

Customer Notification

EW78K-xxx-EE
Embedded Workbench® for 78K
Integrated Development Environment

Operating Precautions

EW78K-FULL-EE
EW78K-KS16-EE
EW78K-KS4-EE

Document No. U18447EE6VBIF00
Date Published: July 2009

© NEC Electronics (Europe) GmbH

DISCLAIMER

The related documents in this customer notification may include preliminary versions. However,
preliminary versions may not have been marked as such.

The information in this customer notification is current as of its date of publication. The information is
subject to change without notice. For actual design-in, refer to the latest publications of NEC’s data sheets
or data books, etc., for the most up-to-date specifications of PRODUCT(S). Not all PRODUCT(S) and/or
types are available in every country. Please check with an NEC sales representative for availability and
additional information.

No part of this customer notification may be copied or reproduced in any form or by any means without
prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this
customer notification. NEC does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of PRODUCT(S) listed in this customer
notification or any other liability arising from the use of such PRODUCT(S).

No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
property rights of NEC or others. Descriptions of circuits, software and other related information in this
customer notification are provided for illustrative purposes of PRODUCT(S) operation and/or application
examples only. The incorporation of these circuits, software and information in the design of customer’s
equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any
losses incurred by customers or third parties arising from the use of these circuits, software and
information.

While wherever feasible, NEC endeavors to enhance the quality, reliability and safe operation of
PRODUCT(S) the customer agrees and acknowledges that the possibility of defects and/or erroneous
thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to
persons arising from defects and/or errors in PRODUCT(S) the customer must incorporate sufficient safety
measures in their design, such as redundancy, fire-containment and anti-failure features.

The customer agrees to indemnify NEC against and hold NEC harmless from any and all consequences of
any and all claims, suits, actions or demands asserted against NEC made by a third party for damages
caused by one or more of the items listed in the enclosed table of content of this customer notification for
PRODUCT(S) supplied after the date of publication.

PRODUCT(S) are classified into the following three quality grades: “Standard”, “Special” and “Specific”.
The “Specific” quality grade applies only to PRODUCT(S) developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of PRODUCT(S)
depend on its quality grade, as indicated below. Customers must check the quality grade of each
PRODUCT(S) before using it in a particular application.

• “Standard”: Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots

• “Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-
disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically
designed for life support).

• “Specific”: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems,
life support systems and medical equipment for life support etc.

The quality grade of PRODUCT(S) is “Standard” unless otherwise expressly specified in NEC data sheets or
data books, etc. If customers wish to use PRODUCT(S) in applications not intended by NEC, they must
contact NEC sales representative in advance to determine NEC’s willingness to support a given application.

If the supplied goods/information are subject to Japanese, German, European and/or North American export
controls, the customer shall comply with the relevant export control regulations in the event that the goods are
exported and/or re-exported. If deliveries are exported without payment of duty at the request of the customer,
the customer accepts liability for any subsequent customs administration claims with respect to NEC.

Notes: (1) “NEC” as used in this statement means NEC Electronics Corporation and also includes its
direct or indirect owned or controlled subsidiaries.

 (2) “PRODUCT(S)” means any product developed or manufactured by or for NEC (as defined
above).

2 Customer Notification

 Customer Notification 3

Table of Contents

Table of Contents ..3

(A) ..4 Table of Operating Precautions for the IDE EW78K

(B) ..4 Table of Operating Precautions for the Assembler A78K

(C) ...5 Table of Operating Precautions for C/C++ Compiler ICC78K

(D) ..7 Table of Operating Precautions for the Linker XLINK

(E) ..8 Table of Operating Precautions for C-SPY Debugger CS78K

(F) ... 10 Table of Operating Precautions for the Assembler A78K0R

(G) 11 Table of Operating Precautions for C/C++ Compiler ICC78K0R

(H) .. 12 Description of Operating Precautions for the IDE EW78K

(I) 23 Description of Operating Precautions for the Assembler A78K

(J) 25 Description of Operating Precautions for the C/C++ Compiler ICC78K

(K) ... 43 Description of Operating Precautions for Linker (XLINK)

(L) ... 49 Description of Operating Precautions for Debugger (C-SPY)

(M) 64 Description of Operating Precautions for the Assembler A78K0R

(N) 70 Description of Operating Precautions for the C/C++ Compiler ICC78K0R

(O) ... 85 Valid Specification

(P) ... 85 Revision History

Operating Precautions for EW78K-xxxx-EE

4 Customer Notification

(A) Table of Operating Precautions for the IDE EW78K

 EW78K
No. Outline

Version 4.3a 4.4b 4.6b 4.8a 5.2d 5.5.0

A2 An empty Workspace can not be saved

A4 Supported Path Length is limited

A5 Source Files can not be added directly to
a user defined Group

A6
Project Files using output file paths
containing illegal drive letters can not be
opened

A7
Wrong Definition of RAM segments in
XCL-file templates for 78K0S/Kx1+
devices

A8 Code Banking Information must be
modified by the User - -

A9 Corrupt Default-Values for Near constant
location Definition - -

A10

Usage of Soft-Links in output path
definition could cause the IDE to link two
copies of the output files in the
Workspace Windows

A11 78K0R: Project settings for near-
constant-location are not saved.

A12 Heap size input value is limited to 64KB

A13 Linker output file in format IEEE695 is
not be generated

A14 Empty Go to Function Window - -

A15 Corrupted Default-File Filter

: Applicable
: Not applicable

- : Not checked

(B) Table of Operating Precautions for the Assembler A78K

 A78K
No. Outline

Version 4.30a 4.40a 4.50a 4.60a 4.61a 4.62a

B1 RSEG Directives can not be used in
Macro Definitions

B3 It is not possible to use an assembler
DEFINE to an external symbol

B5 EVEN Directive doesn’t align Data to
even Address.

: Applicable
: Not applicable

- : Not checked

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 5

(C) Table of Operating Precautions for C/C++ Compiler ICC78K

 ICC78K
No. Outline

Version 4.50b 4.50c V4.50e 4.60a V4.61a V4.62a

C5

No compiler message in case of a
variable redefinition of the same
datatype but with the different object
attribute

C29 No message about MISRA Rule 1
violation

C37 Warning [Pe177] generated by fault

C38 Fatal error in case of using experimental
option –mfc

C39 Fatal error in case of using C++-style
definition of a local variable

C42 Internal compiler error for bit-test of
array element (78K0S core only)

C43
Internal compiler error in case of using a
default segment name for a user-defined
segment

C44 Register-bank selection of interrupt
function may be ignored

C45 Internal Compiler Error may occur if
calculation result is zero

C46 Internal Compiler Error may occur if
instruction DBNZ is used

C47
Internal Compiler Error occurs if bit
complement and bit-and operation are
combined in one command

C48 Wrong code generated for access to
multi-dimensional array

C49 Compilation process can not be
completed

C50 Spurious linker warning about
conflicting data types

C51 Extended EC++: Instantiating a template
class may cause an internal error

C52
Wrong code may be generated if the
intrinsic function ‘__get_interrupt_state’
is used

C53 Internal Compiler Error occurs if second
instruction parameter is a SFR-address

C54 Fatal Error (Uncontrolled termination)
occurs if option –Ohs is used

C55 MISRA C 2004 Rule 17.4 triggered by
mistake

C56 Banked Memory Model: Stack corrupted
by wrongly generated code

C57 Banked Memory Model: Function
Parameter not set

C58 Wrong parameter passing to library
function for signed 32bit comparison

C59 Internal Compiler error in functions
using an endless loop

C60 Wrong code generated for masking a bit
of 16bit-high byte

Operating Precautions for EW78K-xxxx-EE

6 Customer Notification

 ICC78K
No. Outline

Version 4.50b 4.50c V4.50e 4.60a V4.61a V4.62a

C61 Missing Warning about change of sign
due to integer conversion

C62 Usage of uninitialized carry-flag

: Applicable
: Not applicable

- : Not checked

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 7

(D) Table of Operating Precautions for the Linker XLINK

Outline XLINK No.
 Version 4.60a 4.60c 4.60f 4.60g 4.60i 4.61c 4.61h 4.61l 4.61n

D3
Breakpoint cannot be
defined in Function (only
XCOFF78K Format)

D12 Memory Bank Area is not
filled up

D13

Corrupted IRQ table for
78K0R devices in case of
using the XCOFF78K output
format

D14

Due to a wrong symbol
definition XLINK error
message [e149] is
generated

Please have a look at item C36 or G4

D15 Unused odd address isn’t
filled up

D16 Range Error occurred by
mistake

D17
Error in 78K0R xcl-file
(lnk78f11xx_xx.xcl)
templates

D18
Missing information for far
pointer in XCOFF78K output
format

D19 Spurious linker warning
about type conflict Please have a look at item C50 or G19

D21

Output file format
UBROFF5: Error [e62] is
generated erroneously if
multiple modules are
defined in one assembler
source file

D22
Output file format IEEE695:
Missing enum datatype
debug information

D23

Output file format
XCOFF78K: Usage of
untyped segments may
cause a corrupted file

D24
Output file format RAW-
BINARY: XLINK may hang
up

: Applicable
: Not applicable

- : Not checked

Operating Precautions for EW78K-xxxx-EE

8 Customer Notification

(E) Table of Operating Precautions for C-SPY Debugger CS78K

Outline CS78K No.
 Version 4.40a 4.40b 4.40c 4.50a 4.50b 4.60a 4.60b 4.62a

E24
C-SPY Driver for ‘IECUBE’: Real-
time Memory Window Update
interrupts application

E25 Starting C-SPY by command line:
Wrong Simulator started

E26

Starting C-SPY by command line:
C-SPY driver for ‘IECUBE’
crashes in case of using 78K0R
emulator

E27 Event-Breakpoint is deleted
incompletely

E28
C-SPY Driver for ‘MINICUBE’:
Wrong display of main clock
source of QB-78K0MINI-EE

E29
C-SPY Driver for ‘IE-78K’: C-SPY
fatal error in case of illegal SFR
access

E30

C-SPY Driver for 78K0R ‘IECUBE’
or ‘MINICUBE’: Fatal error after
selecting 'SFR' in disassembly
window

E31
C-SPY Driver for 78K0R ‘IECUBE’
or ‘MINICUBE’: Memory read
access by macro is blocked

E32
Code Coverage information is
incomplete in case of using
banked memory systems

E33

C-SPY Driver for 78K0R
‘MINICUBE’: The input field for
the main clock source allows only
selecting a value from a
predefined list.

E34

If the same name is used for a
data-object and for a data-type,
this data-object can not be
displayed in the Watch Window

E35
Argument variables can not be
used to define a code breakpoint
by source location

E36

C-SPY Driver for 78K0R
Simulator: Instruction ‘mov
memory_location[C],A’ simulated
incorrectly

E37
C-SPY Driver for 78K0R IECUBE:
OP-Fetch before execution can
not be defined

E38 C-SPY Driver or TK78K:
Download to memory banks failed

E39
C-SPY Driver for 78K0R:
High Byte of Program Counter
(bit16-bit23) is set to 0x00

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 9

Outline CS78K No.
 Version 4.40a 4.40b 4.40c 4.50a 4.50b 4.60a 4.60b 4.62a

E40
C-SPY Driver for 78K0R: A file in
Intel-Hex- or Motorola-S-Record
format can not be downloaded

E41
C-SPY Simulator Driver: Wrong
mask-flag is used to control an
interrupt

E42 C-SPY 78K0 IECUBE Driver: Full
trace break doesn’t work

E43
C-SPY 78K0R Simulator Driver:
Interrupt simulation only works
correct at priority level three.

E44
C-SPY 78K0 MINICUBE2 Driver:
Error message about old firmware
version

E45 C-SPY all Drivers: Update Time
Watch Window

E46
C-SPY Simulator Driver: Incorrect
Value shown in Live-Watch
Window

E47 C-SPY 78K0 MINICUBE Driver:
Incorrect System Clock Selection

E48
Incorrect Variable Address may
be displayed in Event Window or
Watch Window

E49
Stack Initialization in default
cstartup-module triggers C-Spy
Debugger stack observation

E50 Wrong display of array in C-Spy
Watch Window

E51 C-SPY 78K Simulator Driver:
Wrong macro access to 16bit data

E52
C-SPY 78K: Displayed floating
point value in watch window may
be wrong

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K-xxxx-EE

10 Customer Notification

(F) Table of Operating Precautions for the Assembler A78K0R

 A78K0R
No. Outline

Version 4.40a 4.50a 4.60a 4.61a 4.62a

F1 RSEG Directives can not be used in
Macro Definitions

F2 It is not possible to use an assembler
DEFINE to an external symbol

F4 EVEN Directive doesn’t align Data to
even Address.

