
18 Issue 176 March 2005 CIRCUIT CELLAR® www.circuitcellar.com

to employ the software to write files
that can be read with Windows Explorer
and a standard flash memory card
reader/writer. First, let’s examine how to
talk to the SD/MMC at the lowest level.

HARDWARE
SD and MMC flash memory cards

both support the SPI transfer protocol
and share an almost identical electri-

Many new microcontroller applica-
tions require the ability to store large
volumes of data. Transferring data
between a portable device and a PC
has become increasingly simple with
the emergence of portable flash mem-
ory cards such as the Secure Digital
(SD), MultiMediaCard (MMC),
CompactFlash (CF), and xD Picture
Cards. For the data to be easily read-
able on the PC, it must be stored
using a file system supported by the
operating system. The industry stan-
dard format for flash memory cards is
the DOS file allocation table (FAT) file
system. In this article, we’ll show you
how to use a microcontroller to read
and write files on an SD or MMC flash
memory card using the FAT system.

If you’ve ever used a USB memory
key or attached a digital camera to
your computer, then you’ve probably
noticed that a new drive appears in
Windows Explorer. You can drag and
drop files to and from this drive. Low-
cost flash memory card readers work
the same way. Wouldn’t it be useful to
write files with your microcontroller
that anyone can open on a PC with a
standard card reader? No special soft-
ware required! Similarly, wouldn’t it
be convenient to read files from a
flash memory card that were written
by a computer? In order to do so, you
need to be able to interpret the FAT
file system with your microcontroller.

The complete source code needed
for using a FAT16-formatted SD/MMC
with a Texas Instruments MSP430
microcontroller is posted on the Circuit
Cellar ftp site. This way you don’t have
to write your software from scratch. At
the end of this article, we’ll tell you how

cal interface. Connecting the flash
memory card for operation in SPI
mode to a microcontroller is similar
to connecting a standard SPI device
(see Figure 1). A bidirectional chip-
select pin facilitates card detection.
Pins 8 and 9 can be left open. To cre-
ate an easily adaptable FAT decoding
library, roughly 1 KB of RAM is
required on the microcontroller.

FEATURE ARTICLE by Ivan Sham, William Hue, & Pete Rizun

Portable FAT Library for MCU Applications

Figure 1—Connecting an SD/MMC card to a microcontroller is almost as easy as connecting any other SPI device.
The CS line serves as the SPI chip select, but it also can be polled to determine the presence of a flash memory
card. Because SD cards are slightly thicker, the MMC will fit into an SD cardholder, but not vice versa. We used the
Molex MLX54786 surface-mount SD cardholder.

The DOS FAT file system is the industry standard format for flash memory cards.You can use
a microcontroller to read and write files on an SD/MMC flash memory card with the FAT sys-
tem. Read on to learn how to build a portable FAT library for MCU applications.

www.circuitcellar.com CIRCUIT CELLAR® Issue 176 March 2005 19

We chose the MSP430F449 because
it has 2 KB of RAM, leaving a full 1 KB
for stack and other variables. Photo 1
shows the latest project we completed
with SD/MMC flash memory cards.

MEMORY CARD ACCESS
The low-level data transfer between

the microcontroller and the SD/MMC
is relatively straightforward. An SPI
interface permits communication with
only four physical connections (CS, SDI,
SDO, and SCLK) besides power and
ground. In SPI mode, the SD and MMC
share an identical set of instructions.

To read or write data stored on a
memory card, you must first perform
the proper initializations. Because
both the SD and MMC cards start in
their native transfer modes at power-
up, they must be placed in SPI mode.
The initialization code needed to
accomplish this is shown in Listing 1.

SD/MMC cards sample data input
on the rising clock edge and set data
output on the falling clock edge, so the
microcontroller’s SPI module should be
configured accordingly. It’s critical that
the data input line is held high while
waiting for the memory card to respond,
as well as when the memory card is
sending data to the microcontroller.

