

冀雅(廊坊)电子有限公司 JIYA(LANGFANG) ELECTRONICS CO., LTD

模块产品规格书 SPECIFICATION FOR LCD MODULE

客户	
COSTOMER	
产品型号	
MODEL	JYG-48027201G(R)-KT6L2-VC

设 计	审	核	批	准
ORGANIZED BY	CHE	CKED BY	APPROV	ED BY
HUAFEN LI	ESC	ON AN	Junga i	Cheng

公司地址:中国河北廊坊市经济技术开发区 2 号路 36 号 邮编: 065001 COMPANY ADDRESS: No.36. ROAD No.2. LANGFANG ECONOMIC & TECHNICAL DEVELOPMENT ZONE HEBEI CHINA. P.C: 065001

电话: 86-316-6063731

传真: 86-316-6063724

CONTENT

- 1. LCM DRAWING
- 2. GENERAL DESCRIPTION
- 3. MECHANICAL SPECIFICATIONS
- 4. ELECTRO-OPTICAL CHARACTERISTICS
- 5. BLOCK DIAGRAM
- 6. ELECTRONIC CHARACTERISTICS
- 7. PINS DESCRIPTION
- 8. INSTRUCTION DESCRIPTION
- 9. BACKLIGHT PARAMETERS
- **10. PRODUCT QUALITY & RELIABILITY**
- **11. PRECAUTIONS IN USING**
- **12. APPLICATION**
- 13. CLASSIFICATION INFORMATION
- 14. HISTORY OF VERSION

1. LCM DRWING

2. GENERAL DESCRIPTION

MAIN TECHNICS: COG DISPLAY CONTENT: GRAPHIC **DISPLAY TYPE:** 262K COLORS-TFT-NEGATIVE-TRANSMISSIVE DRIVER METHOD: 1/272 DUTY VIEWING DIRECTION: 6:00 CONTROLLER: HX8257 BACKLIGHT: LED WHITE **OPEATING TEMPERATURE:** -20°C-+70°C STORAGE TEMPERATURE: -30°C-+80°C **INTERFACE:** 24-BITS PARALLEL RGB INTERFACE REFERENCE DOCUMENTS : HX8257 datasheet

<u>3. MECHANICAL SPECIFICATIONS</u>

ITEM	CONTENT	UNIT
PIXEL'S NUMBER	480*272	PIXEL
MODULE DIMENSION	105.4(w)*113.0(h)*4.4(t)	mm
ACTIVE AREA	95.04(w)*53.856(h)	mm
PIXEL SIZE	0.198(w)*0.198(h)	mm

4. ELECTRO-OPTICAL CHARACTERISTICS

ltom		Symbol	Conditions	Spe	cificatio	ns	Linit	Noto					
nem		Symbol	Conditions	Min.	Тур.	Max.	Onit	Note					
Transmittance)	T%		-	6.1	-	%						
Contrast Ratio	0	CR		-	250	-	-	All left side data					
Baananaa Tin		TR		-	5	-	ms	are based on					
nesponse nin	le	TF		-	15	-	ms	CMO's following					
	Pod	X _R		0.590	0.620	0.650	-	condition –					
	neu	Y _R	Viewing normal	0.314	0.344	0.374	-	6 o'clock					
	Green	X _G	angle $\theta_X = \theta_Y$	0.276	0.306	0.336	-	NTSC: 50%					
Chromaticity		Y _G	=0°	0.533	0.563	0.593	-	LC: TN Light : Clight					
oniomaticity	Dluo	XB		0.103	0.133	0.163	-	(Machine BM5A)					
	Dine	Υ _B		0.119	0.149	0.179	-	Normal Polarizer					
	White	Xw		0.281	0.311	0.341	-	(Linear Polarizer)					
	write	Yw		0.319	0.349	0.379	-						
	Llor	θ_{X+}		-	45	-		Simulation data					
Viewing	nor.	θχ.	Center	-	45	-	doa	Reference Only					
Angle	Vor	θ _{Y+}	CR≥10	-	15	-	aeg.						
	ver.	θγ.		-	35	-							

*Note (1) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

*Note (2) Definition of Response Time (TR, TF):

*Note(3) Definition of Viewing Angle

*Note (4) Measurement Set-Up:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

*Note (5)