F5 Automatic Replacement of DBNZ
Instruction causes Linker Error Message

F6 Invalid Register in XCH Instruction
causes the generation of wrong Op-Code

F7 Invalid XCH instruction doesn’t cause a
syntax error

F8 Wrong Op-Code generated for MOV
<register>, SFR-address instruction

F9 Illegal MOV instruction is accepted and
wrong Op-Code is generated.

F10 Invalid operand of branch instruction
causes fatal assembler error

F11
Illegal indirect MOVW instruction is
accepted and wrong Op-Code is
generated

F12 Illegal Op-Code generated if SFR symbol
is defined after the usage

: Applicable
: Not applicable

- : Not checked

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 11

(G) Table of Operating Precautions for C/C++ Compiler ICC78K0R

 ICC78K0R

No. Outline
Version 4.50a 4.50b 4.50c 4.60a V4.61a V4.62a

G6 Warning [Pe177] generated by fault

G7 Fatal error in case of using experimental
option –mfc

G11
Internal compiler error occurs if a default
segment name is used for a user-defined
segment

G12 Wrong access to far and byte-aligned
structure

G13 Wrong code generated for indirect
memory access

G14 Register-bank selection of interrupt
function may be ignored

G15 Wrong access to local variable located
on stack

G16 Internal Compiler Error may occur if
calculation result is zero

G17
Internal Compiler Error occurs if bit
complement and bit-and operation are
combined in one command

G18 Wrong code generated for access to
multi-dimensional array

G19 Spurious linker warning about
conflicting data types

G20 Extended EC++: Instantiating a template
class may cause an internal error

G21 Internal Compiler Error occurs if numeric
constant is used as function pointer

G22 Fatal Error (Uncontrolled termination)
occurs if option –Ohs is used

G23 MISRA C 2004 Rule 17.4 triggered by
mistake

G24 DLIB Floating Point Function overwrites
SADDR area

G25 Misaligned structure access
G26 Wrong parameter passing of far pointer

G27 Missing Warning about change of sign
due to integer conversion

G28 Delayed insertion of DI instruction

G29 Misaligned 16bit-access

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K-xxxx-EE

12 Customer Notification

(H) Description of Operating Precautions for the IDE EW78K

No. A2 An empty workspace can not be saved

Details

Although it is described in the user’s manual an empty workspace can not be saved.

Workaround

Add at least one project to the workspace before saving. The project may be an empty project.

No. A4 Supported Path Length is limited

Details

The supported path length to project files by the Embedded Workbench is limited to about 100
characters. If this limit is exceeded the project file cannot be opened anymore and you received
the following error message:

Cannot find the file 'C:\...\...\<projectname.ewp>' (or one of its components).
Make sure the path and filename are correct and that all required libraries are available.

Workaround

Reduce the path length.

No. A5 Source Files can not be added directly to a user defined Group

Details

Source files can not be added directly to a user defined group, because the in the ‘Add Files…’
dialogue there is no field to specify a group.

Workaround

Select the group in the Workspace-Window before open the ‘Add Files…’ dialogue. The files will
be added automatically to the selected group.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 13

No. A6 Project Files using output file paths containing illegal drive letters can not be opened

Details

Specifying absolute output directories with paths containing illegal drive letters caused IAR
Embedded Workbench to exit without any further message.

Workaround

Before it is possible to open a project-file (*.ewp) using path with invalid drive letters, the project
file has to be corrected manually with an editor of your choice:

 <name>ExePath</name>
 <state>Debug\Exe</state>
 </option>
 <option>
 <name>ObjPath</name>
 <state>Debug\Obj</state>
 </option>
 <option>
 <name>ListPath</name>
 <state>Debug\List</state>
 </option>

Operating Precautions for EW78K-xxxx-EE

14 Customer Notification

No. A7 Wrong Definition of RAM segments in XCL-file templates for 78K0S/Kx1+ devices

Details

In the XCL-file templates for the 78K0S/Kx1+ devices included in version V4.40a of the
Embedded Workbench for 78K, the address-definition for the RAM segments is wrong.
If you use this templates, the following a linker error will occur:

Fatal Error[e140]: The range declaration used in
-Z(DATA)NEAR_I,NEAR_Z,NEAR_N,HEAP+_HEAP_SIZE=FE80-FE1F is illegal since 0xfe80 > 0xfe1f.

Fatal! Execution terminated...

The XCL-file templates for the following devices are effected:

Device XCL-file template
µPD78F9200 lnk78f9200.xcl
µPD78F9201 lnk78f9201.xcl
µPD78F9202 lnk78f9202.xcl
µPD78F9210 lnk78f9210.xcl
µPD78F9211 lnk78f9211.xcl
µPD78F9212 lnk78f9212.xcl
µPD78F9221 lnk78f9221.xcl

Workaround

Please correct the above listed XCL-file templates as follows:

//--
-
// Near data and heap segments.
//--
-
-Z(DATA)NEAR_I,NEAR_Z,NEAR_N,HEAP+_HEAP_SIZE=FE80-FEFF

//--
-
// Stack segment.
//--
-
-Z(DATA)CSTACK+_CSTACK_SIZE=FE80-FEFF

For the above listed devices the internal RAM area is smaller than the SADDR-area and
therefore it is recommended to define all global variables as SADDR-variables to get short and
fast code.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 15

No. A8 Code Banking Information must be modified by the User

Details

If the memory model ‘Banked’ or ‘Standard allowing banking’ is selected, the Code Banking
information must be modified by the user according to the selected device, although a specific
device is selected from the device list. The Embedded Workbench uses default values for the
Code Banking definition independent of the selected device.
Example:

Workaround

Please enter the correct values according to the user’s manual of the selected device:

Operating Precautions for EW78K-xxxx-EE

16 Customer Notification

No. A9 Corrupt Default-Values for Near constant location Definition

Details

If a specific 78K0R is selected the, default values for the Near constant location are corrupt.
Example:

Workaround

Please select the unspecified ‘78K0R’ device:

Additionally the further device configuration must be done manually:
XCL-file selection in menu Project->Options->Linker->Config
DDF- file selection in menu Project->Options->Debugger

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 17

No. A10 Usage of Soft-Links in output path definition could cause the IDE to link two copies of
the output files in the Workspace Windows

Details

If the IAR System soft-links (e.g. $PROJ_DIR$) are used to define the output file path, the
Embedded Workbench may link two copies of the generated output file in the Workspace
Window.

Example:

Workaround
Don’t use soft-links in the output file path definition? The issue will be changed in next major
update of EW78K.

Operating Precautions for EW78K-xxxx-EE

18 Customer Notification

No. A11 78K0R: Project settings for near-constant-location are not saved.

Details

The size of the near-constant-location-area is not saved between two Embedded Workbench
sessions. Instead, the default values are loaded.

Workaround
If the default setting is modified, please set the new values manually.

No. A12 Heap size input value is limited to 64KB

Details

The maximum heap size that can be entered in the Embedded Workbench GUI is 64KB. In
case of entering a larger value the following error message is generated:

Workaround
Please specify the heap-size directly in the used linker-control file instead of using the symbol
‘_HEAP_SIZE‘ defined in the Embedded Workbench GUI:

//--
// Heap segment
//--
-Z(DATA)HEAP+0x12000=<start_address>-<end_address>

The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 19

No. A13 Linker output file in format IEEE695 is not be generated

Details

If a 78K0R target device and the linker output file format IEEE695 is selected, no output file is
selected and the following error message is generated:

Fatal Error[e92]: Cannot use the 'ieee695' output format with this cpu

Workaround

Please select another output file format (e.g. C-Spy Debug Format), enable the generation of a
second output file, and select the format IEEE695 for the second output file:

The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K-xxxx-EE

20 Customer Notification

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 21

No. A14 Empty Go to Function Window

Details

Depending on some source code constructions (e.g. using shift operator to initialize a structure
element) the Go to Function Window may be empty.
Correct Go to Function Window:

Empty Go to Function Window although there are several functions defined in the active source
file:

Workaround
None. The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K-xxxx-EE

22 Customer Notification

No. A15 Corrupted Default-File Filter

Details

The default file filter of the C-Spy file selection dialogue after pressing the button '...'
of the code breakpoint 'Enter Location Window' is corrupted and therefore no files are listed
although there are source files in the selected folder:

Workaround
Enter '*.*' as file name to get a list of all available source files and select the file.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 23

(I) Description of Operating Precautions for the Assembler A78K

No. B1 RSEG Directives can not be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a
macro definition:

Example

mDummyMacro MACRO
 RSEG CODE
 NOP
 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. B3 It is not possible to use an assembler DEFINE to an external symbol

Details

In case of using an assembler DEFINE to an external symbol, the linker will generate the
following error:

Fatal Error[e20]: Corrupt file. External index out of range in module
MODUL2 (C:\....\test.r26)

Example

 EXTERN S2

SYM DEFINE S2

Workaround

 None. The assembler version V4.41a or later will generate an error for such cases.

Operating Precautions for EW78K-xxxx-EE

24 Customer Notification

No. B5 EVEN Directive doesn’t align Data to even Address.

Details

The EVEN directive aligns to an even address relative to the start module-startaddress of the
segment instead of an absolute even address. In case of an odd module-startaddress also all
symbols aligned with an even-directive are located at an odd address. In this case a linker error
message will be generated for each access to the misaligned variable:

 IAR Universal Linker V4.60A/386
 Copyright 1987-2006 IAR Systems. All rights reserved.

Error[e18]: Range error, Even value expected
 File: H:\Data\...\even.asm, Line: 17
 Source: MOVW S:integer1, AX
 Where $ = test_even + 0x1 [0xA8] in module "even",
 offset 0x1 in segment part 1, segment CODE
What: (integer2 + 2) & 1 [0x1]
 Allowed range: 0x0 - 0x0 Operand: integer2 [0xfe23]
 in module even, Offset 0x2 in segment part 0, segment SADDR_Z

Example

 RSEG SADDR_Z

CharVar1: DS 1
 ALIGNRAM 1
IntVar1: DS 2

Workaround

Please align the segment-start address to an even address:

 RSEG SADDR_Z(1)

CharVar1: DS 1
 ALIGNRAM 1
IntVar1: DS 2

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 25

(J) Description of Operating Precautions for the C/C++ Compiler ICC78K

No. C5 No compiler message in case of a variable redefinition of the same data type but with the

different object attribute

Details

The compiler doesn’t generate a message for the user if a variable is redefined with the same
data type but with a different object attribute.

Example:

unsigned int i;
__no_init unsigned int i;

Workaround

Manual check by the user required.

No. C29 No message about MISRA Rule 1 violation

Details

MISRA C rule 1 concerns the ISO 9899 C conformance without extension meaning strict ANSI
C.
When a project is compiled with IAR extensions and the first MISRA C rule enabled no errors or
warnings come up to indicate this contradiction.

Example:

volatile __saddr int i;

__callt void test(void)
{
 i++;
}

Workaround:

None.

Operating Precautions for EW78K-xxxx-EE

26 Customer Notification

No. C37 Warning [Pe177] generated by fault

Details

If a variable defined as ‘__root’ is additionally defined as ‘static’, the compiler will generate the
warning message [Pe177] by fault:

Warning[Pe177]: variable "test1" was declared but never referenced

The keyword ‘__root’ informs the linker that the variable should be located even it is not
referenced. This implies already that a variable might not be used in the module and that this
declaration is done on purpose.

