艾米电子工作室 — 並开发变得更简单 http://www.amy-studio.com/

FPGA 入门系列实验教程——LED 闪烁灯

1. 实验任务

让实验板上的 8 个 LED 周期性的闪烁。通过这个实验,熟悉并掌握采用计数 与判断的方式来实现分频的 VHDL 的编程方法以及 Quartus II 软件的使用方 法和开发流程。

2. 实验环境

硬件实验环境为艾米电子工作室型号 EP2C8Q208 增强版开发套件。 软件实验环境为 Quartus II 8.1 开发软件。

3. 实验原理

艾米电子工作室开发套件板载 50MHz 的时钟源,假如我们直接把它输入 到发光二极管 LED,由于人眼的延迟性,我们将无法看到 LED 闪烁,认为 它一直亮着。如果我们期望看到闪烁灯,就需要将时钟源的频率降低后再输 出。本实验采用计数与判段的方式来实现降低时钟源的频率。计数电路可用 计数器实现,每来一个时钟脉冲 CLK,计数器就加 1,而每当判断出计数器 达到某个数值时,把输出状态求反,就使得 8 个 LED 的亮灭反转一次,即: 周期性的输出高电平 "1"和低电平 "0"。这样设计相当于把 50MHz 的时钟 源分频后输出。如果最终要使得 LED 1S 闪烁一次,即输出 1Hz 的时钟脉冲, 让计数器计到 2500000 便可以让 LED 亮 0.5 秒、灭 0.5 秒。

4. 实验程序

library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;

entity LED is port(clk:in std_logic; //时钟输入设置 dout:out std_logic_vector(7 downto 0)); //数据输出设置 end LED;

艾米电子工作室 — 业开发变得更简单 http://www.amy-studio.com/

```
architecture behave of LED is
signal p:std_logic_vector(31 downto 0); //信号变量设置
signal t:std_logic_vector(7 downto 0):="00000000"; //变量 t 赋初始值
begin
process(clk)
begin
if(clk'event and clk='1')then //
   p<=p+1;
   if(p=2500000)then
      t<=t XOR "11111111"; //t 值取反
   end if;
end if:
end process;
dout<=t:
end behave;
```

代码分析:

先定义信号变量 P,t。当时钟每产生一个上升沿 P 值加 1,当 P 加到 25000000 时 t 取反同时 P 复位置 0. 在程序执行过程中始终将 t 赋值给数据输出端口 dout。

5. 实验步骤

(1) 建立新工程项目:

打开 Quartus Ⅱ 软件,进入集成开发环境,点击 File→New project wizard 建立一个工程项目 led1。

(2) 建立文本编辑文件:

点击 File→New...,在该项目下新建 VHDL 源程序文件 led.v,输入试验 程序中的源程序代码保存后选择工具栏中的 ✓ 按钮启动编译,若在编 译中发现错误,则找出并更正错误,直到编译成功为止。

(3) 选择器件型号及引脚的其他设置:

选择所用的 FPGA 器件 \rightarrow EP2C8Q208C8,以及进行一些配置。选择配置器件 EPCS4,设置不需要使用的 IO 功能为 As inputs, tri-stated。点击两次 ok,回到主界面。

我们一直用砂在做!

艾米电子工作室 — 並用发变得更简单 http://www.amy-studio.com/

(4) 配置 FPGA 引脚:

(5) 编译工程项目:

在 Quartus Ⅱ 主页面下,选择 Processing→Start Compilation 或点击工具 栏上的▶按钮启动编译,直到出现"Full Compilation Report"对话框,点 击 OK 即可。

(6) 波形仿真: 由于本次试验比较简单, 波形仿真将在后面实验详细讲解。

(7) 下载设计程序到目标 FPGA

6. 实验现象

第二个实验完成了,看到实验板上 8 个 LED 灯周期性的闪烁,是不是觉得这个实验比上个实验有意思呢?回想一下我们通过这个实验学会了什么? 采用计数与判断的方式来实现分频的 VHDL 的编程方法,你学会了没?应该 有那么一点点收获吧!