5.BLOCK DIAGRAM

6.ELECTRONIC CHARACTERISTICS 6.1 MAXIMUM VALUES

	SYMDOL	STANDARI	TINITT	
	SYMBOL	MIN	MAX	UNII
Logic supply voltage	V _{DD}	-0.3	+4.0	V
Operating Temperature	Тор	-20	+70	Ĉ
Storage Temperature	Tst	-30	+80	Ĉ

6.2. <u>DC CHARACTERISTICS</u> (Unless otherwise specified, Voltage Referenced to DVSS, VDDIO = 2.2V, TA= 25°C)

Symbol	Parameter	Test condition	Min.	Spec. Typ.	Max.	Unit
VDDIO	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	D _{1.8}	-	3.6	v
VCI	Booster Reference Supply Voltage Range	Recommend Operating Voltage Possible Operating Voltage	$\stackrel{\geq}{=} \begin{array}{c} \text{VDDIO} \\ \text{\&} \ \geq \ 3 \end{array}$	-	3.6	v
I _{sleep}	Sleep mode current		-	50		μA
ldp	Operating mode current	VCI=3.3V	-	13	15	mA
VCL	Negative V _{CI} Output Voltage	No panel loading	- VCI	-	- VCI+0.7	V
VCIX2	V _{CK2} primary booster efficiency ⁽¹⁾	No panel loading, ITO for V_{CHS} V $_{CI}$ and V_{CHS} = 10 Ohm	5.2	5.4	5.6	v
VDC	Vpc Output Voltage	VDC[3:0]=1011	4.9	5	5.1	V
VOL	Gate driver High Output	No panel loading; 3x booster	84	89.5	-	%
Voit	Booster efficiency ⁽²⁾	No panel loading; 4x booster	80	88.5	-	%
VGL	Gate driver Low Output Voltage	V _{GL} -2 x VDC	-10	-10	-9	v
COMH	VCOM High Output Voltage ⁽³⁾	-	-3%	COMC+COMPP	3%	V
COML	VCOM Low Output Voltage ⁽³⁾	-	-3%	COMC-COMPP	3%	V
VLCD	VLCD Output Voltage	VRH[5:0]=100100	4.41	4.51	4.61	V
V _{OH1}	Logic High Output Voltage	l out = -100µA	0.9*V _{DDIO}	-	V _{DD}	V
Vvd	Source Output Voltage Deviation	-	-	±20	±30	mV
Vos	Source Output Voltage Offset	-	-	-	±30	mV
V _{OL1}	Logic Low Output Voltage	l out = 100µA	0	-	0.1*V _{DDIO}	V
V _{IH1}	Logic High Input voltage	-	0.8*V _{DDIO}	-	VDDIO	V
V _{IL1}	Logic Low Input voltage	-	0	-	0.2*V _{DDIO}	V
Іон	Logic High Output Current Source	V out = VDD - 0.4V	50	-	-	μA
loL	Logic Low Output Current Drain	V out = 0.4V	-	-	-50	μA
laz	Logic Output Tri-state Current Drain Source	-	-1	-	1	μA
la a na	Logic Input Current	-	-1	-	1 '	μA

Note : (1) VCIX2 efficiency = VCIX2 / (2 x VCI) x 100% (2) VGH efficiency = VGH / (VDC x n) x 100% (where n = booster factor) (3) VCOML < 0V, VCOMH < VCIX2J

6.3 . TIMING CHARACTERISTICS Parallel RGB input timing requirement

(480RGBx272, T _A =25°C, VDDIO	=1.8V to 3.6V	, DVSS= 0\	/)	$\wedge \vee$		
Parameter	Symbol		Spec.		Unit	
Falameter	Symbol	Min.	Тур.	Max.	01111	
Clock cycle	f _{CLK} ⁽¹⁾	-		15	MHz	
Hsync cycle	1/th	- ~ - ~ - ~ - ~ - ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~	(17.14	2	KHz	
Vsync cycle	1/tv	R	59.94)) Hz	
Horizontal Signal		\sum	\mathbf{i}	29	~	
Horizontal cycle	th	525	525	605	CLK	
Horizontal display period	thd (480	480	480	CLK	
Horizontal front porch	thf	2	((2))	82	CLK	
Horizontal pulse width	thp ⁽²⁾) 2	44	41	CLK	
Horizontal back porch	thb ⁽²⁾	2	2	41	CLK	
Vertical Signal		2	2			
Vertical cycle	A A	285	286	511	H(1)	
Vertical display period 🔎	tvd 🔍	272	272	272	H ⁽¹⁾	
Vertical front porch	tvt	T	2	227	H(1)	
Vertical pulse width	tvp ⁽²⁾	1	10	11	H ⁽¹⁾	
Vertical back porch	tvb ⁽²⁾	1	2	11	H(1)	

Note: (1) Unit: CLK=1/ fcLk, H=th,

(2) It is necessary to keep tvp+tvb=12 and thp+thb=43 in sync mode. DE mode is unnecessary to keep it.

