
USER'S MANUAL

CC78K0S C COMPILER

Document No. U11817EJ1V0UM00 (1st edition)
Date Published October 1996 P
Printed in Japan

1995© 1996©

LANGUAGE

MS-DOS™ is a trademark of Microsoft Corporation.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

J96. 8

INTRODUCTION

The CC78K0S C Compiler (hereafter referred to as the C compiler) is a C compiler package common to the 78K/0

series of small general-purpose products (referred to as 78K/0S).

The C compiler comes in two models: the normal model, which is specification-compatible with the CC78K0 C

Compiler, and the static model, which emphasizes code efficiency. Only the normal model of the C compiler conforms

with ANSI-CNote.

The purpose of the “CC78K0S C Compiler, Language” (hereinafter, referred to as this manual) is to present the

basic functions of this C compiler and the language specifications to programmers who will use this C compiler to

develop software.

This manual does not describe how to operate this C compiler. Therefore, to use the C compiler after reading this

manual, refer to the “CC78K0S Series C Compiler, Operation.”

For the architecture of a target device, refer to the relevant User's Manual of the 78K/0 series.

Note ANSI-C is a C language standard consisting of specifications created by the American National Standards

Institute (ANSI).

Target devices

This C compiler can be used to develop software for 78K/0 Series small general-purpose microcontrollers.

To use with a target device, the device file (option) for each target type is required.

Target users

This manual is intended for people who have read the user’s manual for the microcontroller being developed and

are experienced software programmers. No particular knowledge about the C compiler or the C language is needed,

but an understanding of software terminology is assumed.

Composition

This manual has the following composition.

CHAPTER 1 OVERVIEW

The general functions, performance, and features of this C compiler are described.

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

The structure of a C language program and its structural elements are described.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

The types, their declarations, and the storage classes used in the C language are described.

CHAPTER 4 TYPE CONVERSION

The automatic type conversion performed by this C compiler is described.

CHAPTER 5 OPERATORS AND EXPRESSIONS

How to describe the operators that can be used in the C language and their precedence are explained.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

The control structures of the C language that provide control flow and their uses are described.

CHAPTER 7 STRUCTURES AND UNIONS

An overview of structures and unions and how to use them are described.

CHAPTER 8 EXTERNAL DEFINITIONS

The types of external definitions and how to use them are described.

CHAPTER 9 PREPROCESSING DIRECTIVES

The types of preprocessing directives and how to use them are described.

CHAPTER 10 LIBRARY FUNCTIONS

The library functions and how to use them in the C language are described.

CHAPTER 11 EXTENDED FUNCTIONS

The extended functions for using the target device are described. This function extends the ANSI-C specifications.

CHAPTER 12 REFERENCING ASSEMBLER

How to call assembler programs from a C language program is described.

CHAPTER 13 EFFICIENT COMPILER USE

The procedure for efficiently using this C compiler is described.

APPENDIX

A saddr area label list, compiler output segment names and a function interface list are provided.

How to Read this Manual

The recommended ways to read this manual are described.

���� For beginners to C compilers and the C language

Beginners to C compilers and the C language should read the manual in order starting from chapter 1. This

manual describes the sequence from the control structures of the C language program to the extended

functions. Chapter 1, “Overview,” presents examples of C programs and illustrates references in this manual,

so refer to them while reading.

���� For experienced users of C compilers and the C language

The language specifications of this C compiler (normal model) conform to ANSI. Therefore, experienced user

of C compilers and the C language should start reading from CHAPTER 11 EXTENDED FUNCTIONS. For the

static model, be sure to read item (23) Static model in CHAPTER 11 EXTENDED FUNCTIONS. Read

CHAPTER 11 EXTENDED FUNCTIONS in conjunction with the user's manual supplied with the target device

to be used.

Reference

The Draft Proposed American National Standard for Information System-Programming Language C (December 7,

1988).

Convention

The meanings of the symbols used in this manual are described next.

���� In this manual

... : The same format is repeated.

[] : Characters enclosed by []

“ ” : Characters enclosed by “ ”

‘ ’ : Characters enclosed by ‘ ’

bold character : The character itself

_ : Important places and the input character sequence in the examples are underlined.

