
USBDM (Combined TBDML/OSBDM code) for JB16

Introduction
The attached files provide a port of the TBDML/OSBDM code to a MC9S08JJB16 processor.

Features
This version of the code & extended hardware provides the following features:

• A single BDM interface for programming and debugging of the following targets:
o HCS12 (including those without SYNC feature (e.g. 9S12DP256B)
o HCS08,
o RS08 and
o Coldfire V1 microcontrollers

• Compatible with CW for HC12 V4.6, V4.7
• Compatible with CW for Microcontrollers V6.1, V6.2 (required for Coldfire V1 chips)
• A USB2 full speed interface.
• Target reset detection & control (required for HC12 processors). This allows HC12 processors

to be reset into BDM mode as required for debugging.
• Target Vdd supply & control. This allows the target power to be cycled when required for a

reliable reset into BDM mode. It is also (obviously) convenient since it allows debugging small
target boards without a separate target power supply. An external target supply may also be used
instead. The Target supply is protected by a polyfuse and software detection of overload.

• Target Vdd monitoring. This allows the hardware to detect changes in the Target supply to
provide reliable resetting into BDM modes on HCS08 and RS08 microcontrollers. It also is used
to implement the target supply protection.

• A slightly higher BDM interface speed than the existing JB16 OSBDMs. Up to 20MHz.
• Several software options over the existing OSBDM code

o Automatic re-connection. The existing OSBDM code appears to have problems
debugging a target when the target clock speed is changed by the code execution. The
software has an option to continuously update the interface speed to prevent loss of
communication in this case.

o Control of BDM clock selection in HCS/RS08/Coldfire microcontrollers. Most of these
targets provide an alternative BDM clock selection. This can have advantages when
connecting to high speed targets.

o Selection of 3.3V and 5V target supply.
o Trial-and-error determination of communication speed for earlier HC12 targets.

• Various bug fixes on the OSBDM code.
• Hardware is physically small (50 mm x 25 mm)

Capabilities

The software is compatible with several of the TBDML/OSBDM hardware variants that are available.
Capabilities will vary with the actual hardware.

The table below summarises the capabilities of the BDM for various hardware options:
Target HC12/HCS12 HCS08 RS08 Coldfire V1
TBML X X - X
USBDM X X X X
HCS08-OSBDM+E X X X
OSBDM X X X
WTBDM08 X X X

Differences & disadvantages
• The software drivers (tbdml.dll & opensourcebdm.dll) need to be replaced so that advantage

can be taken of the new features.

The bulk of the code is taken from the TBDML and OSBDM projects and I very much appreciate the
effort involved in producing the original code. I hope this extension will be useful.

The hardware interface is based on TBDML and Freescale USBSPYDER08.

Any queries please post on the Freescale OSBDM discussion board.

The following is provided
“Installation” folder

1. tbdml.dll
This is a replacement DLL for “CW for HC12 V4.6 or V4.7”. This DLL allows the HCS12 version
of Codewarrior to talk to the modified TBDML which actually identifies itself as an OSBDM.
The original tbdml.dll file is located in the windows directory (I think). Copy the one provided to
\Program Files\Freescale\Codewarrior for HC12 V4.7\Prog\gdi where it will be found first. This
allows easy un-installation – just delete or rename the file in the gdi directory.

2. opensourcebdm.dll
This is a replacement DLL for “CW for Microcontrollers V6.1 or V6.2”. This DLL allows the
HCS08/RS08 version of Codewarrior to talk to the modified hardware and access the extended
features. Note: the hardware identifies itself as an OSBDM interface but is not completely
compatible.
The original opensourcebdm.dll file is located in the windows directory (I think). Copy the one
provided to \Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\prog\gdi where it
will be found first. This allows easy un-installation – just delete or rename the file in the gdi
directory.

3. TestOSBDM.exe
This is a simple command line program that allows the USBDM hardware to be exercised. It is
mostly provided for debugging the hardware. It is self-contained and does not require the above
DLLs.