Page 9 of 21

7. PINS DESCRIPTION

Pin No.	Symbol	Description
1	VLED+	Backlight LED anode
2	VLED-	Backlight LED cathode
3	DVSS	Digital ground
4	VDD	Logic Power supply
5	SDO	Data output pin in serial mode
6	SDI	Data input pin in serial mode
7	SCL	Clock pin of serial interface
8	CSB	Chip select pin of serial interface
9	PS	Input data format select signal
10	LR	Shift direction selection signal
11	UD	Scan direction selection signal
12	DE	Input data enable control.
13	VSYNC	Vertical synchronizing signal
14	HSYNC	Horizontal synchronizing signal
15	DISP	Display on/off mode control
16	CLK	Clock signal for data latching and internal counter of the timing controller
17-24	D27-D20	
<u>25-32</u>	D17-D10	Digital data input
33-40	<u>D07-D00</u>	
41	RESETB	<u>Active low global reset signal input</u>
42	VDD	Logic Power supply
43	AVSS	Analog ground
44	X1	touch panel output pin.(Touch screen X corrdinate right)
45	<u>Y1</u>	touch panel output pin.(Touch screen Y corrdinate down)
46	X2	touch panel output pin.(Touch screen X corrdinate left)
47	¥2	touch panel output pin.(Touch screen Y corrdinate up)

8. INSTRUCTION DESCRIPTION

Reg#	Register	R/W	R/S	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R01h	Driver data control	0	1	0EA1	OEA0	PALM	DEO	DEP	HSP	VSP	CLK_T RG	GON	DIT	PINV	BGR	0	UD	LR	NBW
R02h	Power control (1)	0	1	0	0	VDS1	VDS0	0	EQ2	EQ1	EQ0	DC3	DC2	DC1	D CO	0	AP2	AP1	AP0
R03h	Power control (2)	0	1	X2EN	XDK	VRC1	VRC0	VDC3	VDC2	VDC1	VDC0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0
R04h	Function control	0	1	0	0	0	0	REV	PA2	PA1	PA0	AGM	SEQ	PS	S	REG	PSHUT	GDIS	COMG
R05h	PWM control			0	PSWE	DUS	DU4	DU3	DU2	DU1	DU0	PWMA	FBA2	FBA1	FBA0	PW MB	FBB2	FBB1	FBB0
R06h	VCOM control	0	1	0	0	nOTP	VMC4	VMC3	VMC2	VMC1	VMC0	0	0	eOTP	VDV4	VDV3	VDV2	VDV1	VDV0
R07h	Vertical Porch	0	1	0	0	0	0	0	0	0	0	0	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
R08h	Horizontal Porch	0	1	0	0	0	0	0	0	STH1	STH0	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
R09h	Contrast/ Brightness control	0	1	0	BR6	BR5	BR4	BR3	BR2	BR1	BR0	0	S	∕°	CON4	CON3	CON2	CON1	CON0
R0Fh	CABC function control	0	1	0	0	0	0	0	0	0	$\langle \cdot \rangle$		21	0	0	0	0	0	DBEN
R10h	γ control (1)	0	1	0	0	0	0	0	PKP 12	PKP 11	PKP	6-((0	6	0	0	PKP 02	PKP 01	PKP 00
R11h	γ control (2)	0	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	 C 	2	4	0	PKP 22	PKP 21	PKP 20
R12h	γ control (3)	0	1	0	0	0	0	0	PKP 52	PKP 61	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R13h	γ control (4)	0	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	200		õ	0	0	PRP 02	PRP 01	PRP 00
R14h	γ control (5)	0	1	0	0	0	0	0	PKN 12	PKN 11	PKN 10	5)	0	0	0	0	PKN 02	PKN 01	PKN 00
R15h	γ control (6)	0	1	0	0	0	0	0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R16h	γ control (7)	0	1	0	0	0	6))	PKN 52	PKN 51	PKN 60	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R17h	γ control (8)	0	1	0	0	91	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R18h	γ control (9)	0	1	0	0		VRP 14	VRP 13	VRP	VRP	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R19h	γ control (10)	0	1	0	0	~	VRN 14	VBN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00
	Note: Softw	are s	settir	ngs will	overri	de hard	tware p	bin (eg.	UD bi	ts over	ride U[D pin d	efinitio	n)					

