 Task Ready List...15
2.5 Task Scheduling..16
2.6 Critical Section ...18
2.7 Interrupts..19

3 Time Management ..20
3.1 System Ticks..20
3.2 Delay Management ...22
3.3 Software Timer...23

4 Memory Management ..25
4.1 Static Memory Allocation..25
4.2 Dynamic memory management ..26
4.3 Stack Overflow Check..31

5 Intertask Synchronization&Communication32
5.1 Intertask Synchronization ..32
5.2 Intertask Communication...38

6 API Reference...41
6.1 System Management...41
6.2 Task Management ...47
6.3 Time Management ..57
6.4 Software Timer...61
6.5 Memory Management ..68
6.6 Mutex Section ..76
6.7 Semaphores...79
6.8 Mailboxes ..87
6.9 Message Queues...96
6.10 Flags...106
6.11 System Utilities...117
6.12 Others...120

1

1 OverView

1.1 About CooCox CoOS

CooCox CoOS is an Embedded RTOS specially for ARM Cortex-M3. It is a
real-time multitask kernel which accords with CMSIS .

1.1.1 CoOS Features

 Free and open RTOS source code

 Specially designed for Cortex-M3

 Accords with CMSIS

 Supports preemptive priority and round-robin

 Customizable

 Interrupt latency is 0

 Can avoid priority inversion

 Stack overflow detection option

 Semaphores, Mutexes, Flags, Mailboxes and Queues for communication &

synchronisation

 Supports the platforms of ICCARM, ARMCC, GCC

1.1.2 Technical Data

Table 1.1.1 Time Specifications

N Function Time(No Robin/Robin)

Create defined task, no task switch 5.3us/5.8us

Create defined task, switch task 7.5us/8.6us

Delete task (ExitTask) 4.8us/5.2us

Task switch (SwitchContext) 1.5us/1.5us

Task switch (upon set flag) 7.5us/8.1us

Task switch (upon sent semaphore) 6.3us/7.0us

Task switch (upon sent mail) 6.1us/7.1us

Task switch (upon sent queue) 7.0us/7.6us

Set Flag (no task switch) 1.3us/1.3 us

Send semaphore (no task switch) 1.6us/1.6us

Send mail (no task switch) 1.5us/1.5us

Send queue (no task switch) 1.8us/1.8us

Maximum interrupt lockout for IRQ ISR's 0/0

2

Table 1.1.2 Space Specifications

Description Space

RAM Space for Kernel 168 Bytes

Code Space for Kernel <2.2K Bytes

RAM Space for a Task
TaskStackSize + 24 Bytes(MIN)

TaskStackSize + 48 Bytes(MAX)

RAM Space for a Mailbox 16 Bytes

RAM Space for a Semaphore 16 Bytes

RAM Space for a Queue 32 Bytes

RAM Space for a Mutex 8 Bytes

RAM Space for a User Timer 24 Bytes

1.1.3 Supported Devices

 ST STM32 Series

 Atmel AT91SAM3U Series

 NXP LPC17xx Series

 Toshiba TMPM330 Series

 Luminary LM3S Series

1.1.4 Source Codes Download

If you want to learn more about CooCox CoOS, you can download the
CooCox CoOS source codes from the web: www.coocox.com.

www.coocox.com

3

1.2 CooCox CoOS getting started

This section describes the useage of CooCox, here we use Keil RealView
MDK and EM-LPC1700 evaluation board to develop a simple demo based on
CooCox CoOS.

Here we assume that you are able to use Keil RealView MDK to do simple
development and basic set. The following will introduce a simple example which
includes three tasks:

led : Used for 8 LEDs' cyclic flickering, and set flags to activate the other
two tasks every fixed time interval;

taskA : Wait for task flag 'a_flag', then print taskA through UART1;

taskB : Wait for task flag 'b_flag', then print taskB through UART1;

The overall phenomenon is that the 8 LEDs on board changes every 0.5s,
the change order is :LED0LED1LED2…LED6LED7LED0LED1…,
the serial port prints messages every 0.5s, printing like this:

taskA is running

taskB is running

…

The corresponding relationships between LEDs and GPIOs are as follows:

LED0  P1.28

LED1  P1.29

LED2  P1.31

LED[3…7]  P[2.2...2.6]

 Next we will introduce how to achieve the above functions in the
environment of CoOS.

1.2.1 Preparations

1> Visit www.coocox.com website to download 'The first CoOS Program' source
code;

2> First of all, create a folder named 'getting_started'(Note: the name of the
folder can't has spaces or Chinese);

3> And then enter the 'getting_started' folder, create a inc ,a src ,a ccrtos folder

www.coocox.com

4

respectively which used to storing header files and source files;

4> Copy files to the project directory:

(1)Copy LPC17xx.h and system_LPC17xx.h in the directory of
Demo\Sample\CMSIS in 'The first CoOS Program' package to the 'inc' folder,
copy system_LPC17xx.c and startup_LPC17xx.s(the startup code of LPC17xx)
to the 'src' folder;

(2)Copy config.h in Source folder to the 'inc' folder, copy main.c in the
directory of Demo\Sample to the 'src' folder;

(3)Copy LED.c, Retarget.c, Serial.c in the directory of Demo\Sample\driver
to the 'src' folder, copy serial.h, led.h to the 'inc' folder;

(4)Copy all the files in the directory of Source\kernel and
Source\portable\Keil (except .h files)to the 'ccrtos' folder, copy all the .h files
to the 'inc' folder.

1.2.2 Create Project

1> Create an empty project used MDK software, device selects LPC1766 of NXP
(do not choose the default startup code);

2> Add application-driven code to the project:

Add all the source files in 'src' folder to the project;

3> Add CoOS source code to the project:

 Add all the source files in the 'ccrtos' folder to the project(Header files do not
contain);

4> Project Configuration

 Make the appropriate configuration to the project, add include path .\inc in
C/C++. After that you should have been able to compile successfully, if not,
please check whether the steps and the settings are correct.

(If you would like to use first rather than do the work above to save
your time, you can use our ready-made project that we have prepared
for you, the storage path is \Demo\getting_start_sample)

5

1.2.3 Write application code

 Open 'main.c', you could find that we have done a part of works for you,
including clock initialization, serial port 1 initialization, GPIOs used for the
flickering of LEDs initialization. Next you need to do is adding task code and
configuring CoOS step by step.

1> Include CoOS header files

 To use CoOS, first of all is to add the source code to your project, this step
has been completed in front, next is to include CoOS's header files in your user
code, that is, adding the following statements in main.c:

Note:It would be preferable to put '#include <config.h>' in front of
'#include <ccrtos.h>' .

2> Write task code

You need to specify the stack space for the task when it is created, for CoOS,
the stack pointer of the task is designated by user, so we need define three
arrays used for the stack of the three tasks:

 taskA, taskB are waiting for their own flags respectively. Obviously, we need
to create two flags used for task communication. In addition, taskA and taskB
need serial port to print, serial port is a exclusive device which can be occupied
only by one task, so we create a mutex used to guarantee the mutual exclusion
when serial port printing.

taskA: taskA waits for a flag, when the flag is set, print 'taskA is running', and
then continue to wait for the flag, and the cycle repeats. Here we designed taskA
as the highest priority task, and it will be implemented at first after starting the
system, so we create the flags and the mutex which will be used later in taskA,

#include <config.h> /*!< CoOS configure header file*/

#include <ccrtos.h> /*!< CoOS header file */

OS_STK taskA_stk[128]; /*!< define "taskA" task stack */

OS_STK taskB_stk[128]; /*!< define "taskB" task stack */

OS_STK led_stk [128]; /*!< define "led" task stack */

OS_MutexID uart_mutex; /*!< UART1 mutex id */

OS_FlagID a_flag,b_flag; /*!< Save falg id */

volatile unsigned int Cnt = 0; /*!< A counter */

6

task code is as followings:

taskB: taskB waits for b_flag to be set, print 'taskB is running' after activating,,
and then continue to wait for the flag, and the cycle repeats. task code is as
followings:

void taskA (void* pdata)

{

 /*!< Create a mutex for uart print */

 uart_mutex = CoCreateMutex ();

 if (uart_mutex == E_CREATE_FAIL)

{ /*!< If failed to create, print message */

 printf (" Failed to create Mutex! \n\r");

 }

 /*!< Create two flags to communicate between taskA and taskB */

 a_flag = CoCreateFlag (TRUE,0);

 if (a_flag == E_CREATE_FAIL)

{

 printf (" Failed to create the Flag! \n\r");

 }

 b_flag = CoCreateFlag (TRUE,0);

 if (b_flag == E_CREATE_FAIL)

{

 printf (" Failed to create the Flag ! \n\r");

 }

 for (;;)

{

 CoWaitForSingleFlag (a_flag,0);

 CoEnterMutexSection (uart_mutex);

 printf (" taskA is running \n\r");

 CoLeaveMutexSection (uart_mutex);

 }

}

7

led: led task controls the changes of led, here we call CoTickDelay() to delay
0.5s to keep led lighting for 0.5s; at the same time led task will set a_flag and
b_flag at the right time to activate taskA,taskB. Code is as followings:

1.2.4 Create task and start CoOS

 Right now we have completed all the task code, next should be initializing
OS, creating tasks, start multi-task scheduling. You should initialize CoOS

void taskB (void* pdata)

{

 for (;;)

{

 CoWaitForSingleFlag (b_flag,0);

CoEnterMutexSection (uart_mutex);

printf (" taskB is running \n\r");

CoLeaveMutexSection (uart_mutex);

 }

}

void led (void* pdata)

{

 unsigned int led_num;

 for (;;)

{

led_num = 1<< (Cnt%8);

LED_on (led_num); /*!< Switch on led */

CoTickDelay (50);

LED_off (led_num); /*!< Switch off led */

if ((Cnt%2) == 0)

{

 CoSetFlag (a_flag); /*!< Set "a_flag" flag*/

}

else if ((Cnt%2) == 1)

{

 CoSetFlag (b_flag); /*!< Set "b_flag" flag*/

}

Cnt++;

 }

}

8

before using CoOS or calling any CoOS API, that can be done by CoInitOS()
function. After initialization, you could call the API functions of CoOS to create
tasks,flags, mutexes,semaphores and so on. At last, system will start the first
scheduling through CoStartOS() function. The code after CoStartOS() will not
be implemented, since OS will not return after the first scheduling.

 Add the following code after the initialization in main function:

1.2.5 Configure and clip CoOS

Open config.h, here contains all the items which can be configured and
clipped. Be sure you have known all the functions of every item before you
modify it, there are detailed notes to explain the function of every item in the
document.

First of all, we must configure a few of the items which must be checked or
modified:

CFG_MAX_USER_TASKS

It implies the maximum tasks that users can create, we have only 3 tasks,
so we modify it as 3 to save space.

CFG_CPU_FREQ

It is the system clock that your system used, SystemInit() initialized chip
frequence as 72MHz before, so here we modify it as 72000000, corresponding
to the operating frequence of the objective chip.

CFG_SYSTICK_FREQ

This is the system ticks period, we set it as 100 for 10ms,100Hz's system
tick clock.

Have done all the work, your program should run normally. Compile your
project, you could see the phenomenons we described above after downloading
the program to the hardware by our Colink emulator.

CoInitOS (); /*!< Initial CooCox CoOS */

 /*!< Create three tasks */

 CoCreateTask (taskA,0,0,&taskA_stk[128-1],128);

 CoCreateTask (taskB,0,1,&taskB_stk[128-1],128);

 CoCreateTask (led ,0,2,&led_stk[128-1] ,128);

 CoStartOS(); /*!< Start multitask */

9

2 Task Management

2.1 Task

During OS-based application development, an application is usually
seperated into a number of tasks. In CooCox CoOS, a task is a C function whose
inside is a infinite loop, it also has the return values and parameters. However,
since a task will never return, the returned type must be defined as void. Code
1 shows a typical task structure.

Code 1 An infinite loop task

Which is different from the C function, the quit of a task is achieved by
calling system API function. Once you quit the task only through the ending of
the code execution, the system would breakdown.
 You can delete a task by calling CoExitTask () or CoDelTask (taskID) in
CooCox CoOS. CoExitTask () is called to delete the current running task while
CoDelTask (taskID) to delete others. If the incoming parameter is the current
task ID, CoDelTask (taskID) can also delete the current task. The concrete use
is shown in Code 2.

Code 2 Deleting a task

void myTask (void* pdata)

{

for(;;)

{

}

}

void myTask0 (void* pdata)

{

CoExitTask();

}

void myTask1 (void* pdata)

{

CoDelTask(taskID);

}

10

2.2 Task State

A task can exist in one of the following states in CooCox CoOS.

Ready State(TASK_READY):Ready tasks are those that are able to
execute (they are not waiting or dormant) but are not currently executing
because a different task of equal or higher priority is already in the Running
state. A task will be in this state after being created.

Running State(TASK_RUNNING):When a task is actually executing it is
said to be in the Running state. It is currently occupying the processor.

Waiting State(TASK_WAITING):Wait for an event to occur. A task will be
in the waiting state if it is currently waiting for a certain event in CooCox CoOS.

The Dormant State(TASK_DORMANT):The task has been deleted and is
not available for scheduling. The dormant state is not the same as the waiting
state. Tasks in the waiting state will be reactivated and be available for the
scheduling when its waiting events have satisfied. However, tasks in the
dormant state will never be reactivated.

The state of a task can be changed among the above four states. You can
call CoSuspendTask() to convert a task which in the running or ready state to
the waiting state. By calling CoAwakeTask() you can also convert the state of a
task from the waiting state to the ready state(as shown in Figure 2.2.1).