4. Setboot.exe
This command line executable can be used to place the programmed BDM modules into ICP mode
for re-programming. This is only usable after initial programming of module.

5. DebugDLLs folder
This contains debug versions of the above DLLs. These create copious log files in the C root
directory!

6. USBDM_Flash_Images
This folder contains pre-compiled images for the JB16 flash. These are provided for several
common hardware platforms that are available.

5. libusb-win32-filter-bin-0.1.12.1.exe
The USB interface library used. See http://libusb-win32.sourceforge.net/

“Source” folder
This contains the sources for the software (above DLLs and JM60 code).

1. OSBDM_DLL_Snapshot_xxxxxx.zip
Source for the tbdml.dll and opensourcebdm.dll files. This is an exported file from Eclipse
CDT for windows. To rebuild these DLLs you will also need the USB interface DLL (LIBUSB).

2. USBDM_JB16_Snapshot_xxxxxx.zip
Source for the JB16 code. This is a simple Zip file of the Codewarrior project.

3. HCS08 JB16 BDM Timing.xls
This spreadsheet was used to calculate the timing for the bdm_rx() and bdm_tx routines.

4. RS08FlashProgramming.zip
This is the source code for the RS08 programming routine that is downloaded to the RS08 by the
BDM when programming the flash memory.

Installation
Refer to the original OSBDM documentation for detailed information on how the JB16 is programmed
using the Freescale ICP software.

Initial programming of a blank device or a device containing an incompatible program.

1. Get the USBDM code for the JB16 flash memory.
Choose a pre-compiled image from the USBDM_Flash_Images directory or re-build the code from
scratch using the source files provided in the source directory.

2. Install the modified tbdml.dll and opensourcebdm.dll files
Copy the tbdml.dll and opensourcebdm.dll files to the appropriate HC12 Codewarrior directories. See
the discussion earlier.

3. Make a backup of the TBDML code.
Make sure you have a copy of your current TBDML/OSBDM code so you can restore it if my code
doesn't work with your hardware.

4. Initial download of code to JB16 flash
This initial download of code to the JB16 installs a ICP boot loader. It is intended that the boot loader
code would remain permanently in the JB16 to help prevent (the unlikely) event of the JB16 becoming
unusable due to Flash programming failing or being interrupted.
If the code is updated again the Boot loader is not changed. The instructions below ONLY APPLY to
the INITIAL DOWNLOAD. Updating the code later is a slightly different process.

Use whatever method your original TBDML hardware/software used to get into ICP mode. For most
hardware this was holding port pin A.0 low while plugging in the BDM.

The Freescale ICP programming software is used to download the code image to the JB16 Flash. The
software requires two files (both in USBDM_Flash_Images directory):

a. A file to configure the ICP programming software for MASS erase configuration for this initial
download (Initial Programming_MassErase.imp).

b. The Flash file image for the JB16 Flash. This depends upon the hardware being used. Choose the
appropriate file to download from the USBDM_Flash_Images directory.

Updating the OSBDM/TBDML code after the ICP code has been loaded the first time.
Do one of the following:

Hardware triggered ICP - Connect pin A.0 to ground and plug in the cable. The hardware will
boot in ICP mode.

OR
Software triggered ICP -Plug in the BDM hardware and run ICPBOOT.exe. The hardware will
be reprogrammed to boot into ICP. Remove and replace the cable to get into ICP mode. This is
persistent change. It is necessary to reprogram the cable to restore operation.

Use the Freescale ICP programming software to download the new OSBDM/TBDML code.

It will be necessary to use the BLOCK erase configuration file for this (Re-
programming_BlockErase.imp) so that the ICP code is unchanged.

Completely removing the OSBDM/TBDML code after the ICP code has been loaded.
Do one of the following:

Hardware triggered ICP - Connect pin A.0 to ground and plug in the cable. The hardware will
boot in ICP mode.

OR
Software triggered ICP -Plug in the BDM hardware and run Setboot.exe. The hardware will be
reprogrammed to boot into ICP. Remove and replace the cable to get into ICP mode. This is
persistent change. It is necessary to reprogram the cable to restore BDM operation.