 Example:

static __root const char test1= 0x01;

Workaround:

The problem will be fixed in the next major update. So far please use one of the following
workarounds:

1) Don’t define a variable as ‘__root’ and ‘static’
2) Disable warning [Pe177] for such definitions:

#pragma diag_suppress=Pe177
static __root const char test1 = 0x01;
#pragma diag_default=Pe177

No. C38 Fatal error in case of using experimental option –mfc

Details

If two static functions of the same name are exist in modules that are compiled simultaneously
by using the currently experimental option –mfc, a fatal error occurs:

Internal Error: [CoreUtil/General]: OgModuleLables – label already
defined. Fatal error detected, aborting.

 Example:

source file f1.c:
static unsigned char func1 (unsigned char p1)
{
 // code doesn't matter
 return (1);
}

source file f1.c:
static unsigned int func1 (unsigned int p1)
{
 // code doesn't matter
 return (1);
}

Workaround:

The problem will be fixed in the platform release, when the option –mfc will be officially
introduced (V4.4xx, schedule is December 2007)

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 27

No. C39 Fatal error in case of using C++-style definition of a local variable

Details

If IAR Systems compiler extensions are enabled, it is allowed to define local variables directly
before using them. But if such local variable is defined as static a fatal error is generated:

Internal Error: [symbol_lookup_M31]: symbol not found for mode 1
(backend generating) (P0: 0, P1: 0)

 Example:

void test (void)
{
 for(static int i = 0; i<10; i++);
}

Workaround:

Define local variables according to the ANSI C standard at the beginning of a function.

void workaround (void)
{
 static int i;
 for(i = 0; i<10; i++);
}

Operating Precautions for EW78K-xxxx-EE

28 Customer Notification

No. C42 Internal compiler error for bit-test of array element (78K0S core only)

Details

In case of using a 78K0S device (µPD78F9xxxx, µPD789xxxx) pointer or array expressions of
objects located in the short address area that result in a bit test instruction cause the following
internal error for 78K0S.

Internal error [AsmLine – OgAsm]: Error [43] Illegal effective address
Fatal error detected aborting

 Example:

 unsigned char v1,v2;
__saddr unsigned char buffer[5];

void test(void)
{
 if(buffer[v1]&0x80) {
 v2=1;
 }
}

Workaround:

Locate the array in the standard RAM, i.e. remove the key word __saddr:

 unsigned char v1,v2;
 unsigned char buffer[5];

void test(void)
{
 if(buffer[v1]&0x80) {
 v2=1;
 }
}

No. C43 Internal compiler error in case of using a default segment name for a user-defined

segment.

Details

In case of using a default segment name of the compiler for user-defined segment of constant
data, an internal compiler error occurs after the warning about using a default segment name.

Internal error [Front end]: Invalid C99 IL expression kind
Fatal error detected aborting.

 Example:

#pragma location = "CODE"
__root const unsigned char counter=23;

void test(unsigned char *p1)
{
 p1=((volatile const unsigned char *)&counter);
}

Workaround:

Do not use the compiler default segment names for user-defined segments

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 29

No. C44 Register-bank selection of interrupt function may be ignored

Details

In case of using an optimization level higher than ‘low’ the compiler may ignore the register-bank
selection of the user (#pragma bank) for some interrupt functions.

Example:

#include <io78f0893.h>
extern void f2 (unsigned char);

typedef enum {
 GPT_1,
 GPT_2
}ENUM1;
typedef enum {
 GPT_3,
 GPT_5
} ENUM2;
typedef struct {
 ENUM1 s1;
 unsigned char s2;
 void* s3;
}STRUCT1_T;
typedef struct{
 ENUM2 s4;
 unsigned short s5;
} STRUCT2_T;

#pragma bank = 2
__interrupt void isr(void)
{
 unsigned short u16PR0sav, u16PR1sav;
 u16PR0sav = PR0 ;
 u16PR1sav = PR1 ;
 __enable_interrupt();

 if (ptr1[((unsigned char) 0)].s1 == GPT_1) {
 array[((unsigned char) 0)].s4 = GPT_5;
 }
 f2(((unsigned char) 0));

 __disable_interrupt();
 PR0 = u16PR0sav;
 PR1 = u16PR1sav;

}

Workaround:

Please reduce the optimization level for the interrupt function, if the instruction ‘SEL RB2’ isn’t
generated for your interrupt function:

#pragma optimize = s 3
#pragma bank = 2
__interrupt void isr(void)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

30 Customer Notification

No. C45 Internal Compiler Error may occur if calculation result is zero

Details

Code examples where a calculation result is zero may cause an internal compiler error.

Example:

signed int i,k;
int test(void)
{
 k=90-(9-i)*10;
}

Workaround:

Try to rewrite the arithmetic expression to avoid a zero result:

int test (void)
{
 k=90-(90-10*i);
}

No. C46 Internal Compiler Error may occur if instruction DBNZ is used

Details

If the instruction DBNZ is used an internal compiler error may occur:

Internal Error: [CoreUtil/General]: Size mismatch for "DBNZ
S:v1, ??test_0", inserted as 2 bytes, assembled as 3 bytes.

Example:

__saddr unsigned char v1;

void test (void)
{
 if (!--v1){
 …
 }
}

Workaround:

Lower the optimization to level medium to avoid the usage of the instruction DBNZ

#pragma optimization = z 6
void test (void)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 31

No. C47 Internal Compiler Error occurs if bit complement and bit-and operation are combined in

one command

Details

If the C command to complement a special functions register bit is combined with a bit and
command to mask a single bit and an assignment to an integer variable, an internal error
occurs:

Internal Error: [CoreUtil/General]: Illegal state

Example:

#include <io78F0547_80.h>

unsigned int IntVar;

void test(void)
{
 IntVar = ~P0_bit.no0 & 0x01;
}

 Workaround:

Please split up the operations in separate lines of code.

unsigned int IntVar;

void test(void)
{
IntVar = ~P0_bit.no0;
IntVar = IntVar & 0x01;

}

No. C48 Wrong code generated for access to multi-dimensional array

Details

In a case of using optimization type speed level high, the compiler may generate wrong code for
the access of multi-dimensional arrays.

Example:

static void test (void)
{
 unsigned short x, y;

 for (y = 0; y < 8; y++){
 for (x = 0; x < 128; x++) {
 buffer[y][x] = 0x00;
 }
 }
}

void dummy(void)
{
 test();
}

Workaround:

Please reduce the optimization level to medium or use while instead of for loops.

Operating Precautions for EW78K-xxxx-EE

32 Customer Notification

No. C49 Compilation process can not be completed

Details

In a case of using optimization level high and allow the usage of the worksegment, the
compilation process can not be completed for certain code examples. No error message is
generated; the compilation process must be terminated manually.

Workaround:

Please reduce the optimization level to medium or don’t allow worksegment usage.

No. C50 Spurious linker warning about type conflict

Details

The compiler could in some cases (e.g. high level of nested typedef types) emit data type
incorrect debug information for typedef types. When linking with XLINK, this could result in a
spurious type conflict warning:

Warning[w6]: Type conflict for external/entry "<object-name>", in
module file2 against external/entry in module file1; different types

The generated code is correct.

Workaround:

Please reduce the level of nested typedef types.

No. C51 Extended EC++: Instantiating a template class may cause an internal error

Details

Instantiating a template class like vector on a function type may result in an internal error

Internal Error: [Visit types]: Error type

Example:

enum eState { state1,state2};

template <class T, T init> class CEnum
 {
 public:
 CEnum() {m_Value = init; }
 operator unsigned char () const {return (unsigned char)m_Value; }
 void operator +=(unsigned char arg){m_Value = (T)(m_Value + arg) }
 private:
 T m_Value;
 };

static __saddr __no_init CEnum<enum eState, state1> state;

void test(void)
{
 state += state2;
}

Workaround:

None.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 33

No. C52 Wrong code may be generated if the intrinsic function ‘__get_interrupt_state’ is used

Details

If the intrinsic functions ‘__get_interrupt_state’ and ‘__disable_interrupt’ are used in the same
function, the compiler may store the program status word (PSW) to a register before interrupts
are disabled instead when the function’ __get_interrupt_state’ is called. The register content
instead of the actual PSW content is used for further actions.

Example:

#include <intrinsics.h>

void test(void)
{
 __disable_interrupt();
 {
 istate_t is = __get_interrupt_state();
 __enable_interrupt();
 __set_interrupt_state(is);
 }
}

Workaround:

No direct workaround, but an assembler function can be used as replacement

Operating Precautions for EW78K-xxxx-EE

34 Customer Notification

No. C53 Internal Compiler Error occurs if second instruction parameter is a SFR-address

Details

For the instructions ADD, ADDC, SUB, SUBC, AND, OR, XOR and CMP, when the first
parameter is register A and the second parameter is an SFR address above the SADDR
memory area, the SFR address is treated as a SADDR address. This causes an internal
compiler error:

Internal Error: [CoreUtil/General]:
Size mismatch for "…", inserted as 2 bytes, assembled as 3 bytes.

Example:

#include <io78f0515_48.h>

unsigned char test(unsigned int p1)
{
 unsigned char retVal = 0 ;

 while((0 == IF1H) && (0 != p1--)) {
 p1--;
 }
 return (retVal);
}

Workaround:

None. The problem will be fixed in V4.60a

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 35

No. C54 Fatal Error (Uncontrolled termination) occurs if option –Ohs is used

Details

If the following sample is compiled by using option –Ohs a fatal error occurs:
Fatal Error[c0000005hìø_°a´_”°°_„ìø_ˆ°°_"]: Uncontrolled termination
In case of using WindowsXP the user is asked to inform Microsoft about this issue.

Example:

typedef struct
{
 unsigned char MyByte;
}T_MYSTRUCT;

extern void func1(unsigned char *, unsigned short , unsigned short);

void func2(T_MYSTRUCT *p1, unsigned char p2)
{
 unsigned short local;

 local = (0x0040) + (p2 * 10);
 func1((unsigned char*)p1,local,10);
}

unsigned char test(void)
{
 unsigned char local1=201;
 unsigned char local2=0;
 T_MYSTRUCT local3;
 T_MYSTRUCT *plocal3 = &local3;

 do {
 func2(plocal3, local1);
 if (plocal3->MyByte != 0x00) {
 local2 ++;
 }
 local1++;
 } while (local1 < 204);
 return (local2);
}
Workaround:

Use either option –Ohm instead of option –Ohs or disable ‘code inlining’ by option –no_inline if
option –Ohs is used

Operating Precautions for EW78K-xxxx-EE

36 Customer Notification

No. C55 MISRA C 2004 Rule 17.4 triggered by mistake

Details

MISRA C rule 17.4 is triggered by mistake for arrays included in structures:
Error [Pm152]: array indexing shall only be applied to objects defined
as an array type (MISRA C 2004 rule 17.4)

Example:

typedef unsigned char uint8;

void test(void);

void test(void)
{
 struct {
 uint8 u8Array[4];
 } tStruct;

 tStruct.u8Array[0] = 5u;
 tStruct.u8Array[1] = tStruct.u8Array[0];
}

Workaround:

Disable rule 17.4 by using the #pragma diag_suppress directive for source lines accessing an
array included in a structure:

typedef unsigned char uint8;

void test(void);

void test(void)
{
 struct {
 uint8 u8Array[4];
 } tStruct;

 #pragma diag_suppress = Pm152
 tStruct.u8Array[0] = 5u;
tStruct.u8Array[1] = tStruct.u8Array[0];
#pragma diag_default = Pm152

}

No. C56 Banked Memory Model: Stack corrupted by wrongly generated code

Details

If banked memory model and an optimization level larger than low is used, the compiler may
generate wrong that corrupts the stack if a comparison of 32bit value with a constant is made.
The example to demonstrate the occurrence is too complex to be listed in this document.

Workaround:

Reduce the optimization level for the function where the problem occurs by using the directive
#pragma optimize=low.