11

Figure 2.2.1 Valid task state transitions

12

2.3 Task Control Blocks

Task control block is a data structure used to save the state of a task in
CooCox CoOS. Once a task has been created, CooCox CoOS will assign a task
control block to describe it (as shown in code 3). This ensures that the task can
execute accurately when it obtains the CPU runtime again.
 Task control block always accompanies with the task as a description
snapshot. It will not be recovered by the system until the task being deleted.

Code 3 Task control block

typedef struct TCB

{

OS_STK *stkPtr; /*!< The current point of task. */

U8 prio; /*!< Task priority. */

U8 state; /*!< TaSk status. */

OS_TID taskID; /*!< Task ID. */

#if CFG_MUTEX_EN > 0

OS_MutexID mutexID; /*!< Mutex ID. */

#endif

#if CFG_EVENT_EN > 0

OS_EventID eventID; /*!< Event ID. */

#endif

#if CFG_ROBIN_EN >0

U16 timeSlice; /*!< Task time slice */

#endif

#if CFG_STK_CHECKOUT_EN >0

OS_STK *stack; /*!< The top point of task. */

#endif

#if CFG_EVENT_EN > 0

void* pmail; /*!< Mail to task. */

struct TCB *waitNext; /*!< Point to next TCB in the Event waitting list.*/

struct TCB *waitPrev; /*!< Point to prev TCB in the Event waitting list.*/

#endif

#if CFG_FLAG_EN > 0

void* pnode; /*!< Pointer to node of event flag. */

#endif

U32 delayTick; /*!< The number of ticks which delay. */

struct TCB *TCBnext; /*!< The pointer to next TCB. */

struct TCB *TCBprev; /*!< The pointer to prev TCB. */

}OSTCB,*P_OSTCB;

13

stkPtr: A pointer to the current task's top of stack. CooCox CoOS allows
each task to have its own stack of any size. During every task
switches, CoOS saves the current CPU running state through the
stack that stkPtr pointed to so that the task can come back to the
previous running state when it gets the CPU runtime again. Since
Cortex-M3 has 16 32-bit general-purpose registers to describe the
CPU states, the minimum size of stack for a task is 68 bytes(other 4
bytes are used to checking stack overflow).

prio: The task priority that you assigned. Multiple tasks can share the
same priority in CooCox CoOS.

state: The state of the task.

taskID: The task ID that system assigned. Since multiple tasks can share the
same priority, the priority can not be used as the unique identifier.
We use task ID to distinguish different tasks in CooCox CoOS.

mutexID: The mutex ID that the task waiting for.

eventID: The event ID that the task waiting for.

timeSlice: The time slice of the task.

Stack: A pointer to the bottom of a stack. It can be used to check the stack
overflow.

Pmail: The message pointer sent to the task.

waitNext: The TCB of the next task in the event waiting list.

waitPrev: The TCB of the previous task in the event waiting list.

Pnode: The pointer to the node of the event flag.

delayTick: The time difference between the previous delayed event and the
task when it is in the delayed state.

TCBnext: The next TCB when a task is in the ready list / delayed list /
mutex waiting list. Which list the task belongs to is determined by
the task state and the item of the TCB. If the current task is in the
ready state, it is in the ready list. If it is in the waiting state, then
judged by the mutexID and delayTick: If mutexID is not 0xFFFFFFFF,
it is in the mutex waiting list; else if delayTick is not 0xFFFFFFFF, it
is in the delayed list.

TCBprev: The previous TCB when a task is in the ready list /delayed list
/mutex waiting list. Which list the task belongs to is determined by
the task state and the relevant event flag.

System will assign a block to the current task from the current free TCB list
while creating a task. The free TCB pointer is designated by FreeTCB in CooCox

14

CoOS. If the FreeTCB is NULL, there is no TCB to assign and the task will fail to
create.

While system initializing, CoOS will sort all the assignable TCB resources
and then reflect the current state of the TCB through the forms of lists, as
follows:

Figure 2.3.1 Task control block list

Every time you create a task successfully, the FreeTCB will be assigned to
this task and its next item will be the new FreeTCB until it equals NULL. When a
task is deleted or exited, the system will recover the TCB which had been
assigned to this task when it was created and then assign it as the FreeTCB of
the next time so as to reuse the resources of the deleted task.

15

2.4 Task Ready List

CooCox CoOS links all the TCB of ready tasks together according to the level
of the priority through two-way linked list. This ensures that the first item of the
list is always the one which has the highest priority and is the most in need of
task scheduling.

CooCox CoOS allows multiple tasks to share the same priority level.
Therefore, tasks with the same priority will inevitably occur in the ready list.
CooCox CoOS follows the principle "first-in-first out (FIFO)": put the latest task
in the last of the tasks which share the same priority so that all of them can
obtain its own CPU runtime.

TCBRdy is the beginning of the ready list in CooCox CoOS. In other words,
TCBRdy is the TCB of the task which has the highest priority in the ready list.
Therefore, when starting a task scheduling, which only need to be checked is
whether the priority of the task that TCBRdy pointed to is higher than the
current running one. In this way, the efficiency of the task scheduling can be
improved to the maximum.

Figure 2.4.1 Task ready list

16

2.5 Task Scheduling

CooCox CoOS supports two kinds of scheduling mode, preemptive priority
and round-robin. The former is used among tasks of different priority, while the
latter among tasks of the same priority.

CooCox CoOS will start a task scheduling in the following three situations:

1) A task whose priority is higher than the current running one is
converting to the ready state;

2) The current running task is changing from the running state to the
waiting or dormant state;

3) A task sharing the same priority with the current running task is in the
ready state, and meanwhile the time slice of the current task runs out .

When a system tick interrupt exits or some tasks’ states have changed,
CooCox CoOS will call the task scheduling function to determine whether it is
essential to start a task scheduling or not.

For the scheduling of tasks sharing the same priority, the system starts the
rotation scheduling according to the time slice of each task. When the system
has run out the time slice of the current task, it will give the right of control to
the next task with the same priority. Figure 2.5.1 shows the system running
state of the three tasks (A, B, C with their respective time slices 1, 2, 3) with the
same priority when they are entering the ready state in turn.

Figure 2.5.1 Round-robin time slice

In CooCox CoOS source codes, the implementing of task scheduling is
shown as follows:

A CC BB AA

.......

17

Code 4 Task with a higher priority is ready

Code 5 The state of the current task changes

Code 6 The task scheduling among the same priority tasks

/* Is it the time for robinning */

else if((RunPrio == RdyPrio) && (OSCheckTime == OSTickCnt))

{

TCBNext = pRdyTcb; /* Yes, set TCBNext and reorder ready list*/

pCurTcb->state = TASK_READY;

pRdyTcb->state = TASK_RUNNING;

InsertToTCBRdyList(pCurTcb);

RemoveFromTCBRdyList(pRdyTcb);

}

/* Does Running task status change */

else if(pCurTcb->state != TASK_RUNNING)

{

TCBNext = pRdyTcb; /* Yes, set TCBNext and reorder ready list*/

pRdyTcb->state = TASK_RUNNING;

RemoveFromTCBRdyList(pRdyTcb);

}

/* Is higher PRI task coming in? */

if(RdyPrio < RunPrio)

{

TCBNext = pRdyTcb; /* Yes, set TCBNext and reorder ready list*/

pCurTcb->state = TASK_READY;

pRdyTcb->state = TASK_RUNNING;

InsertToTCBRdyList(pCurTcb);

RemoveFromTCBRdyList(pRdyTcb);

}

18

2.6 Critical Section

Different from other kernels, CooCox CoOS does not handle the critical code
section by closing interrupts, but locking the scheduler. Therefore, CoOS has a
shorter latency for interrupt compared with others.

Since the time of enabling the interrupt relates to system’s responsiveness
towards the real-time events, it is one of the most important factors offered by
the real-time kernel developers. By locking the scheduler we can improve
system’s real-time feature to the maximum comparing to other approaches.

Since CooCox CoOS manages the critical section by forbidding to schedule
task, user’s applications cannot call any API functions which will suspend the
current running task in critical sections, such as CoExitTask (), CoSuspendTask
(), CoTickDelay (), CoTimeDelay (), CoEnterMutexSection (), CoPendSem (),
CoPendMail (), CoPendQueueMail (), CoWaitForSingleFlag (),
CoWaitForMultipleFlags () and so on.

Code 7 Critical Section

void Task1(void* pdata)

{

.....................

CoSchedLock(); // Enter Critical Section

............... // Critical Code

CoSchedUnlock(); // Exit Critical Section

.....................

}

void

Task1(void*

pdata)

{

..........

...........

CoSche

dLock();

// 进入临界

区

..........

.....

// 临界代码

段

CoSche

dUnlock();

// 离开临界

区

..........

...........

}

19

2.7 Interrupts

In CooCox CoOS, the interrupt is divided into two categories according to
whether called the system API functions inside or not.

For the ISR which has nothing to do with OS, CooCox CoOS does not force
it to do anything and you can operate just like there is not an OS.

However, for the ISR which called the system API functions inside, CooCox
CoOS demands that you call the relevant functions when entering or exiting the
interrupt (as shown in code 8).

Code 8 The interrupt handler which called the system API

All the system API which can be called in the interrupt service routine begin
with isr_, such as isr_PostSem (), isr_PostMail (), isr_PostQueueMail () and
isr_SetFlag ().The calling of any other API inside the ISR will lead to the system
chaos.

When calling the corresponding API functions in the interrupt service
routine, system need to determine whether the task scheduling is locked or not.
If it is unlocked, system can call it normally. Otherwise, system will send a
relevant service request to the service request list and then wait for the
unlocking of the scheduler to respond it.

void WWDG_IRQHandler(void)

{

CoEnterISR(); // Enter the interrupt

isr_SetFlag(flagID); // API function

..................; // Interrupt service routine

CoExitISR(); // Exit the interrupt

}

20

3 Time Management

3.1 System Ticks

CooCox CoOS uses interrupt systick to implement system tick. You need to
configure the frequency of system tick in config.h file. CFG_CPU_FREQ is used
for CPU’s clock frequency. The system needs to determine the specific
parameters through CPU’s clock frequency while configuring systick.
CFG_SYSTICK_FREQ is used for the frequency of system tick that users need.
CooCox CoOS supports the frequency from 1 to 1000Hz. The actual value is
determined by the specific application while the default value is 100Hz (that is,
the time interval is 10ms).

CooCox CoOS increases the system time by 1 in every system tick interrupt
service routine, you can get the current system time by calling CoGetOSTime().

CooCox CoOS will also check whether the delayed list and the timer list is
empty in system tick interrupt service routine except increasing the system
time by 1.If the list is not empty, decrease the delayed time of the first item in
the list by 1, and judge whether the waiting time of the first item in the list is due.
If it is due, call the corresponding operation function, otherwise, skip to the next
step.

CooCox CoOS calls the task scheduling function to determine whether the
current system needs to run a task scheduling when exits from the system tick
interrupt service.

21

Code 1 System tick interrupt handling

void SysTick_Handler(void)

{

OSSchedLock++; /* Lock the scheduler. */

OSTickCnt++; /* Increment system time. */

if(DlyList != NULL) /* Have task in delayed list? */

{

 DlyList->delayTick--; /* Decrease delay time of the list head. */

if(DlyList->delayTick == 0) /* Delay time == 0? */

{

isr_TimeDispose(); /* Call hander for delay time list */

}

}

#if CFG_TMR_EN > 0

if(TmrList != NULL) /* Have timer be in working? */

{

TmrList->tmrCnt--; /* Decrease timer time of the list head. */

if(TmrList->tmrCnt == 0) /* Timer time == 0? */

{

isr_TmrDispose(); /* Call hander for timer list. */

}

}

#endif

OSSchedLock--; /* Unlock scheduler. */

if(OSSchedLock==0)

{

 Schedule(); /* Call task scheduler */

}

}

22

3.2 Delay Management

CooCox CoOS manages all the tasks’ delay and timeout through delayed
list. When you call CoTickDelay(),CoTimeDelay(),CoResetTaskDelayTick() or
other API functions to apply for delay. CooCox CoOS will sort the delay time
from short to long, and then insert them into the delayed list. The delayTick
item in the task control block preserves the difference value of the delay time
between the current task and the previous task. The first item in the list is the
value of the delay time or the timeout value, while the subsequent item is the
difference value with the former. For example, Task A, B, C delay 10,18,5
respectively, then they will be sequenced as follows in the delayed list:

Figure 3.2.1 Task delayed list

System will decrease the first item of the delayed list by 1 in every system
tick interrupt, and then move it from the delayed list to the ready list until it
becomes 0. When moving the tasks whose time is due out of the list in system
tick interrupt, system should determine whether the task is a delay operation
or a timeout operation. Towards the tasks with a delay operation, CooCox CoOS
moves it to the ready list after it being moved out from the delayed list.
Towards the tasks with a timeout operation, CooCox CoOS will judge which
event leads to the overtime first, and then move the task from the waiting list
to the ready list.

CooCox CoOS’s system delay can’t guarantee the accuracy under the
following conditions: ‘

1)There is a higher priority task preempting to run when task A is delayed,
the delay time will be determined by the running time of the higher priority
task;

2)There is a task whose priority is the same to task A preempting to run
when task A is delayed, the delay time will be determined by the number of the
tasks whose priority are the same to task A in the ready list and the length of
their timeslice, as well as the time that the delay time is due.

23

3.3 Software Timer

Software timer is a high precision timer that CooCox CoOS takes the
system tick as the benchmark clock source. CooCox CoOS software supports
up to 32 software timers, the operation mode of each timer can be set to the
periodic mode or the one-shot mode.

