Process data exchange with PDOs
The main task of a CANopen system is of course the exchange of process data. For this, not only most of the CAN identifiers are provided but also most of the object dictionary entries. For the transmission of process data, this occurs without additional protocol overhead and transmission occurs according to the so-called "producer-consumer principle". This means that a message transmitted by a node (the "producer") can be received by all other nodes (the "consumers"). This principle is also referred to as "broadcasting" and represents a very efficient principle of data transmission, especially if a message (e.g. a synchronization message) is to be transmitted at the same time to all process participants. 
 
A CAN message that contains process data is called PDO ("Process Data Object"). As already described, transmission of PDOs is only possible in the "Operational" state. PDOs have no fixed format. The data field of a PDO can be between one and eight data bytes long. The content of a PDO can also not be readily interpreted. The basic idea here is that both the transmitter and the receiver know how the content of a PDO is to be interpreted. For this reason it is sufficient to identify a PDO only by its COB-ID. The so-called "PDO mapping" describes which individual process variables in the data field of a PDO are transmitted, how they are arranged and which data type and length they have. Therefore the content and meaning of the data field of each defined PDO is described in the form of a PDO-mapping record inside the object dictionary both on the transmit and on the receive side. 
 
The PDO producer composes the data field of a PDO in accordance with its TxPDO mapping. For this it takes the current data of the variables to be transmitted from its object dictionary and copies these into the data field of the PDO before the CAN message (PDO) is sent. The same happens on the consumer side: on the basis of the RxPDO mapping record, the data bytes of the received PDOs are copied into local object dictionary entries and thus generally device-specific actions are triggered (e.g. setting of digital outputs). 
A network node that wants to accept a certain PDO must only activate the coresponding CAN message. This is done with "set valid" of the relevant COB-ID entry in the OD. 
 
But now back to PDO mapping. The principle of the arrangement (mapping) of process variables is shown in the following (the variables are available in the form of object dictionary entries in the application profile). The mapping of the individual process variables in the data field of a PDO is described in the form of a table. This is also given as an object dictionary entry, namely for every transmit- and receive-PDO in [16xx] or [1Axx]. These tables, and therefore the mapping of the process variables in the data field of a PDO can be configured via SDO write accesses. 
 



 
In this example there are exactly two object links: from object (process variable) [2345sub67] of the PDO producer to object [5432sub10] of the PDO consumer and from object [6000sub01] of the producer to object [6200sub02] of the consumer. The third transmit object, [2001sub00] is not evaluated on the receiver side and is therefore covered up with a so-called dummy object. 
 
The mapping tables are of data type "PDO mapping", which contains in subindex 0 the number of mapped objects and in subindex 1 to 8 the mapped object dictionary entries themselves as DWORD. This contains the 24-bit long OD address (index, subindex) and the 8-bit coded length of the OD entry. A device that supports eight mapping entries has a granularity of 8 and can therefore only carry out "byte-wise mapping". Devices with a granularity of 1, on the other hand, support mapping of each individual PDO bit ("bit-mapping"). Accordingly there must then be 64 entries in the mapping table. 
 
However, a PDO is described not only by mapping but also by its communication parameters. These are: COB-ID, i.e. identifier of the CAN message, "transmission type", "inhibit time", and can all be configured by a corresponding object dictionary entry. The position of this additional object dictionary entry has an offset of 0x200 before the associated mapping entry, i.e. for transmit PDOs [18xx] and for receive PDOs [14xx]. Each PDO is therefore described by two different OD entries, which firmly belong together and both must be configured by the system integrator. The following table shows the record "PDO parameter": 
 


	Sub-Index
	Contents
	Data type

	0

	Largest sub-index supported

	BYTE


	1

	COB-ID

	DWORD


	2

	Type

	BYTE


	3

	Inhibit time in ms

	WORD


	5

	Event timer

	WORD



	



 
Subindex 1 contains the CAN identifier of the PDO right-adjusted in the double word. The highest value bit indicates whether the PDO is active (valid) or inactive (invalid). A set MSB means invalid, a value of 0x80000199, for example, describes an invalid first TxPDO of the node with the number 25. 
 
The transmission type of a PDO can be set via the second subindex. First it is necessary to distinguish between synchronous and asynchronous PDOs: 
 


	Value (dec)
	Type

	0

	acyclic synchronous


	1...240

	cyclic synchronous


	241...251

	reserved


	252

	synchronous RTR only


	253

	asynchronous RTR only


	254...255

	asynchronous



	



 
Asynchronous PDOs  are event-controlled and represent the normal transmission type of PDOs. This means that when at least one of the process variables mapped in a PDO is altered, for example an input value, the PDO is immediately transmitted. For this, the values 255 or 254 are to be entered as PDO type. 
 
Synchronous PDOs  are only transmitted after prior reception of a synchronization message (Sync Object) . PDO transmission is thus carried out synchronously in the entire network, more or less at the same time. But what is much more important is that all device inputs must be sampled on the arrival of the sync object, so that a uniform snapshot of the process results. With the next sync-message, the recorded data are then sent in the synchronous PDOs. Therefore there is a delay here corresponding to the cycle time of the Sync message, as the consumers receive the process variables at the time of the previous Sync message. In output direction the synchronous PDOs received by a node only become valid on arrival of the next Sync message. 
 