#pragma optimization = low
void foo1 (void)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 37

No. C57 Banked Memory Model: Function Parameter not set

Details

If an optimization level larger than medium is used, the compiler generates wrong code by not
passing the constant function parameter of the banked function ‘func2’ the following sample:

extern unsigned char global_1, buffer_1[8], buffer_2[8];
extern void func1 (void);
extern void func2 (unsigned char);
extern void func3 (void);
extern __non_banked void func4 (unsigned char);

void test(void)
{
 if (buffer_1[1]=='Y') {
 if (buffer_1[2]=='S') {
 switch (buffer_1[3]) {
 case 0x11: {
 func3();
 buffer_1[2] = 'T';
 break;
 }
 case 0x12:{
 func2(1);
 buffer_1[2] = 'T';
 break;
 }
 default :
 {
 buffer_2[2]='S';
 func4(2);
 break;
 }
 }
 }
 else {
 if (buffer_1[2]=='T') {
 }
 else {
 buffer_1[2]--;
 }
 }
 }
}
Workarounds:

1) Reduce the optimization level of the function where the problem occurs by using the directive
#pragma optimize=medium.

#pragma optimization = low
void test (void)
{
 …
}

2) Define function ‘func2’ as ‘non-banked’ function:

extern __non_banked void func2 (unsigned char);

Operating Precautions for EW78K-xxxx-EE

38 Customer Notification

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 39

No. C58 Wrong parameter passing to library function for signed 32bit comparison

Details

If an optimization level low or higher is used, the compiler generates wrong code for the
following sample. The parameter passing to the library function for the signed 32bit comparison
is incorrect; the first parameter must be passed in register AX, BC.

#define HIBYTE(w) ((unsigned char)(((w) >> 8) & 0x00FF))
#define LOBYTE(w) ((unsigned char)((w) & 0x00FF))
#define BUILD_WORD(h, l) (((unsigned short)(h) << 8) + (l))

unsigned short test(signed long i)
{
 unsigned char local1, local2 = 0;
 i *= 10;

 if(i < 0){
 local1 = 0x80;
 i = -i;
 }
 else {
 local1 = 0;
 }
 while(i > 0x7FF){
 i /= 2;
 local2++;
 }
 if(local1) {
 i = ~(unsigned short)i + 1 & 0x7FF;
 }
 return BUILD_WORD(LOBYTE(i), HIBYTE(i) | local2 << 3 | local1);
}

Workaround:

1) Reduce the optimization level of the function where the problem occurs by using the directive
#pragma optimize=none.

#pragma optimization = none
unsigned short test (signed long i)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

40 Customer Notification

No. C59 Internal Compiler error in functions using an endless loop

Details

Functions containing an if - statement using different amounts of stack and immediately followed
by a ‘while(1) ; ‘ construction might generate an internal error.

#include <stdio.h>

 unsigned short s1, s2;

extern unsigned short f1 (unsigned short, unsigned short);

void main(void)
{
 while (1)
 {
 if(s1 != s2) {
 printf("dummy text: 0x%hx vs 0x%hx \n",s1,s2);
 }
 while(1);
 }
}

Workaround:

Replace the endless loop while(1) by a loop using a variable:

#include <stdio.h>

 unsigned short s1, s2;

extern unsigned short f1 (unsigned short, unsigned short);

const unsigned char s3=0;

void main(void)
{

 while (1)
 {
 if(s1 != s2) {
 printf("dummy text: 0x%hx vs 0x%hx \n",s1,s2);
 }
 while(s3==0);
 }

}

The problem will be fixed in the next compiler update.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 41

No. C60 Wrong code generated for masking a bit of 16bit-high byte

Details

In dependent of the used optimization level the compiler generates wrong code for comparing
an unsigned 16bit value with a constant bit pattern with either one bit of the upper byte (high
byte) set or cleared.

#define MASK 0x0200

typedef struct {
 unsigned short element1;
} struct1;

void test(struct1 * parameter1)
{
 if ((parameter1->element1 & MASK) != 0) {
 …
 }
}

Workarounds:

1) Casting the unsigned 16bit value to signed value:

void test(struct1 * parameter1)
{
 if ((((signed short)parameter1->element1) & MASK) != 0) {
 …
 }
}

2) Upgrade to a new compiler version V4.60a or later

No. C61 Missing Warning about change of sign due to integer conversion

If the sign of a constant given in hexadecimal or octal format is changed due an integer
conversion, the compiler doesn’t generate a warning (Pe068).

short test (void)
{
return (0x8000);

}

Workaround:

Use the decimal format:

short workaround (void)
{
return (32768);

}

Form the next compiler version onwards a remark will be generated if the sign of a constant
given in hexadecimal or octal format is changed due to an integer conversion. As result the
behavior will be the same for constants given in decimal and hexadecimal format.

Operating Precautions for EW78K-xxxx-EE

42 Customer Notification

No. C62 Usage of uninitialized carry-flag

If a speed-optimization level medium or higher is used, the compiler may use the carry flag
before using initialize it. This problem is demonstrated in following sample in the following
sample:

unsigned int v1;
unsigned int v2;
unsigned int v3;

volatile unsigned int r1;

void test(void)
{
 unsigned char v4;
 signed int v5;
 static unsigned int v6;

 v4 = (v1/4 / 256)+1;
 v2 = (v1/4); /* error: CY isn't cleared before usage*/
 v6 = (v1/4) ;
 v5 = v3 / 16 / v4;
 r1 = v6 + v2 + v5 + v4;
}

Workaround:

Reduce the optimization to low.
In the special sample above a local temp variable can be used to avoid the problem:

void test(void)
{
 unsigned char v4;
 signed int v5;
static unsigned int v6;
 unsigned int temp = v1/4;

 v4 = (temp / 256)+1;
v2 = temp;
v6 = temp;

 v5 = v3 / 16 / v4;
 r1 = v6 + v2 + v5 + v4;
}
To fix the problem, please download compiler patch V4.50e available at the IAR Systems
MyPages area (www.iar.com -> Menu MyPages or http://supp.iar.com/MyPages/).
Alternatively please feel free to contact the NEC software tool support team
(software_support@eu.necel.com).

http://www.iar.com/
http://supp.iar.com/MyPages/
mailto:software_support@eu.necel.com?subject=Update%20Patch%20icc78k%20V4.50e

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 43

(K) Description of Operating Precautions for Linker (XLINK)

No. D3 Breakpoint cannot be defined in function (only XCOFF78K Format)

Details

In case of using a function with a name of 32 characters (or more) and using static local
variables a debug problem occurs in the XCOFF78K format if the format modifier –ysp is set to
truncate long symbol names. It is not possible to define a breakpoint within the function.

Workaround

Don’t use the format modifier –ysp for the XCOFF78K format.
The format modifier –ysp was required by previous versions of the NEC debuggers. The format
modifier is not necessary anymore if the following debugger versions are used:
ID78K0x-NS: V2.50 or later
ID78K0x-QB: V2.80 or later

Operating Precautions for EW78K-xxxx-EE

44 Customer Notification

No. D12 Memory Bank Area is not filled up.

Details

Although the options –H and –h are used correctly, an area at the end of a memory bank may
not be filled up. This is documented in the linker map-file:

 **
 * *
 * CHECKSUMS *
 * *
 **

Symbol Checksum Memory Start End Initial value
------ -------- ------ ----- --- -------------
__checksum 0x7f2f CODE 0000 - 7FFD 0x0
 CODE 8000 – BFFC
 CODE 00018000 - 0001BFFD
 CODE 00028000 - 0002BFFF
 CODE 00038000 - 0003BFFF

The correct CKECHSUMS section should be as follows:

 **
 * *
 * CHECKSUMS *
 * *
 **

Symbol Checksum Memory Start End Initial value
------ -------- ------ ----- --- -------------
__checksum 0x7f2f CODE 0000 - 7FFD 0x0
 CODE 8000 – BFFF
 CODE 00018000 - 0001BFFF
 CODE 00028000 - 0002BFFF
 CODE 00038000 - 0003BFFF

Workarounds

Either use the previous linker to version V4.59q until V4.60b or later is available or fill-up the
areas manually by adding the following lines of source code:

__root const unsigned char fill1[3] @ 0x0BFFD = {0xFF,0xFF,0xFF};
__root const unsigned char fill2[2] @ 0x1BFFE = {0xFF,0xFF};

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 45

No. D13 Corrupted IRQ table for 78K0R devices in case of using the XCOFF78K output format

Details

In case of using the XCOFF78K format and a device of the 78K0R-series, the IRQ table
contains wrong entries. The addresses of the ISRs are fixed to 0x0000.

Workarounds

Upgrade the linker to version V4.60c or later.

No. D15 Unused odd address isn’t filled up

Details

In some cases an unused odd address directly after a constant located by absolute memory
allocation is not filled-up, although the options -H and -h are used.

Example:

__root const unsigned char const1 @ 0x1080 = 0x01;

The following address 0x01081 is not filled up, although -h00000-BFFF is used

Workarounds

Upgrade the linker to version V4.60c or later.

No. D16 Range Error occurred by mistake

Details

In same cases the definition of a near constant causes a range error by mistake.

Error[e18]: Range error, Limit exceeded

 Where $ = main + 0x1 [0x8C6]
 in module "main" (.\main_z3.r26),
 offset 0x1 in segment part 4, segment CODE
 What: (array + 1) [0x1001]
 Allowed range: 0xF0000 - 0xFFFFF
 Operand: array [0x1001]
 in module main (.\main_z3.r26),
 Offset 0x1 in segment part 3, segment NEAR_CONST

Example:

const __near unsigned char array[10]={0,1,2,3,4,5,6,7,8,9};

Workarounds

Use the option –Rw to reduce the message level to warning. Now an output file is generated
and it is still possible to be noticed about other range problems.
The problem will be fixed in the next major update V4.50a.

Operating Precautions for EW78K-xxxx-EE

46 Customer Notification

No. D17 Error in 78K0R xcl-file (lnk78f11xx_xx.xcl) templates

Details

If a module includes object definitions of a size of more than 64KB, error will occur:

Error[e16]: Segment XCODE (size: 0x16905 align: 0) is too long for
segment definition. At least 0x6905 more bytes needed. The problem
occurred while processing the segment placement command "-
Z(CODE)XCODE=[000D8-3FFFF]/10000", where at the moment of placement
the available memory ranges were "CODE:ef3-ceff,CODE:cf2a-
ffff,CODE:10000-1ffff,CODE:20000-2ffff,CODE:30000-3ffff"

The problem is caused by an incorrect definition of the far code segment XCODE in the 78K0R
xcl-file templates.

//--
// Far functions code segment.
//--
-Z(CODE)XCODE=[000D8-3FFFF]/10000

Workarounds

Please correct the definition by using the option –P (=packed segments):

//--
// Far functions code segment.
//--
-P(CODE)XCODE=[000D8-3FFFF]/10000

Corrected XCL-file templates will be included in the EW78K V4.50a and later.

No. D18 Missing information for far pointer in XCOFF78K output format

Details

Some information for far pointer is missing in the debug format XCOFF78K and therefore the
highest byte (bit16 –bit23) of the pointer address is displayed incorrect in the watch window of
the NEC debugger ID78K0R-QB. The generated code is correct.

Example:

__root const unsigned char test[5] ={0,1,2,3,4};

void test (void)
{

 const unsigned char __far *LocalFarPointer;

 LocalFarPointer = &test[0];
 …
}

Workarounds

The problem will be fixed in XLINK V4.60i and later.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 47

No. D21 Output file format UBROFF5: Error [e62] is generated erroneously if multiple modules are

defined in one assembler source file

Details

The linker error message [e62] is generated erroneously if multiple modules are defined in one
assembler source file and the output file format UBROFF5 is selected:

Error[e62]: File name "C:\...\test.s26" used for multiple files

Example:

 MODULE m1
; some assembler code
 ENDMOD

 MODULE m1
; some assembler code
 ENDMOD

 END

Linker output format selection: -FUBROFF5

Workarounds

Define only one module per assembler source file or use the current version of the UBROFF
format. The problem will be fixed in a future linker version.

No. D22 Output file format IEEE695: Missing enum datatype debug information

Details

An IEE695-format output doesn’t include debug information of enum-datatypes.

Example:

enum colour {rot, blau, gruen, gelb, braun};
enum colour my_enum;

void test (void)
{
 if (my_enum <= braun) {
 my_enum++;
 }
}
Linker output format selection: -FIEEE695

Workarounds

None. The problem will be fixed in a future linker version.