You can create a software timer by calling CoCreateTmr(). When creating
a software timer, the system will assign a corresponding timer control block
to describe the current state of the timer. After being created successfully,
the timer’s default state is stopping. It won’t work normally until you call
CoStartTmr(). To the timer which works normally, CooCox CoOS manages
them through the timer list. The same as the delayed list, the timer list is also
sorted by the length of the time that is due: the task whose time is due earlier
will be in front of the list, and subtract expiration time of the previous timer
in the list from expiration time of all the timers, and then save the result into
the timer control block. For example, Task A, B, C are set to 10,18,5
respectively, then they will be sequenced as follows in the timer list:

Figure 3.3.1 Timer list

Once the software timer starts, it will be independent to other modules
completely, and only be related to the system tick interrupt. CooCox CoOS
takes all the timers into the timer list by the length of the time that is due.
Decrease the first item of the timer list by 1(until it becomes 0) in every
sysytem tick interrupt.

When the waiting time of the timer is due, towards the periodic timer
CooCox CoOS will reset the next timing according to the tmrReload that you set
and then put it into the timer list. However, to the one-shot timer, it will be
moved out of the list, and its state will be set to stop.

From the above, we know that the expiration time of the timer is only
determined by the number of system ticks, but has no relation to whether

24

there is a higher priority task running or whether the task which created the
timer is in the ready state.

Software timer provides a function entrance for your operation inside the
systick interrupt. Every timer’s callback function is implemented inside the
systick interrupt when it is due, which requires the code of the software timer
must be simplified and should not run a long time to affect the precision of the
systick interrupt.

25

4 Memory Management

4.1 Static Memory Allocation

Static memory allocation applies to the condition that you know how much
memory you need to occupy while compiling, and the static memory can’t be
released or redistributed while system running. Compared with the dynamic
memory allocation, static memory allocation does not need to consume CPU
resources. At the same time, it would not lead to allocate unsuccessfully
(because allocating unsuccessfully will directly result in the failure of the
compiler). Therefore it is faster and more secure.

In CooCox CoOS, the memory that each module’s control block needs is
allocated statically, such as the task control block(TCB),event control
block(ECB) ,flag control block(FCB),flag node(FLAG_NODE)and so on.

Code 1 CooCox CoOS’s space allocation of the TCB

config.h

#define CFG_MAX_USER_TASKS (8) // Determine the largest number of

 // user’s task in the system

task.h

#define SYS_TASK_NUM (1) // Determine the number of system tasks

task.c

// Allocate TCB space statically

OSTCB TCBTbl[CFG_MAX_USER_TASKS+SYS_TASK_NUM];

26

4.2 Dynamic memory management

Dynamic memory allocation applies to the conditions that the memory size
can not be determined while compiling but by the runtime environment of the
code during the system is running. It could be said that the static memory
allocation is based on plans while the dynamic memory allocation is based on
need.

 Dynamic memory allocation is more flexible, and can greatly improve the
utilization of the memory. However, since every allocation and release will
consume CPU resources, and there may be a problem of allocation failure and
memory fragmentation, you need to determine whether the allocation is
successful or not during every dynamic memory allocation.

Here are some conventional methods of dynamic memory allocation—— the
implementation of malloc() and free(). In the usual kernel or compiler, the
memory block is allocated to the free list or the list of allocation respectively
according to its allocation condition.

The related steps of the system are as follows while calling malloc():

1)Find a memory block whose size meets user’s demand. Since the search
algorithm is different, the memory blocks found by the system are not the same.
The most commonly used algorithm is the first matching algorithm, that is,
allocate the first memory block which meets user’s demand. By doing this, it
could avoid to traverse all the items in the free list during each allocation.

2)Divide the memory block into two pieces: the size of first piece is the
same to user’s demand, and the second one storages the remaining bytes.

3)Pass the first piece of memory block to the user. The other one (if any) will
be returned to the free list.

System will link the memory block that you released to the free list, and
determine whether the memory’s former or latter memory is free. If it is free,
combine them to a larger memory block.

27

Figure 4.2.1 Memory management list

 From the above, we can see that the free list will be divided into many small
pieces after allocating and releasing the memory many times. If you want to
apply for a large memory block at this time, the free list may not have the
fragment that meets user’s demand. This will lead to the so-called memory
fragmentation. In addition, the system needs to check the whole free list from
the beginning to determine the location that the memory block needs to plug in,
which leads the time of releasing the memory too long or uncertain.

CooCox CoOS provides two mechanisms of partitioning to solve these
problems: the partition of fixed length and the partition of variable length.

4.2.1 Fixed-length partition

It provides memory allocation mode of fixed length partition in CooCox
CoOS. The system will divide a large memory block into numbers of pieces
whose size are fixed, then link these pieces through the linked list. You can
allocate or release the memory block of fixed length through it. In this way, we
not only can ensure that the time of allocation or release is fixed, but also can
solve the problem of memory fragmentation.

 P4.2.2 Partition of fixed length

28

CooCox CoOS can manage a total of 32 fixed-length partitions of different
size. You can create a partition of fixed length by calling
CoCreateMemPartition(). After being created successfully, you can allocate or
release the memory block by calling CoGetMemoryBuffer() and
CoFreeMemoryBuffer(). You can also get the number of free memory blocks in
current memory partition by calling CoGetFreeBlockNum().

Code 2 The creation and use of fixed-length partition

4.2.2 Variable-length partition

From the implement of conventional dynamic memory shown above, we
can see that it need to operate the free list and the allocated list at the same
time while release the memory, which require a long operation time and has
impaction to the CPU. For these reasons, CooCox CoOS redesigns the list to
ensure that both the allocation and release of memory only require to search
just one list.

 Figure 4.2.3 List of variable-length partition

From the figure we can see that all the free memory in the system can
separately form a one-way list so that it is more convenient to look up the list

U8 memPartition[128*20];

OS_MMID memID;

void myTask (void* pdata)

{

U8* data;

memID = CoCreateMemPartition(memPartition,128,20);

if(CoGetFreeBlockNum(memID) != 0)

{

data = (U8*)CoGetMemoryBuffer(memID);

}

..................

CoFreeMemoryBuffer(memID ,data);

}

29

while allocate the memory. To all the memory blocks, whether they are free or
have been allocated, CooCox CoOS will link them through a doubly linked list.
Thus, when an allocated memory releases, there is no need to find the
insertion point of the memory from the beginning of the free list. You only need
to find the former free block in the doubly linked list and then insert the
memory into the free list, which has greatly improved the speed of memory
releasing.

In CooCox CoOS, since all the memory is 4-byte alignment (if the space that
needs to allocate is not 4-byte alignment, force it to be), the last two bits of the
previous and next memory address that saved in the head of the memory are all
invalid. Therefore, CooCox CoOS determines whether the memory is free
through the least significant bit: bit 0 refers to the free block, otherwise refers
to the allocated ones. If the memory list points to the free block, get the list
address directly. If it points to the allocated one, decrease it by one.

Code 3 The head of allocated memory block

Code 4 The head of free memory block

For memory block 1 and 2, the memory block itself preserves the address of
the previous free memory block when released, so it is very easy to plug back to
the free list. You only need to decide whether to merge them according to if the
memory block’s next block is free.

For memory block 3 and 4, its previous memory block is not a free memory
block when released. It is essential to get the previous free memory address
through two-way list when plug it back to the free list.

typedef struct FreeMemBlk

{

 struct FreeMemBlk* nextFMB;

 struct UsedMemBlk* nextUMB;

 struct UsedMemBlk* preUMB;

}FMB,*P_FMB;

typedef struct UsedMemBlk

{

 void* nextMB;

 void* preMB;

}UMB,*P_UMB;

30

Code 5 To get the address of the previous free memory block

In the file config.h, you can determine whether it is essential to add
variable-length partition to the kernel, and set the size of the memory partition
at the same time.

Code 6 config.h file

You could implement the allocation and release of the memory by calling
CoKmalloc() and CoKfree() respectively after ensuring enabling the
variable-length partition. The memory size that CoKmalloc() applied is in bytes.

Code 7 The use of the variable-length partition

P_FMB GetPreFMB(P_UMB usedMB)

{

 P_UMB preUMB;

 preUMB = usedMB;

 while(((U32)(preUMB->preMB)&0x1)) /* Is previous MB as FMB?*/

 { /* No, get previous MB */

 preUMB = (P_UMB)((U32)(preUMB->preMB)-1);

 }

 return (P_FMB)(preUMB->preMB); /* Yes, return previous MB*/

}

Config.h

#define CFG_KHEAP_EN (1)

#if CFG_KHEAP_EN >0

#define KHEAP_SIZE (50) // size(word)

#endif

void myTask (void* pdata)

{

void* data;

data = CoKmalloc(100);

......

CoKfree(data);

}

31

4.3 Stack Overflow Check

Stack Overflow refers to that the size of the stack used when a task is
running exceeds the size that assigned to the task, which results in writing data
to the memory outside the stack. This may lead to the coverage of the system
or other tasks’ data as well as the exception of memory access. The stack size
assigned to each task is fixed in multi-tasking kernel. Once the stack overflow
is not handled when the system is running, it may lead to system crashes.

When creating a task in CooCox CoOS, the system will save the stack
bottom address in the task control block and write a special value into the
memory block of the stack bottom address in order to judge whether the stack
overflows. CooCox CoOS will check whether there is a stack overflow during
each task scheduling.

Code 8 Stack overflow inspection

When stack overflow in a task, the system will call CoStkOverflowHook
(taskID) automatically. You can add the handling of stack overflow in the
function. The parameter of this function is the ID of the task which has stack
overflow.

Code 9 The handling function of stack overflow

if((pCurTcb->stkPtr < pCurTcb->stack)||(*(U32*)(pCurTcb->stack) != MAGIC_WORD))

{

CoStkOverflowHook(pCurTcb->taskID); /* Yes,call hander */

}

void CoStkOverflowHook(OS_TID taskID)

{

 /* Process stack overflow in here */

 for(; ;)

 {

…

 }

}

32

5 Intertask Synchronization&Communication

5.1 Intertask Synchronization

Intertask synchronization refers to that one task can only keep on executing
after it has got the synchronization signal sent by another task or the ISR.
There are semaphores, mutexes and flags to implement intertask
synchronization in CooCox CoOS.

5.1.1 Semaphores

Semaphores provide an effective mechanism for the system to handle the
critical section and implement intertask synchronization.

The action of semaphore can be described as the classical PV operation:

You can create a semaphore by calling CoCreateSem () in CooCox CoOS.
After the semaphore has been created successfully, you can obtain it by calling
CoPendSem () or CoAcceptSem (). If there is no free semaphore, CoPendSem ()
will wait for a semaphore to be released while CoAcceptSem () will return the
error immediately. You can also call CoPostSem () in the task or isr_PostSem ()
in the ISR to release a semaphore for the purpose of achieving synchronization.

Code 1 The creation of the semaphore

ID0 = CoCreateSem(0,1,EVENT_SORT_TYPE_FIFO); // initCnt=0,maxCnt=1,FIFO

ID1 = CoCreateSem(2,5,EVENT_SORT_TYPE_PRIO); // initCnt=2,maxCnt=5,PRIO

Ｐ Operation: while(s==0); s--;
V Operation: s++;

33

Code 2 The use of the semaphore

5.1.2 Mutexes

Mutexes have solved the "mutually exclusion" problem in CooCox CoOS. It
forbids multiple tasks to enter the critical code section at the same time.
Therefore, only one task can enter it at any time.

In CooCox CoOS, the mutex section has also considered the issue of
priority inversion. CooCox CoOS has solved this issue by the method of priority
inheritance.

Priority inversion refers to that the high-priority task is waiting for the
low-priority task to release resources, at the same time the low-priority task is
waiting for the middle priority task’s.

There are two classical methods to prevent the inversion at present:

1) The priority inheritance strategy: The task which is possessing the critical
section inherits the highest priority of all the tasks that request for this critical
section. When the task exits from the critical section, it will restore to its original
priority.

2) The ceiling priority strategy: Upgrade the priority of the task which
requests a certain resource to the highest priority of all the tasks that be likely

void myTaskA(void* pdata)

{

..........

semID = CoCreateSem(0,1,EVENT_SORT_TYPE_FIFO);

CoPendSem(semID,0);

..........

}

void myTaskB(void* pdata)

{

......

CoPostSem(semID);

......

}

void myISR(void)

{

CoEnterISR();

......

isr_PostSem(semID);

CoExitISR();

}

34

to access this resource (and the highest priority is called the ceiling priority of
this resource).

The priority inheritance strategy has a less impact to the flow of the task
execution since it only upgrades the priority of the low-priority task when a
high-priority task is requesting for the critical resource that being occupied by
the low-priority task. However, the ceiling priority strategy upgrades one task’s
priority to the highest when the task is occupying the critical resource.

CooCox CoOS prevents the priority inversion by the method of priority
inheritance.

The following figure describes the task scheduling of three tasks when there
are mutex sections in CooCox CoOS. TaskA has the highest priority while TaskC
has the lowest. The blue boxes refer to the mutex sections.

Figure 5.1.1 Task scheduling with mutex sections

You can create a mutex section by calling CoCreateMutex(). Calling
CoEnterMutexSection() and CoLeaveMutexSection() to enter or leave the
mutex section so that we can protect the codes in critical section.

35

Code 3 The use of the mutex section

5.1.3 Flags

When a task wants to synchronize with a number of events, flags are
needed. If the task synchronizes with a single event, it can be called
independent synchronization (logical OR relationship). If it synchronizes with a
number of events, then called associated synchronization (logical AND
relationship).

CooCox CoOS supports 32 flags to the maximum at the same time. It
supports that multiple tasks waiting for a single event or multiple events. When
the flags that the waiting tasks waiting for are in the not-ready state, these
tasks can not be scheduled. However, once the flags turn to the ready state,
they will be resumed soon.