In order that the bus is not blocked up by a large number of synchronous PDOs, which are all sent with every Sync message, the values 1..240 of the cyclic synchronous PDO type are used as dividers for the transmission interval. Accordingly, [18xxsub02] = 4 means that the synchronous PDO is only sent with every fourth Sync message. Unaffected by this, the device must of course record its inputs with every Sync message, as it may happen that synchronously recorded process variables in a PDO are requested by RTR. In this case the CANopen device must transmit the corresponding PDO with the synchronously recorded values immediately. In [1006], the parameter "Communication Cycle Period", the nodes can be notified of the Sync interval in microseconds. 


Finally, in subindex 3 an "inhibit time" can be set for asynchronous PDOs. The value is to be given as a multiple of 100 microseconds. The inhibit time is useful when frequent uncontrolled alterations of input values occur; e.g. with an open analog input. If the inhibit time is configured, the node may not transmit the relevant PDO again before expiry of the inhibit time; this ensures that there is no inadmissibly high busload due to a so-called "babbling idiot". The inhibit time is only used for TxPDOs, of course. It has no significance for RxPDOs. 
 
Asynchronous TxPDOs can be transmitted cyclically with the event timer, subindex 5. If its value is greater than 0, it becomes a millisecond timer. When this is expired, the PDO is transmitted. Transmission therefore takes place both when an external device input is altered and when the event timer is lapsed. This subindex is also only significant for transmit-PDOs. 
 
A CANopen node usually has four transmit-PDOs and four receive-PDOs, where one COB-ID is reserved for each of these PDOs. This therefore occupies a total of 127*4*2 = 938 COB-IDs, i.e. almost half of the entire identifier space. However, due to the so-called "object linking", i.e. the establishing of communication relationships between a transmit- and a receive-PDO, CAN identifiers become free again, as with linking either the producer or the consumer must adapt its COB-ID to those of the communication partner and it's own reserved COB-ID thus becomes free. Therefore, in practice, for a network with 127 network nodes, an average of eight COB-IDs are available per device for TxPDOs. For networks with a lower number of network nodes, the unused COB-IDs can also be used of course. The system integrator must always have an overview of the allocation of the identifier space and the COB-IDs actually in use; for more complex systems, a software tool - e.g. IXXAT CANopen ConfigStudio, is recommended. This tool, for example, handles PDO-mapping and -linking automatically.
由于PDO所传输的数据内容是无协议的且分配的标识符范围较SDO靠前,因此,其效率和优先级都是较高的,通常用于实时过程数据的传输.
PDO是生产/消费类型的通讯方式,数据只有一个生产者(发送),但是消费者(接收)可以有多个,生产者和消费者事先都已知道数据的类型和内容(通过设置PDO映射来管理).
对PDO通讯参数的设置可以实现四种通讯方式:
1. 同步传输.在收到SYNC消息后触发PDO发送,可以定义收到几个SYNC后触发一次TPDO,在有SYNC的CANopen网络中,SYNC就相当于一个网络节拍,数据根据节拍来进行固定周期的过程数据传输.比如网络中有一个压力传感器,一个温度传感器,一个物位传感器,网络中有一个HMI监控终端来实时监控三个传感器采集的数据,压力传感器可能检测的是一个快速的压力变化,那可以每隔200mS更新一次数据,温度可能需要1S更新一次数据,物位可能5S更新一次数据,(假设各传感器的数据采集周期都比数据更新周期小,如果大的话数据更新快可能没有意义,呵呵)现在我可以设置一个200mS周期的SYNC消息,压力传感器每收到一个SYNC就向HMI传输一次数据,温度传感器可以每隔5个SYNC传输一次数据,同样物位传感器就是每收到25个SYNC发送一次数据.这种通讯方式显得比较规矩,好管理,系统运行效率高,适合周期性数据更新的应用.
2. 远程请求.在需要网络上某个节点的数据的时候,我发一个远程数据请求过去,对方在接收到请求后,把我要的数据给发过来,这种方式是在我需要的时候去主动获取.
3. 定时发送.这个有别于SYNC,它是在本节点实现周期发送,通过设置PDO参数,定一个周期,每隔固定的时间向网络上发送一次PDO,它与SYNC无关,在网络设计中主要按照传感器的数据采集速度和数据更新要求来设定定时周期.
4. 事件触发.当节点的某个时间发生触发的一次数据发送,例如当某个接着报警开关的开关量采集节点的报警状态发生变化时,触发一次PDO将报警状态发送到网络上,使系统能够及时获得该报警状态信息.该方式是实时性最好的一种传输方式,特别适合系统运行出错报警和重大事件的及时处理上.
上面的几种传输方式各有所长,在CANopen网络的设计中,按照不同的应用灵活配合使用才能构建一个优秀的解决方案.