Operating Precautions for EW78K-xxxx-EE

48 Customer Notification

No. D23 Output file format XCOFF78K: Usage of untyped segments may cause a corrupted file

Details

If untyped segments (e.g RSEG MYDATA(1)) are used in an assembler file, the generated
NEC debug file (format xcoff78) may be corrupted. The NEC debugger will generate the
following error message if such file shall be downloaded:

Workarounds

Please use only typed segment:

 RSEG MYDATA(1):DATA

No. D24 Output file format RAW-BINARY: XLINK may hang up

Details

If an output file in RAW-BINARY format shall be generated the linker may hang and the process
must be manually killed.

Workarounds

None. The problem will be fixed in a future version

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 49

(L) Description of Operating Precautions for Debugger (C-SPY)

No. E24 C-SPY Driver for ‘IECUBE’: Realtime Memory Window Update interrupts application

Details

To update the content of the Realtime Memory Window a running application is interrupted by
the C-SPY debugger. This procedure is started when the Realtime Memory is Window is
opened once and is continued even if the Real-time Memory is closed again.

Workaround

The issue will be fixed in version V4.40b or later. To disable the procedure in version V4.30x
and V4.40a use the following procedure:

- close the Real-time Memory Window
- close the Embedded Workbench
- delete the subfolder ‘settings’ of the project folder

In the next debug-session the application isn’t interrupted anymore until the Real-time Memory
Window isn’t opened.

No. E25 Starting C-SPY by command line: Wrong Simulator started

Details

In case of calling C-SPY from the command line, independent of the option setting in command
line or the project options always the simulator for 78K0 is started.

Workaround

Please use a ‘Debug-project’ to start a debug session for an externally build application.
The issue will be fixed in future update (V4.50a or later).

No. E26 Starting C-SPY by command line: C-SPY driver for ‘IECUBE’ crashes in case of using

78K0R emulator

Details

In case of calling C-SPY from the command line with the driver for IECUBE and a 78K0R
emulator, the debugger crashes. This is independent from the debug project.

Workaround

Please use a ‘Debug-project’ to start a debug session for an externally build application.
The issue will be fixed in a future update (V4.50a or later).

Operating Precautions for EW78K-xxxx-EE

50 Customer Notification

No. E27 Event-Breakpoint is deleted incompletely

Details

If an event-breakpoint is deleted in the Breakpoint Window while the Event Window is open, the
breakpoint is only removed form the Breakpoint Window, but not deleted.

Although the breakpoint isn’t listed anymore in the Breakpoint Window, it is still active.
The corresponding event can not be deleted, because it is still in use.

Workaround

Please close the Event Window before deleted a breakpoint in the Breakpoint Window.
If an event-breakpoint had been deleted while the Event Window was open, the breakpoint can
not be deleted anymore by the C-SPY debugger. To remove the breakpoint please close the
Embedded Workbench and delete the file '<project_name>.dni' in the subfolder
‘setting’ of your project folder. This file contains only settings of the last debug session is
automatically created again after starting a new debug-session.

No. E28 C-SPY Driver for ‘MINICUBE’: Wrong display of main clock source of QB-78K0MINI-EE

Details

In the Hardware Setup Window always the System Clock is displayed as main clock source.
If an oscillator is mounted at the internal socket CLK1, clock board should be displayed as main
clock source.
This is only a display problem, if an oscillator is mounted at the internal socket this clock is used
as main clock.

Workaround

The issue is fixed in version V4.50a and later.

No. E29 C-SPY Driver for ‘IE-78K’: C-SPY fatal error in case of illegal SFR access

Details

In case of using the C-SPY debugger and the IE-78K-driver any illegal SFR access causes a
fatal C-SPY error.

Workaround

The issue is fixed in version V4.50a and later.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 51

No. E30 C-SPY Driver for 78K0R ‘IECUBE’ or ‘MINICUBE’: Fatal error after selecting 'SFR' in
disassembly window

Details

If in the disassemble window the memory area 'SFR' is selected, the debugger generates a
FATAL ERROR: unknown exception in driver (#M1) and the debug session is closed.

Workaround
Don’t select the memory area ‘SFR’ in the disassemble window, because code execution is not
possible in this area.
The issue is fixed in version V4.50a and later.

No. E31 C-SPY Driver for 78K0R ‘IECUBE’ or ‘MINICUBE’: Memory read access by macro is

blocked

Details

Memory read is blocked when executing a macro from a breakpoint during execution.

Workaround
Please update to version V4.40c or later.

No. E32 Code Coverage information is incomplete in case of using banked memory systems.

Details

If an application uses banked memory, the Code Coverage information is incomplete.

Workaround
Please update to version V4.40c or later.

No. E33 C-SPY Driver for 78K0R ‘MINICUBE’: The input field for the main clock source allows only

selecting a value from a predefined list.

Details

The input field for the main clock source allows only selecting a value from a predefined list.
Therefore it is not possible to enter the correct frequency, if an external clock of a frequency not
listed is used. The selection of a different frequency causes a C-SPY fatal error after switching
to the external clock.

Workaround
The problem will be fixed in version V4.50a or later.
In case of any urgent request, please contact NEC Electronics Tool Support Team
(‘software_support@eu.necel.com’).

Operating Precautions for EW78K-xxxx-EE

52 Customer Notification

No. E34 If the same name is used for a data-object and for a data-type, this data-object can not be
displayed in the Watch Window.

Details

If the same name is used for a data-object and for a data-type, this data-object can not be
displayed in the Watch Window. After adding the data-object to the Watch window, an error
message is displayed instead of the value:

[syntax error, unexpected TYPE_NAME] column 1

Example

struct same_name {
 struct same_name * next;
 unsigned int dummy1;
 unsigned int dummy2;
};

struct same_name s1;
struct same_name *same_name;

Workaround

1) Use different names for data-objects and data-types
2) Enter the physical address of the data-object and the corresponding type-cast to the

Watch Window instead of the symbolname.
 Example (struct same_name*) 0xFB00

The problem will be fixed in version V4.50a or later.

No. E35 Argument variables can not be used to define a code breakpoint by source location.

Details
Argument Variables can not be used to define a code breakpoint by source location,
e.g. $PROJ_DIR$\source\main.c, row 26.

In case of using argument variables, the error message 'The file does not exist' is displayed
although path and filename are correct.

Workaround
This issue is listed as an improvement proposal for future versions.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 53

No. E36 C-SPY Driver for 78K0R Simulator: Instruction ‘mov memory_location[C],A’ simulated
incorrectly

Details
The instruction ‘mov memory_location[C],A’ is not simulated correctly.
A wrong value is written to memory.

Extract from compiler list file, the incorrectly simulated instruction is marked red.

 8 for(i=0 ; i < SIZE; i++) {
 \ 000001 F0 CLRB X
 \ 000002 EF07 BR S:??main_0
 9 array[i] = 0;
 \ ??main_1:
 \ 000004 60 MOV A, X
 \ 000005 72 MOV C, A
 \ 000006 F1 CLRB A
 \ 000007 28.... MOV (array & 0xFFFF)[C], A
 10 }
 \ 00000A 80 INC X
 \ ??main_0:

Workaround
None. The problem will be fixed in version V4.50a.

Operating Precautions for EW78K-xxxx-EE

54 Customer Notification

No. E37 C-SPY Driver for 78K0R IECUBE: OP-Fetch before execution can not be defined

Details
The checkbox ‘Before Exec’ in Event Definition Dialogue is always disabled. The user can not
define an OP-fetch before execution event.

Workaround
None. Please define an OP-fetch event at the previous instruction.

No. E38 C-SPY Driver for TK-78K: Download to memory banks failed

Details
In case of using a 78K0-device of more than 60KB internal ROM or FLASH memory, the
download to memory bank fails.

Workaround
None. The problem is fixed in C-SPY Version V4.50b.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 55

No. E39 C-SPY Driver for 78K0R: High Byte of Program Counter (bit16-bit23) is set to 0x00

Details
The set-next-statement-command sets the high byte of the Program Counter (bit16-bit23)
always to zero. If the set-next-statement-command is used inside a far function, this will corrupt
the debug session and a manual reset is necessary. Also a manual change of the Program
Counter in the Register Window sets the high byte always to zero.
The issue concerns the 78K0R C-SPY driver for IECUBE, MINICUBE, and TK-Interface.

Workaround
None. The problem will be fixed in future C-SPY Version.

No. E40 C-SPY Driver for 78K0R: A file in Intel-Hex- or Motorola-S-Record format can not be

downloaded

Details
If an Intel-Hex or a Motorola-S-Record file is downloaded instead of debug file the C-SPY
debuggers doesn’t finish the download and stays at an endless loop. The complete Embedded
Workbench has to be closed
afterwards

Workaround
None. Please use any NEC programmer (QB-MINI2, PG-FP4) to program intel-hex files.
The problem will be fixed in future C-SPY Version.

No. E41 C-SPY Simulator Driver: Wrong mask-flag is used to control an interrupt

Details
By mistake a wrong mask flag may be used to control an interrupt.

Example:

For the microcontroller µPD78F0547 the mask flag TMMKH0 (MK0H_bit.no4) is used to control
the interrupt INTTM0 instead the correct mask flag TMMK000 (MK0H_bit.no6).

Workaround
None. The problem will be fixed in the next C-SPY Version.
In case of an urgent request please contact the NEC software tools support team
(software_support@eu.necel.com) and list used microcontroller.

No. E42 C-SPY 78K0 IECUBE Driver: Full trace break doesn’t work

Details
In case of using a trace size of less than 128KB, a defined full trace break doesn’t stop the
application.

Workaround
Please use the max. trace size of 128KB.

mailto:software_support@eu.necel.com?subject=C-Spy%20Simulator%20Driver:%20Usage%20of%20wrong%20mask%20flag%20to%20control%20interrupt%20(Device:%20xxx%20IRQ:xxx%20)

Operating Precautions for EW78K-xxxx-EE

56 Customer Notification

No. E43 C-SPY 78K0R Simulator Driver: Interrupt simulation only works correct at priority level

three.

Details
If an interrupt level two to zero (highest) is defined, the interrupt simulation doesn’t work
correctly. Although the interrupt configuration (mask-flag and general interrupt enable flag) is
correct, interrupts at any other level than three are disabled.

Workaround
Please use only priority level three (lowest) until the problem will be fixed in the next version.

No. E44 C-SPY 78K0 MINICUBE2 Driver: Error message about old firmware version

Details

After the installation of the update patch CS78KE_V460b the following error message will occur
if the firmware-version of the MINICUBE2 is less than V4.06:

Workaround

The MINICUBE2 firmware V4.06 will be available b/o October 2008. Until then please contact
the NEC software tool support team (software_support@eu.necel.com) to receive further
information fixing the problem.

No. E45 C-SPY all Drivers: Update Time Watch Window

Details

If a larger structure (size of several KB) shall be displayed in the C-Spy Watch Window, the
update time can be up to five minutes if the OCD-emulator (e.g. MINICUBE2) is used and up to
two minutes if the IECUBE emulator is used.

Workaround

None.

mailto:software_support@eu.necel.com?subject=C-SPY%2078K0%20error%20message%20about%20old%20MINICUBE2%20firmware

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 57

No. E46 C-SPY Simulator Driver: Incorrect Value shown in Live-Watch Window

Details

For certain source code when changing a element of a anonymous structure, an incorrect value
is shown in the live watch window of the C-SPY simulator; when changing one of the bits, the
whole base type value is changed.

#define TRUE 1
#define FALSE 0

volatile struct {
 UNSIGNED INT extP0_flag:1;
 UNSIGNED INT TM00_flag:1;
};

void test(void)
{
 extP0_flag = TRUE;
 extP0_flag = FALSE;

 TM00_flag = TRUE;
 TM00_flag = FALSE;
}

Workarounds

Use the Watch Window or use standard bitfields.

Operating Precautions for EW78K-xxxx-EE

58 Customer Notification

No. E47 C-SPY 78K0 MINICUBE Driver: Incorrect System Clock Selection

Details

If no oscillator is mounted on the target hardware and no external oscillator is mounted on the
78K0 MINICUBE2 clock board, three different system clocks (4 MHz, 8 MHz, or 16 MHz) can be
provided by MINICUBE2. The selection is done in the C-Spy Hardware Setup Dialogue:

Independent of the selection, the provided system clock is always 4 MHz.