According to the types of the flags, the side effects are different when the
tasks have waited for the flags successfully. There are two kinds of flags in
CooCox CoOS: the ones reset manually and the ones reset automatically. When
a task has waited for a flag which reset automatically, the system will convert
the flag to not-ready state. On the contrary, if the flag is reset manually, there
won’t be any side effect. Therefore, when a flag which reset manually converts
to the ready state, all the tasks which waiting for this event will convert to the
ready state as far as you call CoClearFlag() to reset the flag to the not-ready
state. When a flag which reset automatically converts to the ready state, only
one task which waiting for this event will convert to the ready state. Since the
waiting list of the event flags is ordered by the principle of FIFO, towards the
event which reset automatically only the first task of the waiting list converts to
the ready state and others that waiting for this flag are still in the waiting state.

Suppose there are three tasks (A, B, C) waiting for the same flag I which
reset manually. When I is ready, all the tasks will be converted (A, B, C) to the

void myTaskA(void* pdata)

{

mutexID = CoCreateMutex();

CoEnterMutexSection(mutexID); // enter the mutex section

........... // critical codes

CoLeaveMutexSection(mutexID); // leave the mutex section

}

void myTaskB(void* pdata)

{

CoEnterMutexSection(mutexID); // enter the mutex section

........... // critical codes

CoLeaveMutexSection(mutexID); // leave the mutex section

}

36

ready state and then inserted into the ready list. Suppose I is a flag which reset
automatically and the tasks (A, B, C) are listed in sequence in the waiting list.
When I is ready, it will inform task A. Then I will be converted to the not-ready
state. Therefore B and C will keep waiting for the next ready state of flag I in the
waiting list.

You can create a flag by calling CoCreateFlag() in CooCox CoOS. After being
created, you can call CoWaitForSingleFlag() and CoWaitForMultipleFlags() to
wait for a single flag or multiple flags.

Code 4 Wait for a single flag

void myTaskA(void* pdata)

{

..........

flagID = CoCreateFlag(0,0); // Reset manually, the original state is not-ready

CoWaitForSingleFlag(flagID,0);

..........

}

void myTaskB(void* pdata)

{

......

CoSetFlag(flagID);

......

}

37

Code5 Wait for multiple flags

void myTaskA(void* pdata)

{

U32 flag;

StatusType err;

..........

flagID1 = CoCreateFlag(0,0); // Reset manually, the original state is not-ready

flagID2 = CoCreateFlag(0,0); // Reset manually, the original state is not-ready

flagID3 = CoCreateFlag(0,0); // Reset manually, the original state is not-ready

flag = flagID1 | flagID2 | flagID3;

CoWaitForMultipleFlags(flag,OPT_WAIT_ANY,0,&err);

..........

}

void myTaskB(void* pdata)

{

......

CoSetFlag(flagID1);

......

}

void myISR(void)

{

CoEnterISR();

......

isr_SetFlag(flagID2);

CoExitISR();

}

38

5.2 Intertask Communication

Information transfer is sometimes needed among tasks or between the task
and the ISR. Information transfer can be also called intertask communication.
There are two ways to implement it: through the global variable or by sending
messages.

When using the global variable, it is important to ensure that each task or
ISR possesses the variable alone. The only way to ensure it is enabling the
interrupt. When two tasks share one variable, each task possesses the variable
alone through firstly enabling then disabling the interrupt or by the semaphore
(see chapter 5.1). Please note that a task can communicate with the ISR only
through the global variable and the task won’t know when the global variable
has been modified by the ISR (unless the ISR sends signals to the task in
manner of semaphore or the task keeps searching the variable’s value). In this
case, CooCox CoOS supplies the mailboxes and the message queues to avoid
the problems above.

5.2.1 Mailboxes

System or the user code can send a message by the core services. A typical
mail message, also known as the exchange of information, refers to a task or an
ISR using a pointer variable, through the core services to put a message (that is,
a pointer) into the mailbox. Similarly, one or more tasks can receive this
message by the core services. The tasks sending and receiving the message
promise that the content which the pointer points to is just that piece of
message.

Figure 5.2.1 Mailbox

The mailbox of CooCox CoOS is a typical message mailbox which is
composed of two parts: one is the information which expressed by a pointer of
void; the other is the waiting list which composed of the tasks waiting for this
mailbox. The waiting list supports two kinds of sorting: FIFO and preemptive
priority. The sorting mode is determined by the user when creating the mailbox.

39

You can create a mailbox by calling CoCreateMbox () in CooCox CoOS. After
being created successfully, there won’t be any message inside. You can send a
message to the mailbox by calling CoPostMail () or isr_PostMail () respectively in
a task or the ISR. You can also get a message from the mailbox by calling
CoPendMail () or CoAcceptMail ().

Code 6 The use of the mailbox

5.2.2 Message Queues

Message queue is just an array of mailboxes used to send messages to the
task in fact. The task or the ISR can put multiple messages (that is, the pointers
of the message) to the message queue through the core services. Similarly, one
or more tasks can receive this message by the core services. The tasks sending
and receiving the message promise that the content that the pointer points to is
just that piece of message.

The difference between the mailbox and the message queue is that the
former can store only one piece of message while the latter can store multiple of
it. The maximum pieces of message stored in a queue are determined by the
user when creating the queue in CooCox CoOS.

void myTaskA(void* pdata)

{

void* pmail;

StatusType err;

..........

mboxID = CoCreateMbox(EVENT_SORT_TYPE_PRIO); //Sort by preemptive priority

pmail = CoPendMail(mboxID,0,&err);

..........

}

void myTaskB(void* pdata)

{

......

CoPostMail(mboxID,"hello,world");

......

}

void myISR(void)

{

CoEnterISR();

......

isr_PostMail(mboxID,"hello,CooCox");

CoExitISR();

}

40

In CooCox CoOS, message queue is composed of two parts: one is the
struct which pointed to the message queue; the other is the waiting list which
composed of the tasks waiting for this message queue. The waiting list supports
two kinds of sorting: FIFO and preemptive priority. The sorting mode is
determined by the user when creating the message queue.

You can create a message queue by calling CoCreateQueue() in CooCox
CoOS. After being created successfully, there won’t be any message inside. You
can send a message to the message queue by calling CoPostQueueMail() or
isr_PostQueueMaill() respectively in a task or the ISR. Similarly, you can also
obtain a message from the message queue by calling CoPendQueueMail() or
CoAcceptQueueMail().

Code 7 The use of the message queue

void myTaskA(void* pdata)

{

void* pmail;

Void* queue[5];

StatusType err;

..........

queueID = CoCreateQueue(queue,5,EVENT_SORT_TYPE_PRIO);

//5 grade, sorting by preemptive priority

pmail = CoPendQueueMail(queueID ,0,&err);

..........

}

void myTaskB(void* pdata)

{

......

CoPostQueueMail(queueID ,"hello,world");

......

}

void myISR(void)

{

CoEnterISR();

......

isr_PostQueueMail(queueID ,"hello,CooCox");

CoExitISR();

}

41

6 API Reference

6.1 System Management

6.1.1 CoInitOS()

Function Prototype:
void CoInitOS (void);

Descriptions:
Initialize the system.

Parameters:
None

Returns:
None

Example usage:

Note:
1) A requirement of CooCox CoOS is that you call CoInitOS() before you

call any of its other services.
2) You need to set the CPU clock and configure the OS well before

#include "CCRTOS.h"

#define TASK0PRIO 10

OS_STK Task0Stk[100];

OS_TID Task0Id;

void Task0 (void *pdata);

int main(void)

{

System_init ();

CoInitOS (); // Initialize CoOS

…

Task0Id = CoCreateTask (Task0, (void *)0, TASK0PRIO , &Task0Stk[99], 100);

 …

CoStartOS(); // Start CoOS

}

void Task0 (void *pdata)

{

...

for(;;)

{

 ...

}

}

42

calling CoInitOS().
3) When initializing the OS, the system will close the OS scheduler and

create the first task-IdleTask.

6.1.2 CoStartOS()

Function Prototype:
void CoStartOS(void);

Descriptions:
System start running.

Parameters:
None

Returns:
None

Example usage:

Note:

1) Before calling CoStartOS(), you must create at least one of your
application tasks, or OS would stay in CoIdleTask () all the time.

2) When the OS starts, the task scheduler is unlocked and then start the
first task scheduling.

#include "CCRTOS.h"

#define TASK0PRIO 10

OS_STK Task0Stk[100];

OS_TID Task0Id;

void Task0 (void *pdata);

int main(void)

{

System_init();

CoInitOS(); // Initialize CoOS

…

Task0Id = CoCreateTask (Task0, (void *)0, TASK0PRIO , &Task0Stk[99], 100);

 …

CoStartOS(); // Start CoOS

}

void Task0 (void *pdata)

{

...

for(;;)

{

 ...

}

}

43

6.1.3 CoEnterISR()

Function Prototype:
void CoEnterISR(void);

Descriptions:
System enters the interrupts.

Parameters:
None

Returns:
None

Example usage:

Note:
1) When the system enters the interrupts, increase the interrupt nesting

counter- OSIntNesting by one.
2) CoEnterISR() and CoExitISR() must be used in pairs.

6.1.4 CoExitISR()

Function Prototype:
void CoExitISR(void);

Descriptions:
System exits the interrupts.

Returns:
None

Returns:
None

#include "CCRTOS.h"

void EXTI0_IRQHandler(void)

{

CoEnterISR(); // Enter ISR

 …

/* Process interrupt here */

 …

CoExitISR(); // Exit ISR

}

44

Example usage:

Note:
1) When the system API functions are called in the ISR, you need to start

a task scheduling by calling CoExitISR().
2) When the system exits the interrupts, decrease the interrupt nesting

counter- OSIntNesting by one. When OSIntNesting reaches 0, start
task scheduling.

3) CoExitISR() and CoEnterISR() must be used in pairs.

6.1.5 CoSchedLock()

Function Prototype:
void CoSchedLock(void);

Descriptions:
Lock the scheduler.

Parameters:
None

Returns:
None

Example usage:

Note:
1) Increase OSSchedLock by one. When the task scheduler is locked, the

system ensure that the current task can’t be preempted by any other

#include "CCRTOS.c"

void Task0 (void *pdata)

{

.....

CoSchedLock();

 …..

 /* Process critical resources here */

 …..

CoSchedUnlock();

.....

}

#include "CCRTOS.h"

void EXTI0_IRQHandler(void)

{

CoEnterISR(); // Enter ISR

 …

/* Process interrupt here */

 …

CoExitISR(); // Exit ISR

}

45

tasks so as to protect the critical resources.
2) CoSchedUnlock() and CoSchedUnlock() must be used in pairs.

6.1.6 CoSchedUnlock()

Function Prototype:
void CoSchedUnlock(void);

Descriptions:
Unlock the scheduler.

Parameters:
None

Returns:
None

Example usage:

Note:
1) Decrease OSSchedLock by one. When it reaches 0, start task

scheduling.
2) CoSchedUnlock() and CoSchedUnlock() must be used in pairs.

6.1.7 CoGetOSVersion()

Function Prototype:
OS_VER CoGetOSVersion(void);

Descriptions:

Obtain CooCox CoOS’s version.
Parameters:

None
Returns:

CoOS’s version

#include "CCRTOS.c"

void Task0 (void *pdata)

{

.....

CoSchedLock();

 …..

 /* Process critical resources here */

 …..

CoSchedUnlock();

.....

}

46

Example usage:

Note:
CoGetOsVersion() returns a 16-bit binary number. Shift it 8-bit to right
and you can get the actual version. In other words, version 1.01 would be
returned as 0x0101.

#include "CCRTOS.H"

void TaskN (void *pdata)

{

U16 version;

U8 Major, Minor;

....

version = CoGetOSVersion();

// Get Major Version

Major = ((version>>12)&0xF) * 10 + (version>>8)&0xF;

// Get Minor Version

Minor = ((version>>4)&0xF) * 10 + version&0xF;

printf("Current OS Version: %d.%02d\n",Major, Minor);

....

}

47

6.2 Task Management

6.2.1 CoCreateTask() & CoCreateTaskEx()

CoCreateTask()

Function Prototype:
OS_TID CoCreateTask

(
FUNCPtr task,
void* argv,
U8 prio,
OS_STK* stk,
U16 stkSz,

);
Description:

Create a task and return its ID.
Parameters:

[IN] task
The function which create the task

[IN] argv
The parameter list of the function

 [IN] prio
The priority of the task

[IN] stk
The starting address of the task stack

[IN] stkSz
 The size of the task stack(its unit is word)

Returns:

Task ID, Create successfully.
-1, Failed to create.

48

Example Usage:

Note:
1) A relevant PCB is distributed when a task is created.
2) A task is in the ready state once being successfully created.
3) If the priority of the current created task is higher than the

running task, the system start a task scheduling and distribute
the execution time to the current task.

4) The maximum stkSz is 0xfff.

#include "CCRTOS.h"

#define TASKM_PRIO 11

#define TASKM_STK_SIZE 100

OS_STK TaskMStk[TASKM_STK_SIZE];

OS_TID TaskMId;

void TaskM (void *pdata);

void TaskN (void *pdata)

{

...

TaskMId = CoCreateTask (TaskM,

(void *)0,

TASKM_PRIO,

&TaskMStk[TASKM_STK_SIZE-1],

TASKM_STK_SIZE);

if (TaskMID==E_CREATE_FAIL)

{

printf("Task Create Failed !\n");

}

else

{

printf("Task ID : %d\n",TaskMId);

}

...

}

void TaskM (void *pdata)

{

...