9. BACKLIGHT PARAMETERS

Item	Symbol	Condition	Rating	Unit
Operating temperature range	Topr		-20~+70	⁰ C
Storage temperature range	Tst		-30~+80	⁰ C

For operation above 25° C, The Ifm Ifp & Pd must be derated, the Curent derating is-0.36*10mA/°C for DC drive and-0.86*10mA/°C for Pulse drive, the Power dissipation is -0.75*10mW/°C. The product working current must not more than the 60% of the Ifm or Ifp according to the working temperature.

Ta=25 $^{\circ}$ C,Unless specified, The Ambient temperature Ta=25 $^{\circ}$ C

Item	Symbol	min	typ	max	Unit	Condition
Forward Voltage	Vf	15.0	15.5	16.0	V	If=30mA
Luminance	Lv	4000			cd/m^2	If=30mA
Color abromaticity	Х	X=0.26		X=0.315		If_20m A
Color chromaticity	Y	Y=0.26		Y=0.315		11=30111A

The luminance is the average value of 9 points, and The Lvmax./Lvmin.is more than 70% Typical. The measurement instrument is BL-200-V2 luminance Colorimeter. The aperture is $\oint 5.0$ mm.

10. Product Quality & Reliability

10.1 Standard for Quality Test

10.1.1 Inspection :

Before delivering, the supplier should take the following tests, and affirm the quality of product.

10.1.2 Electro-Optical Characteristics:

According to the individual specification to test the product.

10.1.3 Test of Appearance Characteristics:

According to the individual specification to test the product.

10.1.4 Test of Reliability Characteristics:

According to the definition of reliability on the specification for testing products.

10.1.5 Delivery Test:

Before delivering, the supplier should take the delivery test.

A. Test method: According to MIL-STD-105E,General Inspection Level II take a single time.

B. The defects classify of AQL as following:

Major defect: AQL=0.25

Minor defect: AQL=1.0

Total defects: AQL=1.0

10.2 Standard for inspection

10.2.1 Manner of appearance test:

- a. The test must be under a 40W fluorescent light, and the distance of view must be at 30~35 cm.
- b. When test the model of transmissive product must add the reflective plate.
- c. The test direction is base on about around 45° $\,$ of vertical line.
- 10.2.2 Definition of area: A B
 - A Area : Viewing area.

B Area : Out of viewing area.(Outside viewing area)

10.2.3 Basic principle:

- A. In principle the defect out of Area A should be acceptable if the defect does not affect assemblage and the quality of productions.
- B. If defects that can not describe clearly, acceptable samples will be the standard.
- C. The sample of the lowest acceptable quality level must be discussed by both supplier and customer when any dispute happened.
- D. Must add new item on time when it is necessary.

10.2.4 Standard of inspection

Defect	Inspect item		С	riteria		
	Scratch and fold on polarizer.	1)	width ≤ 0.02	mm	length	ignore
1	Scratch on glass.				acc	eptable
	Glass fiber etc.	2) 0.02 mm <width≤0.05 mm<="" td=""></width≤0.05>				
l Miner	(by bare eyes, defect outside A	len	gth≪3 mm	tv	wo are acc	eptable
Minor	area is acceptable)	3)	width>0.05 mr	n		reject

Defect	Inspect item	Criteria
	Chip on glass(round type)	$\Phi \leq 0.1$ mm acceptable
	Chip on polarizer(round type)	$0.1 < \Phi \leq 0.2$ mm two are acceptable
	Air bubble between polarizer	
2	and glass	1. The distance between any two dots should
Minor		be more than 5mm.
	a	2.Defect outside A area is acceptable.
b	3.If the air bubble is black, it can be judged	
	$\Phi = (a + b)/2$	as black spot.