The first line of the initialization code
disables the memory card by raising the
active-low chip-select line (MEM_CS).
The loop that follows ensures that the
memory card has enough time to com-
plete its internal power-up sequence.
The spi_put(byte x) function
clocks its argument out of the micro-
controller and into the SDI pin of the
memory card. It’s important that the
argument is 0xFF during this time in
order to ensure the memory card pow-
ers up properly.

The chip-select line is then lowered
and a 0x40 command (initialize card
to the idle state) is sent with the argu-
ments 0,0,0,0 and the CRC of 0x95.
It’s the state of the chip-select line
(held low) during this reset procedure
that places the memory card in SPI
mode. The CRC for this command is
precalculated. This is the only time
the CRC value is critical, because the
CRC is disabled after the card enters
SPI mode. The send_command(byte
cmd, byte arg1, byte arg2, byte

arg3, byte arg4, byte crc) func-
tion simply transmits its arguments
sequentially via six repeated calls to
spi_put(byte x).

The next line of the code calls
card_response(byte x) to wait for
an appropriate response from the mem-
ory card. This function repeatedly calls
spi_get() and waits for the token

specified by the argument before
returning true. False is returned if a
match is not received after a number of
attempts. The expected token is 0x01
for the initialization command.

To get the card out of the idle state,
the 0x41 command is sent repeatedly
until the expected response is detected.
If the card doesn’t respond as expected
after 255 tries,
initializeMemCard() returns
false, and the application can start
anew.

After the expected response is
detected, the chip-select line is set
high and a dummy byte is sent, gener-
ating eight additional clock cycles to
permit the memory card to complete
its internal operations. The extra clock
cycles are necessary for all commands.

We’ve given you an in-depth look at
the initialization process because
most events share a similar flow of
events. First, lower the chip-select
line. Second, clock out the command:
command index (1 byte), arguments
(4 bytes), and CRC (1 byte). Third, wait
for a response byte from the memory
card. Fourth, wait for the data token (for
read operations), or clock out the data
tokens (for write operations). Fifth,
transmit or receive a block of data to or

Photo 1—The board writes files to an SD card, which
conveniently allowed us to store many megabytes of
data, and then later transfer the data to a computer
using readily available hardware. The MSP430 proces-
sor can write files to the flash memory card, which sub-
sequently can be opened in Windows Explorer using a
standard card reader. It can also read files from the flash
memory card stored using a standard card reader/writer.

Listing 1—Initializing the memory card involves powering up the card properly and placing it in SPI mode. The
state of the chip select line (held low) during this reset procedure places the card in SPI mode rather than its
native Transfer mode.

boolean initializeMemCard(void)
{

MEM_CS = HIGH;
for(i= 0; i < 10; i++)
{

spi_put(0xFF);
}
MEM_CS = LOW;
send_command(0x40,0,0,0,0x95);
if(card_response(0x01))
{

i = 255;
do
{

send_command(0x41,0,0,0,0,0xFF);
i—;

} while (!card_response(0x00) && i > 0);
MEM_CS = HIGH;
spi_put(0xFF);
if(i == 0)
{

return false;
}
return true;

}
return false;

}

20 Issue 176 March 2005 CIRCUIT CELLAR® www.circuitcellar.com

from the memory card. Sixth, receive
2 bytes of error-checking information.
Seventh, raise the chip-select line. Finally,
generate eight clock cycles for the
memory card to complete the operation.

The fifth and sixth steps were
absent from the initialization routine,
but they’re the meat of read and write
operations that we’ll cover next. The
memory card should automatically
initialize to its 512-byte default
read/write block size that matches the
FAT sector size; nevertheless, it’s good
practice to ensure this using the set
block length command. Table 1 shows
all the byte codes for the SD/MMC
commands needed to implement the
FAT file system software. Although
the memory card supports single- and
multiple-block read operations, let’s
stick with single-block 512-byte reads
(clock out the read block command,
0x51, with the byte address as the 4-byte
argument).

Make sure the address argument for
the read/write command is properly
formatted for read/write operations.
For example, if you want to read the
2,005 physical sector, the 4-byte
address should be 0x00, 0x0F, 0xA8,
0x00 because the sectors are num-
bered starting with zero. Sector 2,004
has a 0x000FA800 byte address, which
is determined in the following fash-
ion: (2005–1) × 512 = 1,024,048 =
0x000FA800. Note that SD/MMC byte
addresses are in big endian format.