}

49

CoCreateTaskEx()

Function Prototype:
OS_TID CoCreateTaskEx

(
FUNCPtr task,
void* argv,
U8 prio,
OS_STK* stk,
U16 stkSz,
U16 timeSlice

);
Description:

Create a task and return its ID.
Parameters:

[IN] task
The function which create the task

[IN] argv
The parameter list of the function

 [IN] prio
The priority of the task

[IN] stk
The starting address of the task stack

[IN] stkSz
 The size of the task stack(its unit is word)

[IN] timeSlice

The time slice that the task runs (Once 0 is transferred, set it to the
default length of the system.)

Returns:

Task ID, Create successfully.
-1, Failed to create.

50

Example Usage:

Note:
 1) A relevant PCB is distributed when a task is created.
 2) A task is in the ready state once being successfully created.

 3) If the priority of the current created task is higher than the running
task, the system start a task scheduling and distribute the execution
time to the current task.

 4) The maximum stkSz is 0xfff, the maximum timeSlice is 0xfff.

#include "CCRTOS.h"

#define TASKM_PRIO 11

#define TASKM_STK_SIZE 100

#define TASKM_TIME_SLICE 10

OS_STK TaskMStk[TASKMSTKSIZE];

OS_TID TaskMId;

void TaskM (void *pdata);

void TaskN (void *pdata)

{

...

TaskMId = CoCreateTaskEx(TaskM,

(void *)0,

TASKM_PRIO,

&TaskMStk[TASKM_STK_SIZE-1],

TASKM_STK_SIZE,

TASKM_TIME_SLICE);

if (TaskMID==E_CREATE_FAIL)

{

printf("Task Create Failed !\n");

}

else

{

printf("Task ID %d\n",TaskMId);

}

...

}

void TaskM (void *pdata)

{

...

}

51

6.2.2 CoExitTask()

Function Prototype:
void CoExitTask(void);

Description:
Exit a task.
Exit from the current task and recover the resource of the task TCB.

Parameters:
None

Returns:
None

Example Usage:

Note:
1) When the task exits, the system will recover its TCB resources

automatically so as to redistribute them.
2) When a task exits, the task scheduler runs and assign the system

runtime to the next task.
3) This function can be called only inside the task.

6.2.3 CoDelTask()

Function Prototype:
StatusType CoDelTask

(
OS_TID task ID

);
Description:

Delete a task.
Delete the designated task and recover the resource of the task TCB.

Parameters:
[in] taskID

ID of the task to be deleted
Returns:

E_INVALID_ID, Invalid task ID.
E_PROTECTED_TASK, Protected by the system and can not be deleted.
E_OK, Delete successfully.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

...

CoExitTask(); // Exit current task

}

52

Example Usage:

Note:
Recover the TCB resources when deleting a specified task.

6.2.4 CoGetCurTaskID()

Function Prototype:
CoGetCurTaskID(void);

Description:
Obtain the ID of current task.

Parameters:
None

Returns:
ID of current task

#include "CCRTOS.h"

OS_TID TaskMId;

void TaskM (void *pdata);

void TaskN (void *pdata)

{

StatusType result;

...

result = CoDelTask(TaskMId);

if (result != E_OK)

{

if (result==E_INVALID_ID)

{

printf("Invalid task ID !\n");

}

else if (result==E_PROTECTED_TASK)

{

printf("Protected task in OS cannot be deleted !\n");

}

}

...

}

void TaskM (void *pdata)

{

...

}

53

Example Usage:

Note:
 None

6.2.5 CoSetPriority()

Function Prototype:
StatusType CoSetPriority

(
OS_TID taskID,
U8 priority

);
Description:

Set the priority of the designated task and return the executing state of the
function.

Parameters:
[in] task ID

ID of the designated task
[in] Priority

The priority to which the task will be set
Returns:

E_INVALID_ID, The task ID is invalid.
 E_OK, Reset successfully.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

OS_TID tid;

...

tid = CoGetCurTaskID();

printf("Current task ID is %d !\n",tid);

...

}

54

Example Usage:

Note:
1) If the task which to be set is in the waiting list and the priority of this

task being reset to is higher than the current running one, run a task
scheduling.

2) The changing of the priority will influence the order of the lists that
relevant to this priority, such as the mutex list, the event waiting list
and so on.

6.2.6 CoSuspendTask()

Function Prototype:
StatusType CoSuspendTask

(
OS_TID task ID

);
Description:

Suspend the designated task.
Parameters:

[in] task ID
ID of the designated task

Returns:

E_INVALID_ID, The task ID is invalid.
E_ALREADY_IN_WAITING, The designated task has been in the waiting

state.
E_OK, Suspend the task successfully.

#include "CCRTOS"

#define NEW_PRIO 10

void TaskN (void *pdata)

{

...

SetPriority (TaskMId, NEW_PRIO);

...

}

void TaskM (void *pdata)

{

...

}

55

Example Usage:

Note:
1) The task being suspended turns to the waiting state

(TASK_WAITING).
2) CoSuspendTask() and CoAwakeTask() must be used in pairs.

6.2.7 CoAwakeTask()

Function Prototype:
StatusType CoAwakeTask

(
OS_TID task ID

);
Description:

Awake the designated task.
Parameters:

 [in] task ID
ID of the designated task

Returns:

E_INVALID_ID, The task ID is invalid.
E_TASK_NOT_WAITING, The designated task is not in the suspending

state.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

StatusType result;

result= SuspendTask (TaskMId); // Suspend TaskM

if (result!= E_OK)

{

if (result==E_INVALID_ID)

{

printf ("TaskM does not exist !\n");

}

else if (result==E_ALREADY_IN_WAITING)

 {

printf ("TaskM is not ready !\n");

}

}

}

void TaskM (void *pdata)

{

...

}

56

E_TASK_WAIT_OTHER, The task is waiting for other events.

E_OK, Awake the task successfully.
Example Usage:

Note:
1) The task will remain in the waiting state (TASK_WAITING) if the task

is still waiting for other events. Otherwise, the task will return to the
ready (TASK_READY) state.

2) CoSuspendTask() and CoAwakeTask() must be used in pairs.

#include "CCRTOS.h"

void TaskI (void *pdata)

{

...

SuspendTask (TaskMId); // Suspend TaskM

...

}

void TaskN (void *pdata)

{

StatusType result;

...

result= AwakeTask (TaskMId); // Wakeup TaskM

if (result==E_OK) printf("TaskM is awake!\n");

...

}

void TaskM (void *pdata)

{

...

}

57

6.3 Time Management

6.3.1 CoGetOSTime()

Function Prototype:
U64 CoGetOSTime(void);

Description:
Obtain the current system time.

Parameters:
None

Returns:
The current system tick number.

Example Usage:

Note:
 None

6.3.2 CoTickDelay()

Function Prototype:
StatusType CoTickDelay

(
U32 ticks

);
Description:

Delay the task for a specified system tick number.
Parameters:

[IN] ticks
The number of the system tick number to be delayed

Returns:

E_CALL, Called in the ISR.
E_OK, Execute correctly.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

U64 ostime;

...

ostime = CoGetOSTime();

...

}

58

Example Usage:

Note:
Once calling TickDelay(), the current task will change from the running

state(TASK_RUNNING)to the waiting state (TASK_WAITING). Then it will
be inserted into the delay list and delay for the specified system ticks.

6.3.3 CoResetTaskDelayTick()

Function Prototype:
StatusType CoResetTaskDelayTick

(
OS_TID taskID,
U32 ticks

);
Description:

Reset the delayed system ticks of the designated task.
Parameters:

[IN] taskID
ID of the designated task

[IN] ticks
The delayed system ticks to be reset to

Returns:
E_INVALID_ID, ID is invalid.
E_NOT_IN_DELAY_LIST, The designated task isn’t in the delay list.

 E_OK, Execute correctly.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

StatusType result;

...

result= CoTickDelay(15); // Delay 15 system ticks

if(result != E_OK)

{

if(result == E_CALL)

{

 printf("TickDelay cannot been called in ISR !\n");

}

}

...

}

59

Example Usage:

Note:
If the tick number is reset to 0, move the specified task out of the delay
list.

6.3.4 CoTimeDelay()

Function Prototype:
StatusType CoTimeDelay

(
U8 hour,
U8 minute,
U8 sec,
U16 millsec

);

#include "CCRTOS.h"

OS_TID TaskMId;

OS_TID TaskNId;

void TaskM (void *pdata)

{

...

TickDelay (30);

...

}

void TaskN (void *pdata)

{

StatusType result;

...

/* Reset TaskM delay time */

result = ResetTaskDelayTick (TaskMId, 61);

if(result!=E_OK)

{

if(result == E_INVALID_ID)

{

printf("Invalid task id !\n");

}

else if (result == E_NOT_IN_DELAY_LIST)

{

printf("TaskM is not in delay list !\n");

}

}

...

}

60

Description:
Delay a task for a specified time.

Parameters:

[IN] Hour
The number of hours to be delayed

[IN] Minute
The number of minutes to be delayed

[IN] Sec
The number of seconds to be delayed

[IN] Millsec
The number of milliseconds to be delayed

Returns:
E_CALL, Called in the ISR.
E_INVALID_PARAMETER, Parameter passed is invalid.

E_OK, Execute correctly.

Example Usage:

Note:
If the time input is not up to snuff, return errors.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

StatusType result;

...

result= TimeDelay(0,0,1,0); // Delay 1 second

if(result!=E_OK)

{

if(result==E_CALL)

{

printf("TimeDelaycannot been called in ISR !\n");

}

else if (result== E_INVALID_PARAMETER)

{

printf("Invalid parameter !\n");

}

}

...

}

61

6.4 Software Timer

6.4.1 CoCreateTmr()

Function Prototype:
OS_TCID CoCreateTmr

(
U8 tmrType,
U32 tmrCnt,
U32 tmrReload,
vFUNCPtr func

);
Description:

Create a timer.
Parameters:

[IN] Tmrtype
The type of the timer

[IN] tmrCnt
The initial counter value (system ticks)

[IN] tmrReload,
The reloaded value of the timer

[IN] func
The call-back function of the timer

Returns:
The ID of the timer, Create successfully.
-1, Failed to create.

62

Example Usage:

Note:
1) CooCox CoOS provides two kinds of timers: the periodic timer and the

disposable timer. For the periodic timer, the time first-calling the
callback function is determined by the tmrCnt, and then it is
determined by the tmrReload. For the disposable timer, the calling
time is determined completely by the tmrCnt and it can call only once.

2) Once a timer is created, it is in the stopping state. You need call
CoStartTmr() to startup it.

6.4.2 CoStartTmr()

Function Prototype:
StatusType CoStartTmr

(
OS_TCID tmrID

);
Description:

Start a specified timer to work normally.

#include "CCRTOS.h"

OS_TCID sftmr;

void SftTmrCallBack(void)

{

...

}

void TaskN (void *pdata)

{

...

sftmr = CoCreateTmr(TMR_TYPE_PERIODIC,

100,

100,

SftTmrCallBack);

if (sftmr == E_CREATE_FAIL)

{

printf("Failed to create the timer!\n");

}

else

{

printf("Create the timer successfully, Time ID is %d\n", sftmr);

}

...

}

63

Parameters:
[IN] tmrID

The ID of the specified timer
Returns:

E_INVALID_ID, The timer ID passed is invalid.
E_OK, Start the specified timer successfully.

Example Usage:

Note:
 None

6.4.3 CoStopTmr()

Function Prototype:
StatusType CoStopTmr

(
OS_TCID tmrID

);
Description:

Stop a specified timer.
Parameters:

[IN] tmrID

#include "CCRTOS.h"

OS_TCID sftmr;

void TaskN (void *pdata)

{

StatusType result;

...

/* Create Software Timer */

sftmr = CoCreateTmr(TMR_TYPE_PERIODIC,

 100,

100,

SftTmrCallBack);

...

/* Start Software Timer */

result= CoStartTmr (sftmr);

if (result != E_OK)

{

if (result == E_INVALID_ID)

{

printf("The timer id passed is invalid, can't start the timer. \n");

}

}

...

}

64

The ID of the specified timer
Returns:

E_INVALID_ID, The timer ID passed is invalid.
E_OK, Stop the specified timer successfully.

Example Usage:

Note:
When a software timer stops running, the system will retain its current
counter value in order to re-activate it.

6.4.4 CoDelTmr()

Function Prototype:
StatusType CoDelTmr

(
OS_TCID tmrID

);
Description:

Delete a specified timer and release the resources it had occupied.
Parameters:

[IN] tmrID
The ID of the specified timer

Returns:
E_INVALID_ID, The timer ID passed is invalid.
E_OK, Delete the specified timer successfully.

#include "CCRTOS.h"

OS_TCID sftmr;

void TaskN (void *pdata)

{

StatusType sta;

...

/* Stop Software Timer */

sta = CoStopTmr (sftmr);

if (sta != E_OK)

{

if (sta == E_INVALID_ID)

{

printf("The timer id passed is invalid, failed to stop. \n");

}

}

...

}

65

Example Usage:

Note:
 None

6.4.5 CoGetCurTmrCnt()

Function Prototype:
U32 CoGetCurTmrCnt

(
OS_TCID tmrID,
StatusType* perr

);
Description:

Obtain the current counter of a specified software timer.
Parameters:

[IN] tmrID
The ID of the specified timer

[OUT] Perr
 The types of the error returned

E_INVALID_ID, The timer ID passed is invalid.

#include "CCRTOS.h"

OS_TCID sftmr;

void TaskN (void *pdata)

{

StatusType result;

...

/* Create Software Timer */

sftmr = CoCreateTmr(TMR_TYPE_PERIODIC,

100,

100,

SftTmrCallBack);

...

/* Delete Software Timer */

result= CoDelTmr (sftmr);

if (result != E_OK)

{

if (result== E_INVALID_ID)

{

printf("The timer id passed is invalid, filed to delete!\n");

}

}

...