Defect	Inspect item	Criteria
3 Minor	Chip out x x x: length y: width z: thickness	$x \leq 3 \text{ mm}$ $z \leq t$ $y \leq 1/3 \text{ s}$ rejectt: glass thickness.S: distance between glass edge and inside ofedge sealing
3 Minor	Chip out	$x \leq 3 \text{ mm}$ $z \leq t$ $y \leq 1/3 \text{ s}$ rejectiont: glass thickness.S: distance between glass edge and inside ofedge sealing

Defect	Inspect item	Criteria
	Chip on corner of neat edge	$x \leq 3 \text{ mm} y \leq 3 \text{ mm} z \leq t$
		acceptable
4 Minor		any chip exposes the silver dot reject
	X: length Y: width	
	S: width of edge sealing	

Defect	Inspect item		Criter	ia
5 Minor	Chip on corner of terminal edge	x<0.3 mm x≤3 mm	or y<0.3 mm y <d< td=""><td>ignore two are acceptable</td></d<>	ignore two are acceptable

Defect	Inspect item	Criteria	
	Chip on opposite side of	a≥80mm, x≥7mm	reject
	terminal Z	a<80mm, x>5mm	reject
6		y>1/2D	reject
Minor	Y X X	z>1/2t, y>1/4D	reject
		D: terminal length	
	D		

Defect	Inspect item	Criteria
	Cutting/breaking defect (flare)	According to the dimension of drawing
7 Minor		

Defect	Inspect item	Criteria
8 Minor	Crack	Any crack trend to extend reject

Defect	Inspect item	Criteria
9	Liquid leakage, open sealant	reject
Major		

Defect	Inspect item	Criteria
10	Rainbow	According to samples
Minor		

Defect	Inspect item	Criteria
11	FPC, TCP, FLEX are broken or	reject
Major	not connected firmly	

Defect	Inspect item	Criteria
	The component on PCB or FPC	reject
12	is missing ,soldered unfirmly or	
Minor	bridged	

Defect	Inspect item	Criteria
12	The soldering tin is not enough	The height that soldering tin covers the
15 Minor		bump of component is $1/2$ less than the
MIIIOr		height of bump reject

Defect	Inspect item			Cı	iteria		
14	The soldering tin overflows	The	soldering	tin	covers	whole	bump
Minor						reject	

Defect	Inspect item	Criteria
15	The component is broken	reject
Minor		

Defect	Inspect item	Criteria	
16	The shape of pinouts is not the	It makes the LCM work badly	reject
Minor	same as that in the criterion		

Defect	Inspect item	Criteria
17	The pinout is broken	reject
Minor		

Defect	Inspect item	Criteria	l
18	The frame is scratched visibly	Length	ignore
Minor		Width >0.5mm	reject

Defect		Inspect	titem		Criteria
	The	frame	is	rusted	When the shape is as dot, reference
19	(accum	ulation)			to defect 23
Minor					When the shape is as line, reference
					to defect 24

Defect	Inspect item	Cr	iteria
	Scratch and fold on touchpanel.	1) width≤0.02 mm	acceptable
20	(by bare eyes, defect outside A	2) 0.02 mm <width≤< td=""><td>0.05 mm</td></width≤<>	0.05 mm
Minor	area is acceptable)	length≤5 mm	two are acceptable
		3) width>0.05 mm	reject

Defect	Inspect item		Criteria
	Black & white dots on	1	1) $\Phi \leq 0.1 \text{ mm}$ acceptable
	touchpanel (round type)	4	2) 0.1< $\Phi \leq 0.3 \text{ mm}$ three are acceptable
	Air bubble on touchpanel	-	3) $\Phi > 0.3 \text{ mm}$ reject
21		1	1. The distance between any two dots should
Minor		ł	be more than 5mm.
	a	2	2.Defect outside A area is acceptable.
$\Phi = (a + b)/2$		3.If the air bubble is black, it can be judged	
	~ ←→'	í	as black spot.