The code in Listing 2 will read sec-
tor 2,004 in the memory card. It’s sim-
ilar to the initialization routine. The
most notable difference is the pres-
ence of a second call to
card_response(byte x). The argu-
ment (0xFE) in the second call to this
function is the data token. All data
transfers with the memory card begin
with this token. The 512 calls to
spi_get() in the loop fill buf with
the contents of sector 2,004. The two
extra calls to spi_get() clock in the
unused CRC bytes attached to every
data block sent by the memory card.

Writing data is similar to reading
data; the only difference is the direc-
tion of the data flow. In a read opera-
tion, the memory card provides the
data token and the data. In a write
operation, it’s the microcontroller’s

responsibility to provide them. To write
a block of data to the memory card, you
have to send the Write Block command
(0x58) with the properly formatted
address, wait for the response byte,
generate eight clock cycles, send the
data token, and begin clocking out the
data. Don’t forget the 2 bytes of error
code at the end of the data block. The
code posted on the Circuit Cellar ftp
site (WriteSDMMC.doc) writes the
contents of the character array buf to
sector 2,004 of the memory card.

Unlike with the read operation, you
must make sure the memory card has
completed its internal write operation
after you clock out the data block.
Checking the output from the memo-
ry card for a data-response byte can do
this. The checkWriteState() function
repeatedly calls spi_get() as it looks
for the token 0x05. After the token 0x05
is detected, the completion of the write

operation is signaled by the first nonzero
byte detected by spi_get().

Now that you know how to inter-
face with the SD/MMC, let’s look at
how the FAT file system works. We’ll
provide you with a basic introduction
to FAT. There’s a wide range of litera-
ture describing the FAT file system,
from its origins in the PCDOS and
MSDOS operating systems to its cur-
rent applications in Windows.

FAT EXAMPLES
Let’s first take a look at two exam-

ples of reading and writing files on a
memory card. Assume we’re working
with a card formatted in FAT16, which
uses 16-bit numbers to keep track of
storage locations in the file system.
Approximately 65,000 unique locations
may exist in a FAT16-formatted disk.

A memory card is formatted like a
hard disk with a single partition (the

Listing 2—Reading a 512-byte sector involves sending the Read Block command with the address to read,
and then generating the SPI clock signals to read the 512 bytes from the memory card, paying attention to the
idiosyncrasies of the flash card.

unsigned char buf[512];
boolean read_sector(void)
{

unsigned short i;
boolean retval = false;
MEM_CS = LOW;
send_command(0x51,0,0x0F,xA8,0,0xFF);
if(card_response(0x00))
{
if(card_response(0xFE))
{

for(i = 0; i < 512; i++)
{
buf[i] = spi_get();

}
spi_get();
spi_get();
retval = true;

}
MEM_CS = HIGH;
spi_put(0xFF);

}
return retval;

}

Command
Byte
code

Response byte Data token received Data tokens transmitted

Initialize card to idle state 0x40 0x01 – –

Bring card out of idle state 0x41 0x00 – –

Read block 0x51 0x00 0xFE –

Write block 0x58 0x00 – 8 clock cycle, 0xFE

Set block length 0x50 0x00 – –

Table 1—Although the SD and MMC flash cards respond to many commands, only four are required to implement
our FAT library. It’s good practice to set the card’s block length to 512 to match the FAT sector size, but it isn’t
required because this should be the default value.

22 Issue 176 March 2005 CIRCUIT CELLAR® www.circuitcellar.com

primary DOS partition). As you can see
in Figure 2, the first sector (512 bytes)
of the memory card contains the mas-
ter boot record (MBR). The FAT parti-
tion (primary DOS partition) immedi-
ately follows it. The partition begins
with some reserved sectors (the first
of which is the boot record, which
shouldn’t be confused with the MBR),
one or more FATs, and a root directory
table. The data area follows the root
directory; it’s organized as groups of
sectors called clusters. Storage space is
allocated to files one cluster at a time.