Use the Freescale ICP programming software to erase the entire Flash memory.
It will be necessary to use the MASS erase configuration for this
(Initial Programming_MassErase.imp) so that the ICP code is removed as well as it is only usable with
the USBDM code.
You may now restore your original Flash code and delete the two dll’s installed at step 2 earlier.

Using the debugger

When creating a project choose the appropriate debugger option as follows:
CW for HC12 TBDML

(Not all targets support this option)
CW for Microcontrollers V6.2 HCS08 Target - HCS08 Open Source BDM

RS08 Target - RS08 Open Source BDM
Coldfire V1 Target - CFv1 Opensource BDM

When starting the debugger you will be presented with the
dialogue at left. After closing this dialogue debugging
will proceed as usual. Some options in this dialogue may
be disabled depending upon the hardware capabilities of
the BDM interface.

Target Vdd Control
 Enable – Enables supply of Target Vdd from the USBDM module
 3.3V or 5V- Select target supply voltage

Cycle Target Power on reset – This option will cause the BDM to cycle the target power as
part of the reset sequence.

Cycle Target Power on connection problems – This option will cause the BDM to cycle
the target power when it is having trouble connecting to the target.

Leave Target Powered on exit - The target Vdd supply will be left on when exiting the
debugger.

Connection Control

Automatically re-connect - The existing OSBDM code appears to have problems debugging a
target when the target clock speed is changed. The option causes the BDM to continuously
update the interface speed to prevent loss of communication in this case.

Guess speed if no SYNC(HC12 only) - Early HCS12s do not support the SYNC feature which
allows the BDM interface speed to be determined. Selecting this option will cause the BDM
to attempt to find the communication speed by trial and error. This can take quite a while.

Use Alternative BDM target Clock - Control of BDM clock selection in HCS/RS08
microcontrollers. Most of these targets provide an alternative BDM clock selection. This
can have advantages when connecting to high speed targets (mostly of use in the JB16
version).

Use RESET signal (HCS08/Coldfire) – Many of the HCS08, RS08 and Coldfire microcontrollers
do not have a dedicated reset signal. This is not a problem as it is possible to reset the target
using the BKGD mode commands through the BDM interface. The RESET signal on the
BDM interface will often still be connected to the Reset signal of the processor. This option
allows the BDM to monitor and control the RESET signal when appropriate. By default, the
RESET signal is ignored when using the BDM with targets other than the HC(S)12.

 Note: HC(S)12 targets require the use of the RESET signal and ignore this option.
 Note: The current implementation may still spuriously drive the RESET pin low on the BDM

interface when resetting the target. (Work in progress)

Notes:
Bug Fixes:
• An error in the OSBDM code involving BDM08_CMD_WRITECONTROL has been removed.

This macro had the side effect of disabling ACKN. There are some other similar bugs.
• The timing for the bdm_rx() routines has been changed. The original code did not take into

account the phase difference between a write to, and a read from, a port. This phase difference is
due to two possible delays:

a. Between writing to a port and the value appearing on the port pin, and
b. An input pin change and that change being readable at the port register.

Other changes

• The bdm_tx()/bdm_rx() routines have been updated for the JB16.
• Generic bdm_tx()/bdm_rx() routines have been written for low frequencies.
• USB code has been replaced.
• Coldfire V1 code added.
• The code has been extensively re-arranged. I’m sorry, I couldn’t stop myself ☺

References

• LIBUSB-WIN32 - http://libusb-win32.sourceforge.net/
• USBSPYDER08 - USB mini board for Freescale's Low-End 8-bit Microcontrollers –

http://www.freescale.com
• MAX662 Data sheet - http://www.maxim-ic.com
• I2C voltage level conversion - Phillips application note

http://www.standardics.nxp.com/support/documents/i2c/pdf/an97055.pdf
• TBDML - http://forums.freescale.com/freescale/board?board.id=TBDML
• OSBDM - http://forums.freescale.com/freescale/board?board.id=OSBDM08