Workaround

Mount an external oscillator on the socket at the 78K0 MINICUBE2 clock board. If this is not
acceptable, please contact the NEC NEC software tool support team
(software_support@eu.necel.com) for further support.

mailto:software_support@eu.necel.com?subject=C-SPY%2078K0%20MINICUBE2:%20internal%20clock%20selection%20problem

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 59

No. E48 Incorrect Variable Address may be displayed in Event Window or Watch Window

Details

If a variable with the same name as one of the CPU registers (a, x, b, c, d, e, h, l) is used by an
application, the symbol lookup cannot distinguish between variable and register name. The
address of the symbol name found first is used, but it is undefined which symbol is found first
and therefore a wrong address may be displayed.

Workaround

Please avoid using the variable names equal to the 78K register names until the problem is
fixed.

Operating Precautions for EW78K-xxxx-EE

60 Customer Notification

No. E49 Stack Initialization in default cstartup-module triggers C-Spy Debugger stack observation

Details

A modified cstartup-module included in the compiler update patch V4.61a, triggers by fault the
C-Spy stack-observation. In the modified cstartup-module the stack area is initialized to avoid
faulty
IECUBE emulator fail safe breaks messages about a read access from uninitialized RAM.

Workaround

Please add the cstartup-module source code included in the EW78K (cstrtup.s26, subfolder
78K\src\lib\) to your application and change the fill-up value in line 135 from 0x00 to 0xCD.

;--

; CSTARTUP source for 78K

;

; This module contains the code executed before the C/C++ "main"

; function is called.

; The code usually must be tailored to suit a specific hardware configuration.

;

; Assembler options:

;

; -D__STANDARD_MODEL__ To assemble for use with compiler standard

; code model.

;

; -D__BANKED_MODEL__ To assemble for use with compiler banked

; code model.

;

; -D__NEAR_MODEL__ To assemble for use with compiler near

; code model.

;

; -D__FAR_MODEL__ To assemble for use with compiler far

; code model.

;

; Linker options:

;

; -D_CODEBANK_REG=0 To link for use with "standard" code model,

; no banked functions.

;

; -D_CODEBANK_REG='addr' To link for use with "banked" code model or

; "standard" code model with banked functions.

; 'addr' = bank switch register address.

;

;--

; Copyright (c) 2003-2008 IAR Systems AB.

; $Revision: 3577 $

;--

…

 MOV A, #0xCD ; line 135 change fill-up value from 0x00 to 0xCD

…

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 61

No. E50 Wrong display of array in C-Spy Watch Window

Details

If an array is displayed in the watch window, not only the correct content is displayed, but also
the following addresses until the next string-end-character.

#include <stdio.h>
__root unsigned char aa[3]={0x30,0x30,0x30};

unsigned char array1[6] ="Hello";
unsigned char array2[6] ="World";

Workaround

None. The issue will be fixed in a future update.

Operating Precautions for EW78K-xxxx-EE

62 Customer Notification

No. E51 C-SPY 78K Simulator Driver: Wrong macro access to 16bit data

Details

If a 16bit variable is accessed by a C-Spy macro triggered by an immediate breakpoint cause by
an access to the same variable, the macro access may deliver a wrong result.

unsigned short test_cnt_u16=0x1717;

void test (void)
{
 test_cnt_u16 ++;
}

C-Spy Macro:

log_counter()
{
 __message "Testcounter : ", test_cnt_u16:%d;
}

Workaround

Use a software breakpoint to trigger the C-Spy macro. The problem will be fixed in the next
update.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 63

No. E52 C-SPY 78K: Displayed floating point value in watch window may be wrong

Details

The displayed value of a floating point variable in the Watch Window may be incorrect.

float d1, d2, d3, float_a, float_b, float_c;

void main(void)
{
 float_a = 0.1;
 float_b = 0.0153;
 float_c = 0.015299999;

 d1 = float_a * float_b;
 d2 = float_a * float_c;
 d3 = d1 * 20.0;

 while(1){}
}

The displayed value of ‘d1’ is wrong, but the application uses the correct value. This can be
seen in the calculated value of d3.

Workaround

None. The problem will be fixed in the next update.

Operating Precautions for EW78K-xxxx-EE

64 Customer Notification

(M) Description of Operating Precautions for the Assembler A78K0R

No. F1 RSEG Directives can not be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a
macro definition:

Example

myDummyMacro MACRO
 RSEG CODE
 NOP
 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. F2 It is not possible to use an assembler DEFINE to an external symbol

Details

In case of using an assembler DEFINE to an external symbol, the linker will generate the
following error:

Fatal Error[e20]: Corrupt file. External index out of range in module
MODUL2 (C:\....\test.r26)

Example

 EXTERN S2

SYM DEFINE S2

Workaround

 None. The assembler version V4.41a or later will generate an error for such cases.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 65

No. F4 EVEN Directive doesn’t align Data to even Address.

Details

The EVEN directive aligns to an even address relative to the start module-startaddress of the
segment instead of an absolute even address. In case of an odd module-startaddress also all
symbols aligned with an even-directive are located at an odd address. In this case a linker error
message will be generated for each access to the misaligned variable:

 IAR Universal Linker V4.60A/386
 Copyright 1987-2006 IAR Systems. All rights reserved.

Error[e18]: Range error, Even value expected
 File: H:\Data\...\even.asm, Line: 17
 Source: MOVW S:integer1, AX
 Where $ = test_even + 0x1 [0xA8] in module "even",
 offset 0x1 in segment part 1, segment CODE
What: (integer2 + 2) & 1 [0x1]
 Allowed range: 0x0 - 0x0 Operand: integer2 [0xfe23]
 in module even, Offset 0x2 in segment part 0, segment SADDR_Z

Example

 RSEG SADDR_Z

CharVar1: DS 1
 EVEN
IntVar1: DS 2

Workaround

Please align the segment-start address to an even address:

 RSEG SADDR_Z(1)

CharVar1: DS 1
 EVEN
IntVar1: DS 2

Operating Precautions for EW78K-xxxx-EE

66 Customer Notification

No. F5 Automatic Replacement of DBNZ Instruction causes Linker Error Message

Details

In case of using the 78K0 DBNZ instruction with the 78k0R assembler, the assembler outputs a
warning that this instruction is not available and will be replaced by DEC and BNC instruction.
But the automatic replacement causes the following linker error message:

Error[e18]: Range error, Limit exceeded

Example

asm_func:
 push BC
 DBNZ C,m1 ; is replaced by DEC C and BNZ m1
 DBNZ B,m1 ; is replaced by DEC B and BNZ m1
m1:

 pop BC
 ret

Workaround

Please use directly the correct instructions:

asm_func:
 push BC
 DEC C
 BNZ m1
 DEC B
 BNZ m1
m1:

 pop BC
 ret

No. F6 Invalid Register in XCH Instruction causes the generation of wrong Op-Code

Details

In case of using the XCH instruction with two registers, register A (R1) must be the first
parameter. If register A (R1) is used as second parameter a wrong op-code is generated
instead of displaying error message [Ab0006] illegal register:

Example

asm_func:
 push AX
 xch X,A
 pop AX
 ret

Workaround

Please use only the correct XCH instruction with register A (R1) as first parameter:

asm_func:
 push AX
 xch A,X
 pop AX
 ret

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 67

No. F7 Invalid XCH instruction doesn’t cause a syntax error

Details

The XCH instruction with two registers requires that the first parameter is the register A (R1).
If by mistake register X (R0) is used as first parameter, the assembler doesn’t generate an error
message, but inserts instead the op-code of the instruction xch A, <register>.

Example

asm_func:
 …
 xch X,D
 …
 ret

Workaround

Please use only the correct XCH instruction with register A (R1) as first parameter:

asm_func:
 …
 mov A,D
 xch A,X
 mov D,A
 …
 ret

No. F8 Wrong Op-Code generated for MOV <register>, SFR-address instruction

Details

In case of using an SFR symbol name or absolute SFR address for a MOV <register>
instruction where register was unequal A, the assembler generated wrong opcodes.
Independent of the used register, the opcode for MOV A, instruction is generated

Example

asm_func:
 …
 mov X, PM0 ; wrong opcodes generated
 mov B, 0xFFF20 ; wrong opcodes generated
 …
 ret

Workaround

Please use the 16bit sfr-address until the problem will be fixed:

asm_func:
 …
 mov X, 0xFF20
 mov B, 0xFF20
 …
 ret

Operating Precautions for EW78K-xxxx-EE

68 Customer Notification

No. F9 Illegal MOV instruction is accepted and wrong Op-Code is generated

Details

The assembler accepts illegal mov instructions from another register than register A (mov
<register1>, <register2>) and generates always the op code for the correct instruction mov
<register1>,A.

Example

asm_func:
 …
 mov B,C ; illegal instruction, opcode for mov B,A generated
 mov D,H ; illegal instruction, opcode for mov D,A generated
 …
 ret

Workaround

Please use correct instructions ‘mov <reg1>, A’ only.

No. F10 Invalid operand of branch instruction causes fatal assembler error

Details

The usage of an invalid operand for the unconditional branch instruction causes a fatal error of
the assembler and an abnormal termination.
Additionally the user is asked to send a problem report to Microsoft (only version v4.60a)

Example

asm_func:
 …
 br CS:0xDF00 ; invalid operand
 …
 ret

Workaround

Please use only correct operands described in manual, e.g.

 mov CS, #0x0F
 movw AX, 0xDF00
 br AX

 br F:0xFDF00
 br N:0xDF00
 br 0x0010

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 69

No. F11 Illegal indirect MOVW instruction is accepted and wrong Op-Code is generated

Details

For the illegal instruction MOVW AX,[BC] the opcode for MOVW, word[BC] is used but the
offset address is not entered.

Example

 PUBLIC asm_func

 RSEG CODE:CODE
asm_func:

 MOVW AX,[BC] ; -> illegal instruction, opcode for MOVW
 ;AX,word[BC] generated, but no offset entered

 ret

Workaround

Please use correct instruction ‘MOVW AX,0x0000[BC] ’.

No. F12 Illegal Op-Code generated if SFR symbol is defined after the usage

Details

The assembler generates an illegal opcode, if a sfr-symbol is defined after the usage. Instead of
a three byte instruction (2 byte opcode + 1byte for the low-byte SFR-address) a four byte
instruction (2 byte opcode + 2byte address) is generated.

Example

 PUBLIC test
SFR1 DEFINE 0xFFFF0

 RSEG CODE
test:
 MOV1 SFR1.0,CY
 MOV1 SFR2.0,CY ; illegal opcode generated
 RET

SFR2 DEFINE 0xFFFF1

 ret

Workaround

Please make sure that all SFR symbols are defined before using them.

Operating Precautions for EW78K-xxxx-EE

70 Customer Notification

(N) Description of Operating Precautions for the C/C++ Compiler ICC78K0R

No. G6 Warning [Pe177] generated by fault

Details

If a variable defined as ‘__root’ is additionally defined as ‘static’, the compiler will generate the
warning message [Pe177] by fault:

Warning[Pe177]: variable "test1" was declared but never referenced

The keyword ‘__root’ informs the linker that the variable should be located even it is not
referenced. This implies already that a variable might not be used in the module and that this
declaration is done on purpose.

 Example:

static __root __far const char test1= 0x01;

Workaround:

The problem will be fixed in the next major update. So far please use one of the following
workarounds:

1) Don’t define a variable as ‘__root’ and ‘static’
2) Disable warning [Pe177] for such definitions:

#pragma diag_suppress=Pe177
static __root __far const char test1 = 0x01;
#pragma diag_default=Pe177

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 71

No. G7 Fatal error in case of using experimental option –mfc

Details

If two static functions of the same name are exist in modules that are compiled simultaneously
by using the currently experimental option –mfc, a fatal error occurs:

Internal Error: [CoreUtil/General]: OgModuleLables – label already
defined. Fatal error detected, aborting.

 Example:

source file f1.c:
static unsigned char func1 (unsigned char p1)
{
 // code doesn't matter
 return (1);
}

source file f1.c:
static unsigned int func1 (unsigned int p1)
{
 // code doesn't matter
 return (1);
}

Workaround:

The problem will be fixed in the platform release, when the option –mfc will be officially
introduced (V4.4xx, schedule is December 2007)

No. G11 Internal compiler error occurs if a default segment name is used for a user-defined

segment.