Note that the MBR contains a small
bootstrap loader program and the par-
tition table. In a real hard disk, the
bootstrap loader finds and runs the
secondary bootstrap loader in the active
partition’s boot record. In a memory
card, the MBR still contains the primary
bootstrap program, but computers only
use the partition table information.

READ A FILE
Consider the task of reading the file

called hello.txt stored in the root
directory and placing its contents
(“Hello World!”) in a character array.
You can experiment with this example
by typing “Hello World!” in a text editor
and saving the file in a memory card’s
root directory. To read the file, you must
first locate its entry in the root direc-
tory table located in the memory card
after the FAT tables (see Figure 2).

The root directory table is organized

like a spreadsheet (see Table 2). Each
32-byte row corresponds to a possible
file entry. Some rows, however, might
be blank (filled with 0 bytes) or refer to
deleted files. The spreadsheet’s columns
provide information about the file. The
first column represents the name. The
second column represents the exten-
sion. (FAT16 uses 8.3 file names. The
decimal point isn’t recorded.) The
penultimate column contains the num-
ber of the first cluster that contains the
file’s data. The final column contains
the file size in bytes (little endian for-
mat). Other columns (bytes 11 through
25) represent various attributes and cre-
ation/modification dates.

To locate the hello.txt file, examine
the name and extension columns in the
root directory and look for a match.
Because the root directory is just data
stored in physical memory, you can read
the root directory table into your micro-
controller sector by sector, using the
read_sector() function. The first sec-
tor in the FAT partition is the boot
record, which includes parameters that
tell you the sector where the root direc-
tory begins. Note that these parameters
can be complicated.

Let’s assume for now that you know
which sectors contain the root direc-
tory table. You also know the length,
in bytes, of each row in the table. You
can easily imagine the process of writing
a function to search the spreadsheet
for hello.txt. In return you get the row

number corresponding
to the file entry. If a
match isn’t found in
the sectors assigned to
the root directory table,
then the sought after
file doesn’t exist in
the root directory.

The original design-
ers of the FAT file sys-

tem kept things simple. The
first characters in the names
of deleted files are replaced
with a special (non-alphanu-
meric) value. The first row
that begins with a 0 byte
(0x00) indicates that no sub-
sequent rows have been
used. Therefore, unless the
root directory held its maxi-
mum number of files at

some point, the search can stop without
having to read to the last row of the table.

Let’s assume that your search is posi-
tive and that you know the row corre-
sponding to the file entry for hello.txt.
You can read the 2 bytes from the first
cluster column in little endian format
to determine where the first chunk of
information is located. You can read the
size column to determine the file’s size.
To start reading the file contents, you
must locate the first sector of the first
cluster. The boot record also contains
a parameter that tells you how many
sectors are grouped together in a cluster.

Note that the number of sectors per
cluster (the allocation size) is deter-
mined when a disk is formatted. Larger
clusters allow smaller FAT tables and
larger disks to be used within the
65,000-location limit. Nevertheless, they
result in wasted space at the ends of files
that don’t use most of their last clusters.

The data area starts right after the
root directory, so you can locate the
first sector of the first cluster in the
following way. If the first cluster col-
umn for hello.txt contains the number
107, the data in hello.txt begins at clus-
ter 107 within the data area. (The first
cluster in the data area is cluster num-
ber 2, because entries 0 and 1 in the
FAT are reserved for holding informa-
tion about the FAT table.) Now sup-
pose your FAT file system has four sec-
tors per cluster. This means the begin-
ning of the file is located in the
absolute sector number:

The first sector of data area is computed
with the parameter from the MBR to
locate the beginning of the FAT parti-
tion, and then uses the FAT boot
record’s parameters to locate the
beginning of the data area.

first sector of data area +
first cluster 2 sector

()
() ss per cluster()×–[]

Figure 2—In this memory map of a FAT16-formatted memory card, the data area is organized as groups of sectors called clusters.
The FAT file system keeps track of how much storage is allocated to each file one cluster at a time.