Defect	Inspect item	Criteria
22	Touchpanel warps	According to the dimension of drawing.
Minor		

Defect	Inspect item	Criteria
23	Dirty on rear of touchpanel	It's visible at condition of 30 ± 5 cm, 45°
Minor		

Defect	Inspect item	Criteria
24	Dirty on rear of touchpanel	It's visible at condition of 30 ± 5 cm, 45°
Minor		

10.3RELIABILITY

ITEM	CONDITION
High temperature operation	70 ℃, 96 hrs
Low temperature operation	-20 °C , 96 hrs
Moisture storage	60 °C, 90%RH, 96 hrs
High temperature storage	80 °C, 96 hrs
Low temperature storage	-30 °C, 96 hrs
Thermal shock	-30 °C (30 minute)
	25 °C (5 minute)
	80 °C (30 minute)
	CYCLES: 10
LIFE TIME	50,000 hours, 25±10°C, 45±20% RH

<u>11.PRECAUTIONS IN USING</u>

11.1 Liquid crystal display (LCD)

The LCD panel is made up of glass, organic fluid and polarizer. When handling, please pay attention to the following items:

- 1) Keep the operation and storage temperature of the LCD within the range specified in the LCD specification. Otherwise, excessive temperature and humidity would cause polarization degradation, bubble generation or polarizer peel-off.
- 2) Prevent it from mechanical shock by dropping it from a high place, etc.
- 3) Don't contact, push or rub the exposed polarizers with anything harder than HB pencil lead.
- 4) Avoid using chemicals such as acetone, toluene, ethanol and isoropylalcohol to clean the front/rear polarizers and reflectors, which will cause damage to them.
- 5) Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause deformation or color fading. The LCM is assembled and adjusted with a high degree of precision.
- 6) Do not put or attach anything on the display area. Avoid touching the display area with bare hand.

11.2 Precaution for handling LCD modules

The LCM is assembled and adjusted with a high degree of precision, do not applying excessive shocks to it or making any alterations or modifications to it, the following precautions should be taken when handing.

- 1) Do not drop, bend or twist the module.
- 2) Do not alter or making any modification on the shape of the metal frame.
- 3) Do not change the shape, the pattern wiring or add any extra hole on the PCB.
- 4) Do not modify or touch the zebra rubber strip(conductive rubber) with another object.
- 5) Do not change the positions of components on the PCB.

11.3 Eletro-static discharge control

Careful attention should be paid to control the electrostatic discharge of the modules, since the modules contain no. of CMOS LSI.

- 1) Make sure you are grounded properly when remove the module from its antistatic bag. Be sure that the module and have the same electric potential.
- 2) Only properly grounded soldering iron should be used.
- 3) Modules should be stored in antistatic bag or other containers resistant to static after remove from its original package.
- 4) When using the electric screw-driver is used, make sure the screw driver had been ground potentiality to minimize the transmission of EM wave produced by commutator sparks.
- 5) In order to reduce the generation of static electricity, a relative humidity of 50-60% is recommended.

11.4 Precaution for soldering

1) Soldering should apply to I/O terminals only.

- 2) Soldering temperature is $280^{\circ}C+(-)10^{\circ}C$.
- 3) Soldering time 3-4 seconds.
- 4) Eutectic solder (rosin flux filled) should be used.
- 5) If soldering flux is used, be sure to remove any remaining flux after finishing the soldering operation and LCD surface should be covered during soldering to prevent any damage to flux spatters.
- 6) When remove the lead wires from the I/O terminals, use proper de-soldering methods, e.g. suction type de-soldering irons. Do not repeat wiring by soldering more than three times at the pads and plated though holes may be damaged.

11.5 Precaution for operation

- 1) Adjust liquid crystal driving voltage (Vo) to varies viewing angle and obtain the contrast.
- 2) Vo should be kept in proper range stated in the specification. Excess voltage will shorten the LCD life.
- 3) Response time is greatly delayed at low temperature. It will recover when go back to normal temperature.
- Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore it should be used under the relative condition of 50% RH.

11.6 Storage

When long term storage is required, following precautions are necessary:

- 1) Storage them in a sealed polyethylene bag (antistatic), seal the opening, and store it where it is not subjected to direct sunshine, or to the light of fluorescent lamp. If properly sealed, there is no need for desiccant.
- 2) Store them in the temperature range of **-30°C -80°C** and at low humidity is recommended.

12. APPLICATION

12.1 REFERENCE CIRCUIT

TBD

14. HISTORY OF VERSION

REVISIONS					
No.	DATE	DESCRIPTION	ORGANIZED BY	CHECKED BY	APPROVED BY
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					