Details

In case of using a default segment name of the compiler for user-defined segment of constant
data, an internal compiler error occurs after the warning about using a default segment name.

Internal error [Front end]: Invalid C99 IL expression kind
Fatal error detected aborting.

 Example:

#pragma location = "CODE"
__root const unsigned char counter=23;

void test(unsigned char *p1)
{
 p1=((volatile const unsigned char *)&counter);
}

Workaround:

Do not use the compiler default segment names for user-defined segments

Operating Precautions for EW78K-xxxx-EE

72 Customer Notification

No. G12 Wrong access to far and byte-aligned structure

Details

In case of using the data model near and accessing a 16bit value in a far and byte-aligned
structure, the compiler splits the word load in two char loads. During the split it reverts to using
the default pointer, in this case near. This causes a read from the wrong location.

Example:

#define FAR_ADDRESS 0x030000

#pragma pack(1)
typedef struct { unsigned char element1;
 unsigned short element2;
 unsigned char element3;
 } MyStruct;
#pragma pack()

unsigned short Test1;

void test(void)
{
 Test1 = ((MyStruct __far *) FAR_ADDRESS)->element2;
}

Workaround:

Please use the far data model or update to version V4.50b

No. G13 Wrong code generated for indirect memory access

Details

In case of using the data model near wrong code may be generated for an indirect memory
access. The instruction 'mov A,[HL+C]' is used instead of 'mov A,[HL+B]'.

Workaround:

Please use the far data model.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 73

No. G14 Register-bank selection of interrupt function may be ignored

Details

In case of using an optimization level higher than ‘low’ the compiler may ignore the register-bank
selection of the user (#pragma bank) for some interrupt functions.

Example:

#include <io78f1188_e4.h>
extern void f2 (unsigned char);

typedef enum {
 GPT_1,
 GPT_2
}ENUM1;
typedef enum {
 GPT_3,
 GPT_5
} ENUM2;
typedef struct {
 ENUM1 s1;
 unsigned char s2;
 void* s3;
}STRUCT1_T;

typedef struct{
 ENUM2 s4;
 unsigned short s5;
} STRUCT2_T;

#pragma bank = 2
__interrupt void isr(void)
{
 unsigned short u16PR0sav, u16PR1sav;
 u16PR0sav = PR00 ;
 u16PR1sav = PR01 ;
 __enable_interrupt();

 if (ptr1[((unsigned char) 0)].s1 == GPT_1) {
 array[((unsigned char) 0)].s4 = GPT_5;
 }
 f2(((unsigned char) 0));

 __disable_interrupt();
 PR00 = u16PR0sav;
 PR01 = u16PR1sav;
}

Workaround:

Please reduce the optimization level for the interrupt function, if the instruction ‘SEL RB2’ isn’t
generated for your interrupt function:

#pragma optimize = s 3
#pragma bank = 2
__interrupt void isr(void)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

74 Customer Notification

No. G15 Wrong access to local variable located on stack

Details

In case of using multiple nested if statements (level > 4), multiple accesses to local variables
located on the stack, and an optimization level greater than low, wrong code may generated for
stack-access at lower if statement levels.

Workaround:

Please reduce the optimization level to low for the function showing the problem:
#pragma optimize=low
void test (void)
{
 …
}

No. G16 Internal Compiler Error may occur if calculation result is zero

Details

Code examples where a calculation result is zero may cause an internal compiler error.

Example:

signed int i,k;
int test(void)
{
 k=90-(9-i)*10;
}

Workaround:

Try to rewrite the arithmetic expression to avoid a zero result:

int test (void)
{
 k=90-(90-10*i);
}

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 75

No. G17 Internal Compiler Error occurs if bit complement and bit-and operation are combined in

one command

Details

If the C command to complement a special functions register bit is combined with a bit and
command to mask a single bit and an assignment to an integer variable, an internal error
occurs:

Internal Error: [CoreUtil/General]: Illegal state

Example:

#include <io78F1166_A0.h>

unsigned int IntVar;

void test(void)
{
 IntVar = ~P0_bit.no0 & 0x01;
}

Workaround:

Please split up the operations in separate lines of code.

unsigned int IntVar;

void test(void)
{
IntVar = ~P0_bit.no0;
IntVar = IntVar & 0x01;

}

Operating Precautions for EW78K-xxxx-EE

76 Customer Notification

No. G18 Wrong code generated for access to multi-dimensional array

Details

In a case of using optimization type speed level high, the compiler may generate wrong code for
the access of multi-dimensional arrays.

Example:

static void test (void)
{
 unsigned short x, y;

 for (y = 0; y < 8; y++){
 for (x = 0; x < 128; x++) {
 buffer[y][x] = 0x00;
 }
 }
}

void dummy(void)
{
 test();
}

Workaround:

Please reduce the optimization level to medium or use while instead of for loops.

No. G19 Spurious linker warning about type conflict

Details

The compiler could in some cases (e.g. high level of nested typedef types) emit data type
incorrect debug information for typedef types. When linking with XLINK, this could result in a
spurious type conflict warning:

Warning[w6]: Type conflict for external/entry "<object-name>", in
module file2 against external/entry in module file1; different types

The generated code is correct.

Workaround:

Please reduce the level of nested typedef types.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 77

No. G20 Extended EC++: Instantiating a template class may cause an internal error

Details

Instantiating a template class like vector on a function type may result in an internal error

Internal Error: [Visit types]: Error type

Example:

enum eState { state1,state2};

template <class T, T init> class CEnum
 {
 public:
 CEnum() {m_Value = init; }
 operator unsigned char () const {return (unsigned char)m_Value; }
 void operator +=(unsigned char arg){m_Value = (T)(m_Value + arg) }
 private:
 T m_Value;
 };

static __saddr __no_init CEnum<enum eState, state1> state;

void test(void)
{
 state += state2;
}

Workaround:

None.

No. G21 Internal Compiler Error occurs if numeric constant is used as function pointer

Details

If an numeric constant is used as function pointer, an internal compiler error occurs:
Internal Error: [Cal1]: Diagnostics: Illegal Operand

Example:

void test(void)
{
 (*(void(*)())0x1000)();
}

Workaround:

Use a variable instead of the numeric constant.

unsigned int address = 0x1000;

void test(void)
{
 (*(void(*)())address)();
}

Operating Precautions for EW78K-xxxx-EE

78 Customer Notification

No. G22 Fatal Error (Uncontrolled termination) occurs if option –Ohs is used

Details

If the following sample is compiled by using option –Ohs a fatal error occurs:
Fatal Error[c0000005hìø_°a´_”°°_„ìø_ˆ°°_"]: Uncontrolled termination
In case of using Version V4.60a and WindowsXP the user is asked to inform Microsoft about
this issue.

Example:

typedef struct
{
 unsigned char MyByte;
}T_MYSTRUCT;

extern void func1(unsigned char *, unsigned short , unsigned short);

void func2(T_MYSTRUCT *p1, unsigned char p2)
{
 unsigned short local;

 local = (0x0040) + (p2 * 10);
 func1((unsigned char*)p1,local,10);
}

unsigned char test(void)
{
 unsigned char local1=201;
 unsigned char local2=0;
 T_MYSTRUCT local3;
 T_MYSTRUCT *plocal3 = &local3;

 do {
 func2(plocal3, local1);
 if (plocal3->MyByte != 0x00) {
 local2 ++;
 }
 local1++;
 } while (local1 < 204);
 return (local2);
}
Workaround:

Use either option –Ohm instead of option –Ohs or disable ‘code inlining’ by option –no_inline if
option –Ohs is used

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 79

No. G23 MISRA C 2004 Rule 17.4 triggered by mistake

Details

MISRA C rule 17.4 is triggered by mistake for arrays included in structures:
Error [Pm152]: array indexing shall only be applied to objects defined
as an array type (MISRA C 2004 rule 17.4)

Example:

typedef unsigned char uint8;

void test(void);

void test(void)
{
 struct {
 uint8 u8Array[4];
 } tStruct;

 tStruct.u8Array[0] = 5u;
 tStruct.u8Array[1] = tStruct.u8Array[0];
}

Workaround:

Disable rule 17.4 by using the #pragma diag_suppress directive for source lines accessing an
array included in a structure:
T

typedef unsigned char uint8;

void test(void);

void test(void)
{
 struct {
 uint8 u8Array[4];
 } tStruct;

 #pragma diag_suppress = Pm152
 tStruct.u8Array[0] = 5u;
tStruct.u8Array[1] = tStruct.u8Array[0];
#pragma diag_default = Pm152

}

No. G24 DLIB Floating Point Function overwrites SADDR area

Details

Some DLIB floating point functions use the SADDR area 0xFFE20 … 0xFFE27 without
reserving it and therefore may override application data.

Workarounds:

- reserve the area by a dummy variable unused by the application
 __no_init __root char dummy[8] @0xFFE20;

- exclude the area in the segment definition in the XCL-file:
 -Z(DATA)SADDR_I,SADDR_Z,SADDR_N=FFE28-FFEDF

Operating Precautions for EW78K-xxxx-EE

80 Customer Notification

No. G25 Misaligned structure access

Details

In the following sample the compiler generates a misaligned access to a byte-aligned structure.
The compiler uses a 16bit-instruction to write the return value of the function although the
structure maybe located at an odd address.

Example:

typedef struct
{
unsigned char Value;
unsigned char Invers;
} TWO_CHAR;

extern TWO_CHAR func1 (unsigned char Value);

volatile TWO_CHAR result;

void test (void)
{
 result = func1 (0xaa); // illegal word access
}

Workarounds:

Increase the alignment of the structure manually:

#pragma data_alignment=2
volatile TWO_CHAR result;

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 81

No. G26 Wrong parameter passing of far pointer

Details

In the following sample the compiler generates wrong code during parameter passing of a far
pointer, if an optimization level medium or higher is selected. Instead of the correct segment
address (= high byte of 20 bit value), a fixed segment address 0xFxxxx is used.

Example:

typedef struct
{
 const unsigned char __far* StartAdr;
 const unsigned char __far* EndAdr;
} AREA1;

extern const unsigned char array[2][2048];
extern unsigned char func1(const unsigned char __far*, const unsigned
char __far*);

const AREA1 s2[2] = {
 { &array[0][0], &array[0][2047] },
 { &array[1][0], &array[1][2047] }
};

unsigned char result;

void test (void)
{
 while(1) {
 result = func1 (s2[0].StartAdr, s2[1].EndAdr);
 }
}

Workarounds:

Use the optimization level low for the interested function:

#pragma optimize = low
void test (void)
{
 …
}

Operating Precautions for EW78K-xxxx-EE

82 Customer Notification

No. G27 Missing Warning about change of sign due to integer conversion

If the sign of a constant given in hexadecimal or octal format is changed due to an integer
conversion, the compiler doesn’t generate a warning (Pe068).

short test (void)
{
return (0x8000);

}

Workaround:

Use the decimal format:

short workaround (void)
{
return (32768);

}

Form the next compiler version onwards a remark will be generated if the sign of a constant
given in hexadecimal or octal format is changed due to an integer conversion. As result the
behavior will be the same for constants given in decimal and hexadecimal format.

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 83

No. G28 Delayed insertion of DI instruction

If the optimization level ‘high speed’ is used, the insertion of a DI instruction may be delayed, so
that the instructions of a following ‘if’-condition are execution before the interrupt was disabled.