Master root
record and

partition
table

Low-level system area

Reserved sectors

FAT
Boot

record

First FAT Second
 FAT

FAT Areas Root
directory

table Cluster
2

Cluster
3

Cluster
4

Cluster
5

• • •

Data area Last
cluster

End of disk
(last sector)

Beginning of disk
(first sector)

Primary DOS partition

Disk (memory card)

Table 2—The root directory table is organized like a spreadsheet. Each row
corresponds to a file entry. The columns provide information about the file. The
number of root directory entries (rows) may vary depending on the size of the
disk. A common value is 512, in which case this table occupies 32 sectors.

Byte numbers 0–7 8–10 11–25 26–27 28–31
File 1 properties name extension attrib., date first cluster size
File 2 properties name extension attrib., date first cluster size
… … … … … …
File n properties name extension attrib., date first cluster size

24 Issue 176 March 2005 CIRCUIT CELLAR® www.circuitcellar.com

single cluster. How can you determine
where the rest of the file data is locat-
ed? The answer is in the FAT. After
reading the data from cluster 107, you
would go to entry 107 in the FAT to
determine the next cluster’s location.

There can be more than one identi-
cal copy of the FAT (see Figure 2). The
boot record contains parameters that
tell you how many FATs are present,
the sector length of each FAT, and
where the first FAT starts relative to

Returning to hello.txt, note that its
entry size column reveals that the file
is 12 bytes long. Thus, everything nec-
essarily fits in the first cluster (and
the first sector). Now the read_sec-
tor() function can read the file data
into your microcontroller. All the
bytes after the twelfth are disregarded.

Imagine modifying hello.txt with
your PC so it contains 1,000 lines
reading “Hello World!”. The contents
of this modified file might not fit in a

the boot record. Each FAT16 entry is a
16-bit number in little endian notation,
so entry 107 is at the 214 and 215
bytes in the first sector of each FAT.

Multiple copies of the FAT are main-
tained to aid in the recovery of a cor-
rupted file system. The FAT file system
structure is simple, but not too robust.
If a power failure or computer crash
occurs while you’re updating informa-
tion in a FAT, you could lose the alloca-
tion chains of numerous files. Each of
the FAT copies is updated separately, so
only one FAT could get corrupted during
a failure. Operating system utilities
such as CHKDSK and SCANDISK
attempt to minimize data loss by recov-
ering as much information as possible
from the uncorrupted copies of the FAT.

To find the next cluster in the file,
read the appropriate sector (usually
from the first copy of the FAT) into
the microcontroller using the
read_sector() function and then
examine the appropriate bytes. Let’s
say that entry 107 in the FAT contains
the number 489. This means the sec-
ond block data for the file is sitting in
cluster 489. The third block of data is
sitting at the cluster number written in
FAT entry 489, and so on. Repeat this
process until you’ve pieced the entire
file together. You’ll know when to stop
looking for more data, because the direc-
tory entry will tell you how many bytes
the file contains. Moreover, an entry in
the FAT that contains a value of 0xFFF8
through 0xFFFF means there aren’t addi-
tional clusters associated with the file.

WRITE A FILE
As a second example, consider creat-

ing the goodbye.txt file in the root
directory with the contents “Goodbye
World!”. First, you need to find a
usable row in the root directory table
to make a new entry. You can do this
by searching for file names starting
with a hexadecimal character, 0xE5 or
0x00, corresponding to deleted or
unused entries, respectively. After you
find a usable entry, write the file name
with the extension, time of creation,
and file attribute to the root directory
table. The attribute field at byte 11 of
a directory entry contains a number of
bit flags, including one that indicates
whether the entry is a file or subdirecto-

xumin
Text Box

www.circuitcellar.com CIRCUIT CELLAR® Issue 176 March 2005 25

ry entry. When creating regular files,
you must set the attribute field to 0x20.

A complication is that you also need
to record the location of your file’s first
cluster in the table. Before doing so, you
need to know where that should be.
There are two cases you must consider.
In the first, you are reusing an entry for
a deleted file. The first cluster value and
the entire FAT chain for the old (deleted)
file is still intact. You can write over the
data in the clusters in the existing FAT
chain. Add clusters if the new file is
longer than the old one.