}

66

E_OK, Get the current counter of the timer successfully.
Returns:

The current counter of the specified software timer
Example Usage:

Note:
 None

6.4.6 CoSetTmrCnt()

Function Prototype:
StatusType CoSetTmrCnt

(
OS_TCID tmrID,
U32 tmrCnt,
U32 tmrReload

);
Description:

Set the timer counter and reload value.
Parameters:

[IN] tmrID
The ID of the specified timer

[IN] tmrCnt
The count value to be reset to

#include "CCRTOS.h"

OS_TCID sftmr;

void TaskN (void *pdata)

{

StatusType result;

U32 sftcnt;

...

sftcnt = CoGetCurTimerCnt (sftmr, &result);

if (result != E_OK)

{

if (result == E_INVALID_ID)

{

printf("The timer id passed is invalid, failed to get. \n");

}

}

else

{

printf("Current Timer Counter : %ld", sftcnt);

}

...

}

67

[IN] tmrReload
The reloaded value of the timer to be reset to

Returns:

E_INVALID_ID, The timer ID passed is invalid.
E_OK, Get the count value of the specified timer successfully.

Example Usage:

Note:
 None

#include "CCRTOS.h"

OS_TCID sftmr;

void TaskN (void *pdata)

{

StatusType result;

...

result= CoSetTimerCnt (sftmr, 200, 200);

if (result != E_OK)

{

if (result== E_INVALID_ID)

{

printf("The timer id passed is invalid, failed to stop. \n");

}

}

...

}

68

6.5 Memory Management

6.5.1 CoKmalloc()

Function Prototype:
void* CoKmalloc

(
U32 size

);
Description:

Allocate the size of memory block.
Parameters:

[IN] size
 The length of the memory block which need to be allocated with the
unit bytes

Returns:
NULL, Failed to allocate.
Others, Allocate successfully and return the initial address pointer of

the memory block.
Example usage:

Note:
Once you called CoKmalloc(), it will cost 8 bytes to manage this memory
block.

#include "CCRTOS.h"

void TaskN (void *pdata)

{

unsigned int *ptr;

...

/* Allocate 20 words of memory block from kernel heap */

ptr = (unsigned int *)CoKmalloc(20*4);

/* process ptr here */

...

/* Release memory block to kernel heap */

CoKfree(ptr);

...

}

69

6.5.2 CoKfree()

Function Prototype:
void CoKfree

(
void* memBuf

);
Description:

Release the memory block with the initial address memBuf.
Parameters:

[IN] memBuf
 The initial address of the memory block which needs to be released

Returns:
None

Example usage:

Note:
 MemBuf must be obtained by CoKmalloc(), or it will do nothing and

return immediately.

6.5.3 CoCreateMemPartition()

Function Prototype:
OS_MMID CoCreateMemPartition

(
U8* memBuf,
U32 blockSize,
U32 blockNum

);

#include "CCRTOS.h"

void TaskN (void *pdata)

{

unsigned int *ptr;

...

/* Allocate 20 words of memory block from kernel heap */

ptr = (unsigned int *)CoKmalloc(20*4);

/* process ptr here */

...

/* Release memory block to kernel heap */

CoKfree(ptr);

...

}

70

Description:
Create a memory partition with a certain length.

Parameters:
[IN] memBuf

 The initial address of the partition
[IN] blockSize

 The size of each memory block in the partition
[IN] blockNum

 The number of the memory block in the partition
Returns:

The ID of the memory partition, Create the partition successfully and
return the partition ID.

-1, Failed to create.
Example usage:

Note:
1) Once a memory partition is created successfully, the system will

distribute a memory control block to manage the memory blocks.
2) blockSize cannot be 0 and blockNum must larger than 2.

#include "CCRTOS.h"

#define MEM_BLOCK_NUM 10

OS_MMID mmc;

unsigned int MemoryBlock[100];

void TaskN (void *pdata)

{

...

/* Create a memory partition */

/* Memory size: 100*4 bytes, */

/* Block num: 10 */

/* Block size 100*4/10 = 40 bytes */

mmc=CoCreateMemPartition((U8*)MemoryBlock,

100*4/MEM_BLOCK_NUM,

MEM_BLOCK_NUM);

if (mmc == E_CREATE_FAIL)

{

printf("Create memory partition fail !\n");

}

else

{

printf("Memory Partition ID : %d \n", mmc);

}

...

}

71

6.5.4 CoDelMemoryPartition()

Function Prototype:
StatusType CoDelMemoryPartition

(
OS_MMID mmID

);
Description:

Delete a certain memory partition.
Parameters:

[IN] mmID
 The ID of the memory partition

Returns:
E_INVALID_ID, The ID of the memory partition is invalid.
E_OK, Delete successfully.

Example usage:

Note:
1) Once deleting a memory partition, the resources of the memory

control block which is occupied by this partition will be released.
2) When deleting a memory partition, the system will not check whether

it is idle, you can control it in your own applications.

#include "CCRTOS.h"

OS_MMID mmc;

void TaskN (void *pdata)

{

StatusType result;

...

/* Delete a memory partition */

/* mmc: Created by other task */

result = CoDelMemoryPartition(mmc);

if (result != E_OK)

{

if (result == E_INVALID_ID)

{

printf("Invalid memory partition !\n");

}

}

...

}

72

6.5.5 CoGetMemoryBuffer()

Function Prototype:
void* CoGetMemoryBuffer

(
OS_MMID mmID

);
Description:

Obtain a memory block from a certain memory partition.
Parameters:

[IN] mmID
 The ID of the memory partition

Returns:
NULL, Failed to allocate.
Others, Allocate successfully and return the initial address pointer of the

memory block.
Example usage:

Note:
None

#include "CCRTOS.h"

OS_MMID mmc;

void TaskN (void *pdata)

{

int *ptr;

...

/* Get a memory block from memory partition */

/* mmc: Created by other task */

ptr = (int*)CoGetMemoryBuffer(mmc);

if (ptr == NULL)

{

printf("Assign buffer fail !\n");

}

else

{

...

/* Process assigned buffer here */

...

/* Free assigned buffer to memory partition */

CoFreeMemoryBuffer(mmc, (void*)ptr);

}

...

}

73

6.5.6 CoFreeMemoryBuffer()

Function Prototype:
StatusType CoFreeMemoryBuffer

(
OS_MMID mmID,
void* buf

);
Description:

Release the memory block which has the initial address buf to a certain
memory partition.
Parameters:

[IN] mmID
 The ID of the memory partition

[IN] buf
 The initial address of the memory block which needs to be released

Returns:
E_INVALID_ID, The ID of the memory partition is invalid.
E_INVALID_PARAMETER, Invalid parameter buf.
E_OK, Release the memory block successfully.

74

Example usage:

Note:
MemBuf must be obtained by CoKmalloc(), or it will error return.

6.5.7 CoGetFreeBlockNum()

Function Prototype:
U32 CoGetFreeBlockNum

(
OS_MMID mmID,
StatusType* perr

)
Description:

Obtain the number of the free block in a certain memory partition.
Parameters:

[IN] mmID
 The ID of the memory partition

[OUT] perr
Errors returned:

E_INVALID_ID, The ID is invalid.

#include "CCRTOS.h"

OS_MMID mmc;

void TaskN (void *pdata)

{

int *ptr;

...

/* Get a memory block from memory partition */

/* mmc: Created by other task */

ptr = (int*)CoGetMemoryBuffer(mmc);

if (ptr == NULL)

{

printf("Assign buffer fail !\n");

}

else

{

...

/* Process assigned buffer here */

...

/* Free assigned buffer to memory partition */

CoFreeMemoryBuffer(mmc, (void*)ptr);

}

...

}

75

E_OK, Obtain the number successfully.
Returns:

fbNum, The number of the free block in the memory partition
Example usage:

Note:
 None

#include "CCRTOS.h"

OS_MMID mmc;

void TaskN (void *pdata)

{

U32 blocknum;

StatusType result;

...

/* Get free blocks’ number */

/* mmc: Created by other task */

blocknum = CoGetFreeBlockNum(mmc, &result);

if (result != E_OK)

{

if (result == E_INVALID_ID) {

printf("Invalid ID !\n");

}

}

...

}

76

6.6 Mutex Section

6.6.1 CoCreateMutex()

Function Prototype:
OS_MutexID CoCreateMutex(void);

Descriptions:
Create a Mutex section.

Parameters:
None

Returns:

Mutex section ID, create successfully

-1, create failed
Example usage:

Note:
None

6.6.2 CoEnterMutexSection()

Function Prototype:
StatusType CoEnterMutexSection(

OS_MutexID mutexID
);

Descriptions:
Enter the mutex section whose ID was designated.

#include "CCRTOS.h"

OS_MutexID mutex;

void TaskN (void *pdata)

{

…

/* Create a mutex */

mutex = CoCreateMutex ();

if (mutex == E_CREATE_FAIL)

{

printf("Create mutex fail. \n");

}

else

{

printf("Mutex ID : %d \n", mutex);

}

...

}

77

Parameters:
 [in] muterID

the designated mutex section ID
Returns:

E_CALL, be called in the interrupt service program
E_INVALID_ID, the mutex section ID that was incomed is invalid
E_OK, enter the mutex section successfully

Example usage:

Note:
1) If high-priority task A attempts to enter the mutex region,the system will

promote the priority of task B which has entered the mutex region
currently to the same level of task A, and change task A’ state to the
waiting state (TASK_WAITING),then do a task scheduling so that the
task B which has entered the mutex region could leave the mutex region
as soon as possible. Task B’ s priority will be back to the original priority.

2)This function can not be used in interrupt service routine.
3)It should be used in pairs with CoLeaveMutexSection().

6.6.3 CoLeaveMutexSection()

Function Prototype:
StatusType CoLeaveMutexSection(

OS_MutexID mutexID
);

Descriptions:
Leave the mutex section whose ID was designated.

#include "CCRTOS.h"

OS_MutexID mutex;

void TaskN (void *pdata)

{

 ...

/* Create a mutex */

mutex = CoCreateMutex ();

/* Enter critical region */

CoEnterMutexSection(mutex);

 …

/*Process here */

 …

/* Exit critical region */

CoLeaveMutexSection(mutex);

...

}

78

Parameters:
[in] muterID

the designated mutex section ID
Returns:

E_CALL, be called in the interrupt service program
E_INVALID_ID, the mutex section ID that was incomed is invalid
E_OK, enter the mutex section successfully

Example usage:

Note:
1) If there are tasks waiting to enter the mutex section currently,it need

to run a task scheduling and the priority of the currently task will be
back to the original priority when leaving the mutex section.

2) This function can not be used in interrupt service routine.
3) It should be used in pairs with CoEnterMutexSection().

#include "CCRTOS.h"

OS_MutexID mutex;

void TaskN (void *pdata)

{

 ...

/* Create a mutex */

mutex = CoCreateMutex ();

/* Enter critical region */

CoEnterMutexSection(mutex);

 …

/*Process here */

 …

/* Exit critical region */

CoLeaveMutexSection(mutex);

 ...

}

79

6.7 Semaphores

6.7.1 CoCreateSem()

Function Prototype:
OS_EventID CoCreateSem(

U16 initCnt,
U16 maxCnt,
U8 sortType
);

Descriptions:
Create a semaphore.

Parameters:
 [in] initCnt

the initial volume of the effective number of semaphores

[in] maxCnt

The maximum value of the semaphore
[in] sortType

arrangement types:
EVENT_SORT_TYPE_FIFO, FIFO order

 EVENT_SORT_TYPE_PRIO, Preemptive Priority order
Returns:

Semaphore ID, create successfully
-1, create failed

Example usage:

#include "CCRTOS.h"

OS_EventID semaphore;

void TaskN (void *pdata)

{

 ...

/* Create a semaphore */

semaphore = CoCreateSem (1, 10, EVENT_SORT_TYPE_FIFO);

if (semaphore == E_CREATE_FAIL)

{

printf("Create semaphore failed !\n");

}

else

{

printf("Semaphore ID : %d \n", semaphore);

}

...

}

80

Note:
None

6.7.2 CoDelSem()

Function Prototype:
StatusType CoDelSem(

OS_EventID id,
U8 opt

);
Descriptions:

Delete the semaphore whose ID was designated.
Parameters:

[in] id
the designated semaphore ID

[in] opt
the ways to delete the designated semaphore :

EVENT_DEL_NO_PEND, delete when the waiting list is
empty

EVENT_DEL_ANYWAY, delete unconditionally

Returns:
E_INVALID_ID, the semaphore ID that was incomed is invalid

E_INVALID_PARAMETER, invalid parameters, that is ,the

corresponding control block is empty
E_TASK_WAITING, the waiting list is not empty
E_OK, delete successfully

81

Example usage:

Note:
Release the resources that the semaphore occupied If delete it
successfully,then run a task sheduling and give the system execution time
to the highest priority task.

6.7.3 CoAcceptSem()

Function Prototype:
StatusType CoAcceptSem(

OS_EventID id
);

Descriptions:
To obtain semaphore resources whose ID was designated.

Parameters:
 [in] id

the designated semaphore ID
Returns:

E_INVALID_ID, the semaphore ID that was
incomed is invalid

E_SEM_EMPTY, the semaphore resources whose
ID was designated is empty

E_OK, to obtain the resources successfully

#include "CCRTOS.h"

OS_EventID semaphore;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Create a semaphore */

result = CoDeleteSem (semaphore, OPT_DEL_ANYWAY);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

 printf("Invalid event ID !\n");

 }

}

...

}

82

Example usage:

Note:

1) Running AcceptSem() program is an incomplete P operation. There are
some difference between them,when the number of the resources is
0,complete P operation will wait until other task release the
corresponding resource or finished for timeout,but this program will
return error immediately.