#include <intrinsics.h>

typedef struct
{
 unsigned char e0;
 unsigned char e1;
} T_s1;

extern void func1 (volatile T_s1*) ;
extern void func2 (volatile T_s1*) ;

volatile unsigned char var1;
volatile T_s1 *var2;
volatile T_s1 *var3;

void test(void)
{
 if (var1 >= 3) {
 __disable_interrupt();
 if (var2) {
 func1(var2);
 }
 if (var3) {
 func2(var3);
 }
 __enable_interrupt();
 }
}

Workarounds:

1) use the inline assembler instead of the intrinsic functions:

void test(void)
{
 if (var1 >= 3) {
 asm(“DI”);
 if (var2) {
 func1(var2);
 }
 if (var3) {
 func2(var3);
 }
 __enable_interrupt();
 }
}

2) use a different optimization setting (e.g. medium or high size)

Operating Precautions for EW78K-xxxx-EE

84 Customer Notification

No. G29 Misaligned 16bit-access

Although the compiler option ‘—disable_data_alignment’ is set, the compiler uses a word
instruction to increment a 16bit variable.

unsigned short count; // located at odd address

void test(void)
{
 count++;
}

Workarounds:

1) don’t use the compiler option ‘—disable_data_alignment’ (recommended)
2) use the #pragma data_alignment directive to force that the 16bit value is located at an
even address:

#pragma data_alignment=2
 unsigned short count; // force location at even address, even if
 // option --disable_data_alignment is set
#pragma data_alignment=1

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 85

(O) Valid Specification

Item Date published Document No. Document Title

1 March 2008 UEW-7 78K IAR Embedded Workbench ® IDE User Guide

2 May 2006 C78K-2 78K IAR C/C++ Compiler Reference Guide

3 May 2006 A78K-2 78K IAR Assembler Reference Guide
4 May 2005 M78K-2 78K IAR Embedded Workbench Migration Guide

5 February 2008 CS78KHW-3 78K C-SPY Hardware Debugger Systems Guide

6 December 2007 XLINK-461A IAR Linker and Library Tools Reference Guide

7 February 2008 EWMISRAC1998-3 IAR Embedded Workbench MISRA C 1998 Reference Guide

8 March 2008 EWMISRAC2004-1 IAR Embedded Workbench MISRA C 2004 Reference Guide

(P) Revision

Edition Date published Document No. Comment

1 05-07-2004 CESCN0004V10 First release.

2 26-10-2004 CESCN0004V11 Items A1, A2, C2, C3, D1 added

3 06-12-2004 CESCN0004V12 Items A3, A4, A5, B4, C4 added, EW78K version V4.20a

4 17-01-2005 CESCN0004V13 Items C5, D2, E1 added

5 11-02-2005 CESCN0004V14 Items C6, C7, C8 added

6 07-03-2005 CESCN0004V15 Items C9, C10 added

7 08-04-2005 CESCN0004V16 Items C11, D3, D4, D5, D6 added

8 20-04-2005 CESCN0004V17 Item C12 added

9 10-05-2005 CESCN0004V18 Item C13 added

10 27-05-2005 CESCN0004V19 Items C14, E2 added

11 01-06-2005 CESCN0004V20 Items C15, C16 added

12 22-07-2005 CESCN0004V21 Items C17, B2, D7, E3 added, EW78K version V4.30a

13 18-08-2005 CESCN0004V22 Items C18, C19, D8, D9, D10, E4 added

14 02-09-2005 CESCN0004V23 Items C20, C21, C22 added

15 13-09-2005 CESCN0004V24 Patch Update for Compiler V4.30c and Debugger V4.30b

16 13-10-2005 CESCN0004V25 Items D11, E5, E6, E7 added

17 26-10-2005 CESCN0004V26 Items E8, E9 added

18 14-11-2005 CESCN0004V27 Items E10, E11, E12,E13 added,
Patch Update for C-SPY Debugger V4.30d

19 01-12-2005 CESCN0004V28 Items E14, E15, E16 added

20 15-12-2005 CESCN0004V29 Patch Update for C-SPY Debugger V4.30e

21 13-01-2006 CESCN0004V30 Item E17 added

22 26-01-2006 CESCN0004V31 Items C23, C24 added

Operating Precautions for EW78K-xxxx-EE

86 Customer Notification

Date published Document No. Comment Edition

23 02-03-2006 CESCN0004V32 Items C25, E18 added

24 13-03-2006 CESCN0004V33 Items C26, E19, E20 added

25 15-03-2006 CESCN0004V34 Correction of table (C)

26 03-04-2006 CESCN0004V35 Items C27, E21,E22 added

27 13-04-2006 CESCN0004V36 Items A6, E23 added

28 09-06-2006 CESCN0004V37 Item C25 updated, items B3, C28, C29 added

29 11-07-2006 CESCN0004V38 Item C30 added, EW78K version V4.40a

30 20-07-2006 CESCN0004V39 Items A7, C31, C32, G1, G2 added

31 04-08-2006 CESCN0004V40 Items A8, A9, B4, B5, F3,F4 added

32 01-09-2006 CESCN0004V41 Items B4, A9, F3 updated, items C33, C34, D12,D13
added

33 07-09-2006 CESCN0004V42 Items D12, D13 updated

34 06-10-2006 U18447EE1V0IF00

Items C35, C36, D14, E24, G3, G4 added
Items D12, D13 updated
Items C1, C2, C3, C7, C8, D2 removed
Patch Update for compiler ICC78K and ICC78K0R
version V4.40b and for linker XLINK version 4.60c
new NEC Electronics world-wide document number

35 23-10-2006 U18447EE2V0IF00 Items D15, E25, E26, G5 added

36 03-11-2006 U18447EE3V0IF00 Items C37, E27, E28, E29, G6 added

37 17-11-2006 U18447EE3V1IF00 Items D16, E30 added

38 23-11-2006 U18447EE3V2IF00 Items E31, E32 added, patch update for C-SPY V4.40c

39 15-12-2006 U18447EE3V3IF00 Items C38 , G7 , E33 added

40 02-02-2007 U18447EE3V4IF00 Items E34, E35 , F5, F6, added

41 27-02-2007 U18447EE3V5IF00 Items C39 , C40 , G8 , G9 added

42 09-03-2007 U18447EE3V6IF00 Item E36 added

43 14-05-2007 U18447EE3V7IF00

EW78K version V4.50a
Items C4, C6, C9, C10, C11, C12, C13, C14, C15, C16,
C17, E1 removed
Items C41, D17, D18, G10 added

44 18-06-2007 U18447EE3V8IF00 Items C42 , C43, G11, F7 added,
update of disclaimer, update of valid specification table

45 22-06-2007 U18447EE3V9IF00
Items G12, E37 added
Items D1, D4, D5, D6 removed
Linker update V4.60i

46 09-07-2007 U18447EE4V0IF00 Compiler update V4.50b, C-SPY update TK78K V4.50b
Item E38 added

47 01-08-2007 U18447EE4V1IF00 Items E39 , G13 added

48 27-08-2007 U18447EE4V2IF00 Items C44, G14 added

49 28-09-2007 U18447EE4V3IF00 Items E40, G15 added

50 26-10-2007 U18447EE4V4IF00 Compiler update V4.50c
Item E40 updated, Items A10, C45, G16 added

51 05-11-2007 U18447EE4V5IF00 Item C46 added

52 22-11-2007 U18447EE4V6IF00 Item E41 added

53 06-12-2007 U18447EE4V7IF00 Items C47 , G17 added

54 15-01-2008 U18447EE4V8IF00 Items C48 , G18 added

Operating Precautions for EW78K-xxxx-EE

 Customer Notification 87

Date published Document No. Comment Edition

55 28-01-2008 U18447EE4V9IF00 Item C49 added

56 11-02-2008 U18447EE5V0IF00 Items C50 , G19 added

57 07-03-2008 U18447EE5V1IF00 Items C51 , E42, G20 added

58 17-04-2008 U18447EE5V2IF00 Items C52, G21, F8 added

59 05-05-2008 U18447EE5V3IF00 Items C53, D20 added

60 21-05-2008 U18447EE5V4IF00
Items C18-C28, C30, D7, E3,E4, E7, E10-E12 removed
Embedded Workbench update EW78K V4.60a
Item D20 corrected

61 12-06-2008 U18447EE5V5IF00 Item D21, F9 added

62 09-07-2008 U18447EE5V6IF00 Items C54, G22 added, Items E8, E13, E15, E16 removed
C-SPY Update V4.60b (support of new 78K0R/Ix3 series)

63 17-07-2008 U18447EE5V7IF00 Items E43, E44, F10 added

64 22-08-2008 U18447EE5V8IF00 Item A11 added, linker update V4.61h

65 15-09-2008 U18447EE5V9IF00 Items C55, C56, C57, E45, G23 added

66 21-10-2008 U18447EE6V0IF00 Items C58, E46, E47 added

67 15-12-2008 U18447EE6V1IF00

Assembler and compiler update V4.61a,
Item C58 corrected,
Items G1, G2, G3,G4 removed
Item A12, A13, G24 added

68 19-01-2009 U18447EE6V2IF00 Items D22, ,E48, G25 added

69 28-01-2009 U18447EE6V3IF00 Items C59, E49 ,G26 added

70 13-02-2009 U18447EE6V4IF00 Items F11, C60 added

71 02-03-2009 U18447EE6V5IF00 Items A14, E50, F12 added

72 09-03-2009 U18447EE6V6IF00 Items D23, D24 added, linker update V4.61l
Items D8, D9, D10, D11, D20 removed

73 04-05-2009 U18447EE6V7IF00 Items C61, E51, G27 added

74 08-05-2009 U18447EE6V8IF00 Item G28 added

75 20-05-2009 U18447EE6V9IF00 Item G29 added

76 02-07-2009 U18447EE6VAIF00

Update EW78K V4.62a,
Items A15, E52 added,
Items A1, A3, B2, B4, C31…C36, C40, C41, E2, E5, E6,
E9, E14, E17… E23, F3, G5, G8…G10 removed

77 07-07-09 U18447EE6VBIF00 Item C62 added, Compiler patch icc78K V4.50e added

	Operating Precautions Embedded Workbench for 78K
	(A) Table of Operating Precautions for the IDE EW78K
	(B) Table of Operating Precautions for the Assembler A78K
	(C) Table of Operating Precautions for C/C++ Compiler ICC78K
	(D) Table of Operating Precautions for the Linker XLINK
	(E) Table of Operating Precautions for C-SPY Debugger CS78K
	(F) Table of Operating Precautions for the Assembler A78K0R
	(G) Table of Operating Precautions for C/C++ Compiler ICC78K0R
	(H) Description of Operating Precautions for the IDE EW78K
	No. A2
	No. A4
	No. A5
	No. A6
	No. A7
	No. A8
	No. A9
	No. A10
	No. A11
	No. A12
	No. A13
	No. A14
	No. A15

	(I) Description of Operating Precautions for the Assembler A78K
	No. B1
	No. B3
	No. B5

	(J) Description of Operating Precautions for the C/C++ Compiler ICC78K
	No. C5
	No. C29
	No. C37
	No. C38
	No. C39
	No. C42
	No. C43
	No. C44
	No. C45
	No. C46
	No. C47
	No. C48
	No. C49
	No. C50
	No. C51
	No. C52
	No. C53
	No. C54
	No. C55
	No. C56
	No. C57
	No. C58
	No. C59
	No. C60
	No. C61
	No. C62

	(K) Description of Operating Precautions for Linker (XLINK)
	No. D3
	No. D12
	No. D13
	No. D15
	No. D16
	No. D17
	No. D18
	No. D21
	No. D22
	No. D23
	No. D24

	(L) Description of Operating Precautions for Debugger (C-SPY)
	No. E24
	No. E25
	No. E26
	No. E27
	No. E28
	No. E29
	No. E30
	No. E31
	No. E32
	No. E33
	No. E34
	No. E35
	No. E36
	No. E37
	No. E38
	No. E39
	No. E40
	No. E41
	No. E42
	No. E43
	No. E44
	No. E45
	No. E46
	No. E47
	No. E48
	No. E49
	No. E50
	No. E51
	No. E52

	(M) Description of Operating Precautions for the Assembler A78K0R
	No. F1
	No. F2
	No. F4
	No. F5
	No. F6
	No. F7
	No. F8
	No. F9
	No. F10
	No. F11
	No. F12

	(N) Description of Operating Precautions for the C/C++ Compiler ICC78K0R
	No. G6
	No. G7
	No. G11
	No. G12
	No. G13
	No. G14
	No. G15
	No. G16
	No. G17
	No. G18
	No. G19
	No. G20
	No. G21
	No. G22
	No. G23
	No. G24
	No. G25
	No. G26
	No. G27
	No. G28
	No. G29

	(O) Valid Specification
	(P) Revision