To reduce disk I/O when a file is delet-
ed, only the first character of its file
name is replaced with 0xE5. Its directory
entry and the FAT chain are left intact
instead of following the chain and setting
all its cluster entries to 0x0000 (unused).
This is why files could be undeleted. It’s
also the reason why you could run out of
space on a disk that’s still reporting avail-
able free space if you’re trying to create a
file in a different subdirectory than one
in which the deleted entries were locat-
ed. Later operating system versions will
search for the FAT chains belonging to
deleted files when this occurs.

If you are populating a previously
unused directory entry and you must
find an unallocated cluster, unused clus-
ters are signified by a zero entry in the
file allocation table. Simply scan through
the FAT (by reading it from our memory
card one sector at a time) and look for
a zero entry. After an entry is found,
change its value to 0xFFFF (by writing
the modified sector back to the memory
card) to signify the end of the file, and
then record this location in the root
directory table.

With the location of the empty cluster
assigned to the new goodbye.txt file, you
can start writing its contents (“Goodbye
World!”). You must write at least the
first sector of the cluster. Place the string
in the beginning of a 512-byte character
array buffer and use the write_sec-
tor() function to send it to the memory
card. It doesn’t matter what the buffer
contains after the last character in your
string. We knew that our entire file fit
within the first sector of one cluster, so
we didn’t need to write the remaining
sectors in the cluster.

After adding the content to the file,
update the file size listed in the direc-

tory table. It’s good practice to update
the access/modify time for the file as
well. If a file has grown and it requires
more than one cluster of storage space,
a new empty cluster must be located in
the file allocation table. The location
of this new empty cluster is placed in
the entry for the previous cluster in the
FAT, and the FAT entry for the new
last cluster is changed to 0xFFFF to
indicate that it’s now being used and
that it’s the end of the allocation chain.

In this fashion, a FAT chain (and there-
fore a file) may grow to any length as
long as there are clusters available.

SOFTWARE
The task of creating microcontroller

software to read and write FAT-formatted
disks can be daunting. The basic software
package posted on the Circuit Cellar
ftp site should allow you to start reading
and writing files to the root directory of
a memory card formatted in FAT16.

xumin
Text Box

SOURCES
MLX54786 SD memory card connector
Molex
www.molex.com

MSP430x44x Microcontroller
Texas Instruments
www.ti.com

PROJECT FILES
To download the code, go to ftp.circuit
cellar.com/pub/Circuit_Cellar/2005/176.

RESOURCES
J. Bachiochi, “SmartMedia File Storage,”
Circuit Cellar 143–144, June–July 2003.

FAT File systems and SD/MMC com-
mands, www.ntfs.com/fat-systems.htm.

FAT resources, www.systemsmedic.com
/SoftwareEdu2.htm; http://students.cs.
byu.edu/~cs345ta/labs/winter04_specs/
lab_fat_help.htm; www.seas.ucla.edu/
classes/mkampe/cs111.fq04/docs/dos.
html; www.extonpccouncil.org/Resources

www.circuitcellar.comCIRCUIT CELLAR®26 Issue 176 March 2005

Ivan Sham is studying engineering
physics at the University of British
Columbia. Ivan expects to graduate
with a bachelor’s degree in April
2005. You may reach him at ivan
sham@gmail.com.

William Hue owns HUE-Mobile
Enterprises. He specializes in embedded
systems, real-time control systems,
industrial-grade systems, RF technology,
communications systems, mixed signal
designs, automotive technologies, and
data acquisition systems. He holds
B.A.Sc. and M.A.Sc. degrees in electrical

We based this article on FAT16
because it makes the code simple to
understand. FAT32 is more complicated,
but numerous books and papers have
been published that address every ver-
sion of FAT (FAT12, FAT16, and FAT32).