2) The number of the semaphore resources substract 1 after getting the
resources successfully.

6.7.4 CoPendSem()

Function Prototype:
StatusType CoPendSem(

OS_EventID id,
U32 timeout
);

#include "CCRTOS.h"

OS_EventID semaphore;;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Accept a semaphore without waitting */

result = CoAcceptSem (semaphore);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

 else if (result == E_SEM_EMPTY)

{

printf("No semaphore exist !\n");

 }

}

else

{

 …

 /* Process semaphore here */

 …

}

...

}

83

Descriptions:
To wait the semaphore.

Parameters:

[in] id
the designated semaphore ID

 [in] timeout
overtime time,0 means waiting indefinitely

Returns:

E_CALL, be called in the interrupt service
program

E_INVALID_ID, the semaphore ID that was
incomed is invalid

E_TIMEOUT, time is out for waiting resources
E_OK, to obtain the resources successfully

84

Example usage:

Note:
1)This function runs a task sheduling while waiting and give the system

execution time to the highest priority task.
2)The number of the semaphore resources substract 1 after getting the

resources successfully.
 3)The function cann’t be used in the interrupt service program.

#include "CCRTOS.h"

OS_EventID semaphore;;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Pend a semaphore, Time out: 20 */

result = CoPendSem (semaphore, 20);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

 else if (result == E_CALL)

{

printf("Error call in ISR !\n");

 }

 else if (result == E_TIMEOUT)

{

printf("Semaphore was not received within the specified timeout time !\n");

 }

}

else

{

 …

 /* Process semaphore here */

 …

}

...

}

85

6.7.5 CoPostSem()

Function Prototype:
StatusType CoPostSem(

OS_EventID id
);

Descriptions:
To release semaphore resources whose ID was designated.

Parameters:
[in] id

the designated semaphore ID
Returns:

E_INVALID_ID, the semaphore ID that was
incomed is invalid

E_SEM_FULL, the designated semaphore ID has
been reached it maxmum value

E_OK, release a semaphore resource successfully
Example usage:

Note:
1)The function cann’t be used in the interrupt service program.
2)It is used in pairs with CoAcceptSem() or CoPendSem().

#include "CCRTOS.h"

OS_EventID semaphore;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Post a semaphore */

result = CoPostSem (semaphore);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

 else if (result == E_SEM_FULL)

{

printf("Semaphore is full !\n");

 }

}

...

}

86

6.7.6 isr_PostSem()

Function Prototype:
StatusType isr_PostSem(OS_EventID id)

Descriptions:
To release semaphore resources whose ID was designated in the interrupt
service program.

Parameters:
 [IN] id

the designated semaphore ID
Returns:

E_SEV_REQ_FULL interrupt service requests is full
E_INVALID_ID the semaphore ID that was incomed is invalid
E_SEM_FULL the designated semaphore ID has been reached it

maximal value
E_OK release a semaphore resource successfully

Example usage:

Note:
Interrupt service routine can not call CoPostSem () to release the
semaphore resources ,otherwise the system will lead to confusion.

#include "CCRTOS.h"

OS_EventID semaphore;

void XXX_IRQHandler(void)

{

StatusType result;

 EnterISR(); // Enter ISR

 ...

/* Post a semaphore */

result = isr_PostSem (seamaphore);

if (result != E_OK) {

if (result == E_SEV_REQ_FULL) {

printf("Service requst queue is full !\n");

}

}

 ...

ExitISR(); // Exit ISR

}

87

6.8 Mailboxes

6.8.1 CoCreateMbox()

Function Prototype:
OS_EventID CoCreateMbox(

U8 sortType
);

Descriptions:
Create a mailbox.

Parameters:

 [in] sortType:
arrangement types:

EVENT_SORT_TYPE_FIFO, FIFO order
 EVENT_SORT_TYPE_PRIO, Preemptive Priority order

Returns:
Mailbox ID, create successfully
-1, create failed

Example usage:

Note:
None

#include "CCRTOS.h"

OS_EventID mailbox;

void TaskN (void *pdata)

{

 ...

/* Create a mailbox */

mailbox = CoCreateMbox (EVENT_SORT_TYPE_FIFO);

if (mailbox != E_OK)

{

 if (mailbox == E_CREATE_FAIL)

{

printf("Create mailbox failed !\n");

 }

}

else

{

 /* Process mail here */

printf("MailBox ID : %d \n", mailbox);

}

...

}

88

6.8.2 CoDelMbox()

Function Prototype:
StatusType CoDelMbox(

OS_EventID id,
U8 opt
);

Descriptions:
Delete the mailbox whose ID was designated.

Parameters:
[in] id

the designated mailbox ID

[in] opt
the ways to delete the designated mailbox :

EVENT_DEL_NO_PEND, delete when the waiting list is
empty

EVENT_DEL_ANYWAY, delete unconditionally

Returns:

E_INVALID_ID, the mailbox ID that was incomed is invalid

E_INVALID_PARAMETER, invalid parameters, that is ,the

corresponding control block is empty
E_TASK_WAITING, the waiting list is not empty
E_OK, delete successfully

Example usage:

#include "CCRTOS.h"

OS_EventID mailbox;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Create a mailbox */

result = CoDelMbox (mailbox, OPT_DEL_ANYWAY);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

...

}

89

Note:
 Release the resources that the mailbox occupied if delete it

successfully,then run a task sheduling and give the system execution time
to the highest priority task.

6.8.3 CoAcceptMail()

Function Prototype:
void* CoAcceptMail(

OS_EventID id,
StatusType* perr
);

Descriptions:
To obtain mailbox message whose ID was designated.

Parameters:
[in] id

the designated mailbox ID
[in] perr

error returned types:
E_INVALID_ID, the mailbox ID that was

incomed is invalid

E_MBOX_EMPTY, the mailbox message whose ID
was designated is empty

E_OK, to obtain the message successfully

Returns:
To get the pointer of the mailbox message.

90

Example usage:

Note:
If the message pointer of the designated mailbox is not empty while
calling AcceptSem(),this function will get the message pointer and empty
the mailbox;otherwise,return error immediately.

6.8.4 CoPendMail()

Function Prototype:
void* CoPendMail(

OS_EventID id,
U32 timeout,
StatusType* perr
);

Descriptions:
To wait the message of the designated mailbox.

Parameters:

[in] id

the designated mailbox ID

#include "CCRTOS.h"

OS_EventID mailbox;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Create a mailbox */

msg = CoAcceptMail (mailbox, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

else

{

 …

/* Process mail here */

 …

}

...

}

91

[in] timeout
overtime time,0 means waiting indefinitely

[out] perr

error returned types:
E_CALL, be called in the interrupt

service program
E_INVALID_ID, the mailbox ID that was

incomed is invalid
E_TIMEOUT, time is out for waiting resources
E_OK, to obtain the resources successfully

Returns:
To get the pointer of the mailbox message.

92

Example usage:

Note:
1)This function runs a task sheduling while waiting and give the system

execution time to the highest priority task.

#include "CCRTOS.h"

OS_EventID mailbox;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Create a mailbox */

msg = CoPendMail (mailbox, 20, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

else

{

 /* Process mail here */

}

...

}

void TaskM (void *pdata)

{

StatusType result;

unsigned int pridat;

...

pridat = 0x49;

...

result = CoPostMail (mailbox, &pridat);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

....

}

93

2) It will empty the mailbox after getting the mailbox message successfully.
3) The function cann’t be used in the interrupt service program.

6.8.5 CoPostMail()

Function Prototype:
StatusType CoPostMail(

OS_EventID id,
void* pmail
);

Descriptions:
Fill the message to the mailbox whose ID was designated.

Parameters:

[in] id
the designated mailbox ID

[in] pmail
the message pointer that is filling

Returns:

E_INVALID_ID, the mailbox ID that was incomed
is invalid

E_MBOX_FULL, the mailbox has been full

E_OK, fill message to mailbox successfully

94

Example usage:

Note:
1) The function cann’t be used in the interrupt service program.
2)It is used in pairs with CoAcceptMail() or CoPendMail().

#include "CCRTOS.h"

OS_EventID mailbox;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Create a mailbox */

msg = CoPendMail (mailbox, 20, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

else

{

/* Process mail here */

}

...

}

void TaskM (void *pdata)

{

StatusType result;

unsigned int pridat;

 ...

pridat = 0x49;

 ...

result = CoPostMail (mailbox, &pridat);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid event ID !\n");

 }

}

}

95

6.8.6 isr_PostMail()

Function Prototype:
StatusType isr_PostMail(

OS_EventID id,
void* pmail
);

Descriptions:
To send message to a mailbox whose ID was designated in the interrupt
service program.

Parameters:
[IN] id

the designated mailbox ID
[IN] pmail

message pointer
Returns:

E_SEV_REQ_FULL, interrupt service requests is full
E_INVALID_ID, the semaphore ID that was incomed is invalid
E_MBOX_FULL, the mailbox has been full
E_OK, send message to mailbox successfully

Example usage:

Note:
1)It is used in the interrupt service program.
2)Interrupt service routine can not call CoPostMail()to send mailbox

message ,otherwise the system will lead to confusion.

#include "CCRTOS.h"

OS_EventID mailbox;

int IsrDat;

void XXX_IRQHandler(void)

{

StatusType result;

 EnterISR(); // Enter ISR

 ...

IsrDat = 0x90;

/* Post a mail to Mailbox that created by other tase */

result = isr_PostMail (mailbox, &IsrDat);

if (result != E_OK) {

if (result == E_SEV_REQ_FULL) {

printf("Service requst queue is full !\n");

}

}

 ...

ExitISR(); // Exit ISR

}

96

6.9 Message Queues

6.9.1 CoCreateQueue()

Function Prototype:
OS_EventID CoCreateQueue(

void** qStart,
U16 size ,
U8 sortType

);
Descriptions:

Create a message queue.
Parameters:

[in] qStart

message pointer storage address
[in] size

the maximum number of message in message queue
[in] sortType

waiting list arrangement types:
EVENT_SORT_TYPE_FIFO, FIFO order

 EVENT_SORT_TYPE_PRIO, Preemptive Priority order
Returns:

Message Queue ID

97

Example usage:

Note:
None

6.9.2 CoDelQueue()

Function Prototype:
StatusType CoDelQueue(

OS_EventID id,
U8 opt
);

Descriptions:
Delete the message queue whose ID was designated.

Parameters:
[in] id

the designated message queue ID

[in] opt
the ways to delete the designated message queue:

EVENT_DEL_NO_PEND, delete when the waiting list is
empty

EVENT_DEL_ANYWAY, delete unconditionally

Returns:

E_INVALID_ID, the message queue ID that was incomed
is invalid

#include "CCRTOS.h"

#define MAIL_QUEUE_SIZE 8

OS_EventID queue;

void *MailQueue[MAIL_QUEUE_SIZE];

void TaskN (void *pdata)

{

 ...

queue = CoCreateQueue (MailQueue, MAIL_QUEUE_SIZE,

EVENT_SORT_TYPE_PRIO);

if (queue == E_CREATE_FAIL)

{

printf("Create a queue fail !\n");

}

else

{

printf("Queue ID : %d \n", queue);

}

...

}

98

E_INVALID_PARAMETER, invalid parameters, that is ,the

corresponding control block is empty
E_TASK_WAITING, the waiting list is not empty
E_OK, delete successfully

Example usage:

Note:

 Release the resources that the message queue occupied if delete it
successfully,then run a task sheduling and give the system execution
time to the highest priority task.

6.9.3 CoAcceptQueueMail()

Function Prototype:
void* CoAcceptQueueMail(

OS_EventID id,
StatusType* perr
);

Descriptions:
Request the message of the designated message queue without waiting.

Parameters:

[in] id
Message queue ID

[out] perr

error returned types:
E_INVALID_ID, the message queue ID

#include "CCRTOS.h"

OS_EventID queue;

void *MailQueue[8];

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Create a queue */

result = CoDelQueue (MailQueue, OPT_DEL_ANYWAY);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID !\n");

 }

}

 ...

}

99

that was incomed is
invalid

E_MBOX_EMPTY, the mailbox message whose ID
was designated is empty

E_OK, to obtain the message successfully

Returns:

NULL, receive failed
Others, message pointer that received

Example usage:

Note:

 If the number of the messages in the designated message queue is
more than 0 while calling AcceptQueueMail() function, the function will
get the first message in the message queue, and do substract 1
operation to current message in message queue. Otherwise, if the
number of the message is equal to 0, it will return error immediately.

#include "CCRTOS.h"

OS_EventID queue;

void *MailQueue[8];

unsigned int msgdat;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Wait for a mail, time-out:20 */

msg = CoAcceptQueueMail (MailQueue, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID !\n");

}

 else if (result == E_QUEUE_EMPTY)

{

printf("Queue is empty !\n");

 }

}

else

{

 /* Process mail here */

}

 ...

}

100

6.9.4 CoPendQueueMail()

Function Prototype:
void* CoPendQueueMail(

OS_EventID id,
U32 timeout,
StatusType* perr
);

Descriptions:
To obtain message of a message queue whose ID was designated.

Parameters:

[in] id
the designated message queue ID

[in] timeout
 Overtime time, 0 means waiting indefinitely

[out] perr

error returned types:
E_CALL, be called in the interrupt

service program
E_INVALID_ID, the message queue ID

that was incomed is
invalid

E_TIMEOUT, time is out for waiting resources
E_OK, to obtain the message successfully

Returns:
To get the pointer of the queue message.

101

Example usage:

#include "CCRTOS.h"

OS_EventID queue;

void *MailQueue[8];

unsigned int msgdat;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Wait for a mail, time-out:20 */

msg = CoPendQueueMail (MailQueue, 20, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID !\n");

}

}

else

{

 /* Process mail here */

}

 ...

}

void TaskM (void *pdata)

{

StatusType result;

 ...

msgdat = 0x61;

result = CoPostQueueMail (queue, (void *)&msgdat);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID ! \n");

}

 else if (result == E_MBOX_FULL)

{

printf("The Queue is full !\n");

 }

}

}

102

Note:
1)This function runs a task sheduling while waiting and give the system

execution time to the highest priority task.
2) It will do substrct 1 operation to the current message in message queue

after get the message in the message queue successfully.
3) The function cann’t be used in the interrupt service program.

6.9.5 CoPostQueueMail()

Function Prototype:
StatusType CoPostQueueMail(

OS_EventID id,
void* pmail

);
Descriptions:

Send message to the message queue that designated.
Parameters:

[in] id
Message Queue ID

[in] pmail
the pointer of the message

Returns:

E_INVALID_ID, the message queue ID that
was incomed is invalid

E_QUEUE_FULL, the message queue is full
E_OK, the message is send successfully

103

Example usage:

#include "CCRTOS.h"

OS_EventID queue;

void *MailQueue[8];

unsigned int msgdat;

void TaskN (void *pdata)

{

StatusType result;

void *msg;

 ...

/* Wait for a mail, time-out:20 */

msg = CoPendQueueMail (MailQueue, 20, &result);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID !\n");

}

}

else

{

 /* Process mail here */

}

 ...

}

void TaskM (void *pdata)

{

StatusType result;

 ...

msgdat = 0x61;

result = CoPostQueueMail (queue, (void *)&msgdat);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Queue ID ! \n");

}

 else if (result == E_MBOX_FULL)

{

printf("The Queue is full !\n");

 }

}

}

104

Note:
 If the number of the message in designated message queue is equal to

the maximum number of messages, then discard the message and return
error.

6.9.6 isr_PostQueueMail()

Function Prototype:
StatusType isr_PostQueueMail(

OS_EventID id,
void* pmail
);

Descriptions:
Send message to the message queue that designated in the inturrupt

service program.
Parameters:

[IN] id

 Message Queue ID
[IN] pmail

the pointer of the message
Returns:

E_SEV_REQ_FULL, interrupt service requests is full
E_INVALID_ID, the message queue ID that was incomed is invalid
E_MBOX_FULL, the message queue has been full
E_OK, send message to message queue successfully

105

Example usage:

Note:
1)It is used in the interrupt service program.
2) Interrupt service routine can not call CoPostQueueMail()to send

message of the queue message ,otherwise the system will lead to
confusion.

#include "CCRTOS.h"

OS_EventID mailqueue;

int IsrDat;

void XXX_IRQHandler(void)

{

StatusType result;

 EnterISR(); // Enter ISR

...

IsrDat = 0x12;

/* Post a mail to MailQueue that created by other tase */

result = isr_PostQueueMail (mailqueue, &IsrDat);

if (result != E_OK) {

if (result == E_SEV_REQ_FULL) {

printf("Service requst queue is full !\n");

}

}

 ...

ExitISR(); // Exit ISR

}

106

6.10 Flags

6.10.1 CoCreateFlag()

Function Prototype:
OS_FlagID CoCreateFlag(

BOOL bAutoReset,
BOOL bInitialState
);

Description:
Create a flag.

Parameters:
[in] bAutoReset

Reset mode:
1, Reset automatically
0, Reset manually

[in] bInitialState
Initial State:

1, The ready state
0, Non-ready state

Returns:
The ID of the flag, Create successfully.
-1, Failed to create.

107

Example usage:

Note:
 None

6.10.2 CoDelFlag()

Function Prototype:
StatusType CoDelFlag(

OS_FlagID id,
U8 opt

);
Description:

Delete a certain flag.
Parameters:

[in] id
The ID of a specified flag

[in] opt
The deleting mode:

EVENT_DEL_NO_PEND, Delete when the waiting list is empty.
EVENT_DEL_ANYWAY, Delete unconditionally.

Returns:

E_INVALID_ID, The incoming ID is invalid.

 E_TASK_WAITING, The waiting list isn’t empty.

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

 ...

/* Create a flag with auto reset, initial state: 0 */

flag = CoCreateFlag (1, 0);

if (result != E_OK)

{

 if (result == E_CREATE_FAIL)

{

printf("Failed to create a flag!\n");

}

}

else

{

 printf("Flag ID : %d \n", flag);

}

 ...

}

108

E_OK, Delete successfully.
Example usage:

Note:

When you have deleted a flag successfully, the resources it occupied will
be released. The system will start a task scheduling then so as to give
the execution time to the task which has the highest priority.

6.10.3 CoAcceptSingleFlag()

Function Prototype:
StatusType CoAcceptSingleFlag(

OS_FlagID id
);

Description:
Request for a single flag without waiting.

Parameters:
 [in] id

The ID of a specified flag
Returns:

E_INVALID_ID, The ID of the incoming flag is invalid.
ID E_FLAG_NOT_READY, The flag isn’t in the ready state.
E_OK, Obtain the flag successfully.

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

...

/* Delete the Flag */

result = CoDelFlag (flag, OPT_DEL_ANYWAY);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Flag ID !\n");

 }

}

 ...

}

109

Example usage:

Note:
 None

6.10.4 CoAcceptMultipleFlags()

Function Prototype:
U32 CoAcceptMultipleFlags(

U32 flags,
U8 waitType,
StatusType* perr
);

Description:
Request for multiple flags without waiting.

Parameters:
[in] flags

The event flags which need to wait for

[in] waitType
The types of waiting:

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

 ...

result = CoAcceptSingleFlag (flag);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid flag ID !\n");

}

 else if (result == E_FLAG_NOT_READY)

{

 printf("None get !\n");

 }

}

else

{

/* process here */

}

 ...

}

110

OPT_WAIT_ALL, Wait for all the flags
OPT_WAIT_ANY, Wait for a single flag

[out] Perr

The type of the error returned:
E_INVALID_PARAMETER, The parameter is invalid.
E_FLAG_NOT_READY, The flag isn’t in the ready state.
E_OK, Obtain the flags successfully.

Returns:
The flag which trigger the function to return successfully

Example usage:

Note:
 None

6.10.5 CoWaitForSingleFlag()

Function Prototype:
StatusType CoWaitForSingleFlag(

OS_FlagID id,

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

U32 getFlag

 ...

getFlag = CoAcceptMultipleFlags (0x1100, OPT_WAIT_ALL, &result);

if (result != E_OK)

{

 if (result == E_INVALID_PARAMETER)

{

printf("Invalid Parameter !\n");

 }

 else if (result == E_FLAG_NOT_READY)

{

 printf("Flag not ready !\n");

 }

}

else

{

/* process Flag here */

}

 ...

}

111

U32 timeout
);

Description:
Wait for a certain flag with a specified ID.

Parameters:
[in] id

 The ID of a specified flag
[in] timeout

Time-out time. 0 means waiting indefinitely.
Returns:

E_CALL, Called in the ISR.

E_INVALID_ID, The incoming ID of the flag is invalid.
E_TIMEOUT, Wait overtime.
E_OK, Obtain the flag successfully.

Example usage:

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

 ...

/* Waiting for a flag, time-out:20 */

result = CoWaitForSingleFlag (flag, 20);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid Flag ID !\n");

 }

 else if (result == E_CALL)

{

 printf("Error call in ISR !\n");

 }

 else if (result == E_TIMEOUT)

{

printf("Time Out !\n");

 }

}

else

{

/* process Flag here */

}

 ...

}

112

Note:
 None

6.10.6 CoWaitForMultipleFlags()

Function Prototype:
U32 CoWaitForMultipleFlags(

U32 flags,
U8 waitType,
U32 timeout,
StatusType* perr
);

Description:
Wait for multiple flags.

Parameters:
[in] flags

The flags which need to wait for
[in] waitType

The type of waiting:
OPT_WAIT_ALL, Wait for all the flags

OPT_WAIT_ANY, Wait for a single flag

[in] timeout
Time-out time. 0 means waiting indefinitely.

[out] perr
The type of the errors returned:

E_CALL, Called in the ISR.
E_INVALID_PARAMETER, The parameter is invalid.
E_TIMEOUT, Wait overtime.
E_FLAG_NOT_READY, The flag isn’t in the ready state.
E_OK, Obtain successfully.

Returns:
The flag which trigger the function to return successfully

113

Example usage:

Note:
 None

6.10.7 CoClearFlag()

Function Prototype:
StatusType CoClearFlag(

OS_FlagID id
);

Description:
Set an event to the non-ready state.

Parameters:
 [in] id

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

U32 getFlag;

 ...

getFlag = CoWaitForMultipleFlags (0x1010, OPT_WAIT_ALL, 20, &result);

if (result != E_OK)

{

 if (result == E_INVALID_PARAMETER)

{

printf("Invalid parameter !\n");

}

 else if (result == E_CALL)

{

 printf("Error call in ISR !\n");

 }

 else if (result == E_TIMEOUT)

{

printf("Time Out !\n");

 }

}

else

{

/* process Flag here */

}

 ...

}

114

 The ID of a specified event flag
Returns:

E_INVALID_ID, The incoming flag ID is invalid.
E_OK, Clear successfully.

Example usage:

Note:
This function usually acts on the flag which is reset manually.

6.10.8 CoSetFlag()

Function Prototype:
StatusType CoSetFlag(

OS_FlagID id
);

Description:
Set an event to the ready state.

Parameters:
 [in] id

The ID of a specified flag
Returns:

E_INVALID_ID, The incoming flag ID is invalid.
E_OK, Set successfully.

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

 ...

result = CoClearFlag (flag);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid flag ID !\n");

}

}

 ...

}

115

Example usage:

Note:
If the task is activated successfully, the calling of this function will start a
task scheduling.

6.10.9 isr_SetFlag()

Function Prototype:
StatusType isr_SetFlag(

OS_FlagID id
);

Description:
Set the flag with a certain ID to the ready state in the ISR.

Parameters:
 [IN] id

 The ID of the flag
Returns:

E_SEV_REQ_FULL, The Interrupt Service Request is full.
E_INVALID_ID, Invalid flag ID.
E_OK, Set the flag successfully.

#include "CCRTOS.h"

OS_FlagID flag;

void TaskN (void *pdata)

{

StatusType result;

 ...

result = CoSetFlag (flag);

if (result != E_OK)

{

 if (result == E_INVALID_ID)

{

printf("Invalid flag ID !\n");

 }

}

 ...

}

116

Example usage:

Note:
1) This function is used in the ISR.
2) You can’t call CoSetFlag() to set the flags in the ISR, otherwise, the

system would be in chaos.

#include "CCRTOS.h"

OS_FlagID flag;

void XXX_IRQHandler(void)

{

StatusType result;

EnterISR(); // Enter ISR

...

/* Set a flag that created by other test */

result = isr_SetFlag (flag);

if (result != E_OK) {

if (result == E_SEV_REQ_FULL) {

printf("Service request queue is full !\n");

}

}

 ...

ExitISR(); // Exit ISR

}

117

6.11 System Utilities

6.11.1 CoTickToTime()

Function Prototype:
void TickToTime

(
U32 ticks,
U8* hour,
U8* minute,
U8* sec,
U16* millsec

);
Description:

Convert the systick number to proper time.
Parameters:

[in] ticks
systick number

[in] hour
Hours

[in] minute
Minutes

[in] sec
Seconds

[in] millsec
Milliseconds

Returns:
None

118

Example usage:

Note:
 None

6.11.2 CoTimeToTick()

Function Prototype:
StatusType CoTimeToTick(

U8 hour,
U8 minute,
U8 sec,
U16 millsec,
U32* ticks

);
Description:

Convert the time to proper systick number.
Parameters:

[in] hour
Hours

[in] minute
Minutes

[in] sec
Seconds

[in] millsec
 Milliseconds

[in] ticks
Systick number

#include "CCRTOS.h"

void TaskM (void *pdata)

{

U8 Hour, Minute, Second;

U16 Millisecond;

...

CoTickToTime (1949,

&Hour,

&Minute,

&Second,

&Millisecond);

printf ("1949 system ticks = %2d-%02d-%02d-%03d \n",

Hour, Minute, Second, Millisecond);

...

}

119

Returns:
E_INVALID_PARAMETER, The parameter is invalid.
E_OK, Convert successfully.

Example usage:

#include "CCRTOS.h"

void TaskM (void *pdata)

{

U32 tick;

StatusType result;

...

result = CoTimeToTick (19,

49,

10,

1,

 &tick);

if (result != E_OK)

{

if (result == E_INVALID_PARAMETER)

{

printf("Invalid parameter be passed and convert fail !\n");

}

}

...

}

120

6.12 Others

6.12.1 CoIdleTask()

Function Prototype:
void CoIdleTask

(
void* pdata

);
Description:

System Idle task code.
Parameters:

[IN] pdata
 The parameter list passed to IDLE task. The system set it as NULL.

Returns:
None

Example usage:

Note:
As a resident function of the system, this function can’t be deleted or exit
automatically. You can call it to achieve the statistics of some system
parameters.

6.12.2 CoStkOverflowHook()

Function Prototype:
void CoStkOverflowHook(

OS_TID taskID
);

Description:
The call-back function when the system stack overflows.

Parameters:

 [IN] taskID
 The task ID which caused the system stack overflows

void CoIdleTask(void* pdata)

{

 /* Add your code here */

 for (;;)

 {

 /* Add your code here */

 }

}

121

Returns:
None

Example usage:

Note:
This function is called to handle the overflow of the system stack. By
calling it, you can customize the operation towards the stack overflow.
Once you don’t do any operation and exit this function, the system will be
in chaos.

void CoStkOverflowHook(OS_TID taskID)

{

 /* Process stack overflow here */

}