We wrote the software for the
MSP430F449 (see Figure 1). You can
easily port it to another platform. We
ported our library to the PIC18Fxxxx.
We have a commercial version that
works with FAT32, manipulates files
with long file names, and performs
directory operations. The FAT soft-
ware package is based on two mod-
ules, HALayer and FATLIB, each of
which consists of a .C (source) file and
an .H (header) file. To write a program
that can access an SD/MMC card, sim-
ply include the two header files and
call the appropriate functions in your
main program.

Listing 3 is a sample main program
that reads the first 12 characters from
the hello.txt file in the root directory.
It prints the string to an LCD (presum-
ably the ubiquitous “Hello World!”).
The program then creates a goodbye.txt
file and writes the “Goodbye World!”
string. After the main program is com-
plete, you should be able to insert the
memory card into a standard memory
card reader/writer on your computer.
You’ll see the goodbye.txt file in
Windows Explorer. Verify its contents.

TIME TO WORK
We’ll continue to enhance our

FATLIB with features as required by
our customers. Now it’s your turn to
develop an exciting application for an
SD or MMC memory card. I

/EPCC_Tech_Talk/d003f32.htm.

Microsoft Corp., FAT32 File system
specification, www.microsoft.com.

———Microsoft MS-DOS Programmers
Reference, ver. 5, Microsoft Press, 1991.

MMC Specification, www.mmca.org.

P. Norton, The Peter Norton
Programmer’s Guide to the IBM PC,
Microsoft Press, 1985.

M. Sargent and R. L. Shoemaker, The
IBM PC from the Inside Out,
Addison-Wesley, 1986.

A. Schulman, et al, Undocumented
DOS, Addison-Wesley, 1990.

SD Card info, www.sandisk.com.

C. Siechert, The Power of Running
PC-DOS 3.3, 2nd ed., Management
Information Source, 1987.

Pete Rizun designs and manufactures
electro-mechanical devices. He has a
B.A.Sc. in engineering physics from the
University of British Columbia. Pete
is currently a Ph.D. student at the
University of Calgary, where he’s work-
ing on an initiative in surgical robotics
known as Project neuroArm. You may
contact him at pete@rizun.com.

Listing 3—The demo program illustrates the process of reading and writing to the SD/MMC card with our FAT library.

int main(void)
{

signed int stringSize;
signed char handle;
char stringBuf[100];
cpu_init(); //Initialize the CPU clocks, etc.
eint(); //Enable global interrupts (if required).
fat_initialize(); //Initialize the FAT library.

handle = fat_openRead(“hello.txt”);
if (handle >= 0)
{

stringSize = fat_read(handle, stringBuf, 99);
stringBuf[stringSize] = ‘\0’;
lcd_print(stringBuf);
fat_close(handle);

}
handle = fat_openWrite(“goodbye.txt”);

if (handle >= 0)
{

strcpy(stringBuf, “Goodbye World!”);
stringSize = strlen(stringBuf);
fat_write(handle,stringBuf, stringSize);
fat_flush(); //Optional.
fat_close(handle);

}
while (1)
{

//Stay here.
}

}

and electronics engineering from Simon
Fraser University. William may be
reached at william@hue-mobile.com.

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2005/176
http://www.ntfs.com/fat-systems.htm
http://www.systemsmedic.com/SoftwareEdu2.htm
http://students.cs.byu.edu/~cs345ta/labs/winter04_specs/lab_fat_help.htm
http://students.cs.byu.edu/~cs345ta/labs/winter04_specs/lab_fat_help.htm
http://students.cs.byu.edu/~cs345ta/labs/winter04_specs/lab_fat_help.htm
http://www.systemsmedic.com/SoftwareEdu2.htm
http://www.seas.ucla.edu/classes/mkampe/cs111.fq04/docs/dos.html
http://www.seas.ucla.edu/classes/mkampe/cs111.fq04/docs/dos.html
http://www.seas.ucla.edu/classes/mkampe/cs111.fq04/docs/dos.html
http://www.extonpccouncil.org/Resources/EPCC_Tech_Talk/d003f32.htm
http://www.extonpccouncil.org/Resources/EPCC_Tech_Talk/d003f32.htm
http://www.microsoft.com
http://www.mmca.org
http://www.sandisk.com
http://www.molex.com
http://www.ti.com