: Omitted portion of the program [Description]

() : Characters enclosed by ()

/ : Delimiter

\ : Backslash

���� In a structure

::= : The meaning of the lvalue follows.

ª ¼ : The characters preceding opt can be omitted.

| : ‘|’ on the left end of the line means ‘or’.

- i -

CONTENTS

CHAPTER 1 OVERVIEW ... 1

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE... 13

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS... 31

CHAPTER 4 TYPE CONVERSION 49

CHAPTER 5 OPERATORS AND EXPRESSIONS .. 55

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES.. 95

CHAPTER 7 STRUCTURES AND UNIONS .. 115

CHAPTER 8 EXTERNAL DEFINITIONS ... 121

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES).. 125

CHAPTER 10 LIBRARY FUNCTIONS... .. 143

CHAPTER 11 EXTENDED FUNCTIONS... 219

CHAPTER 12 REFERENCING THE ASSEMBLER... 309

CHAPTER 13 EFFICIENT COMPILER USE.. 33 1

APPENDIX A SADDR SPACE LABELSUMMARY ... 335

APPENDIX B SEGMENT NAMES 339

APPENDIX C FUNCTION INTERFACE LIST.. 345

INDEX ... 349

- ii -

CONTENTS

CHAPTER 1 OVERVIEW.. 1
1.1 The C Language and Assembly Language.. .. 1

1.2 Development Procedure Using the C Compiler .. 3

1.3 Basic Structure of a C Program.. 5

1.3.1 Program structure ... 5

1.4 Before Starting Program Development 8

1.5 C Compiler Features 9

(1) callt/__callt functions ... 9

(2) Register variables.. 9

(3) sreg/__sreg variables .. 9

(4) sfr area .. 9

(5) noauto Function... 9

(6) norec/__leaf functions ... 10

(7) bit, boolean, and __boolean type variables ... 10

(8) ASM statement .. 10

(9) Kanji... 10

(10) Interrupt functions.. 10

(11) Interrupt function qualifiers .. 10

(12) Interrupt operation ... 10

(13) CPU control instructions .. 10

(14) Absolute address access functions ... 10

(15) Bit-field declarations .. 10

(16) Change compiler output section name Function ... 11

(17) Binary number description Function .. 11

(18) Change module name Function... 11

(19) Rotate functions... 11

(20) Multiplication Function ... 11

(21) Division Function ... 11

(22) Data insertion Function.. 11

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE... 13
(1) Character set ... 14

(2) Multibyte characters .. 14

(3) Escape sequences .. 14

2.1 Keywords 15

2.2 Identifiers 16

2.2.1 Identifier scope ... 16

(1) Function scope ... 17

(2) File scope ... 17

(3) Block scope .. 17

(4) Function prototype scope ... 17

2.2.2 Identifier linkage.. 18

(1) External linkage.. 18

(2) Internal linkage ... 18

- iii -

(3) No linkage .. 18

2.2.3 Name spaces of identifiers ... 19

2.2.4 Storage durations of objects... 19

(1) Static storage duration ... 19

(2) Automatic storage duration .. 19

2.2.5 Types.. 20

(1) Basic types... 21

(2) Character types.. 22

(3) Incomplete types .. 22

(4) Derived types ... 22

(5) Scalar types ... 23

2.2.6 Compatible types and composite types.. 24

(1) Compatible types ... 24

(2) Composite types .. 24

2.3 Constants 25

2.3.1 Floating constants .. 25

2.3.2 Integer constants .. 26

(1) Decimal constants.. 27

(2) Octal constants .. 27

(3) Hexadecimal constants .. 27

2.3.3 Enumeration constants... 27

2.3.4 Character constants ... 27

2.4 Strings 28

2.5 Operators... 28

2.6 Punctuators... 29

2.7 Header Names.. 29

2.8 Preprocessing Numbers 30

2.9 Comments 30

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS... 31
3.1 Storage-Class Specifiers.. 32

(1) typedef... 32

(2) extern .. 32

(3) static .. 32

(4) auto ... 32

(5) register .. 32

3.2 Type Specifiers 33

3.2.1 Structure specifiers and union specifiers.. 34

3.2.2 Enumeration specifiers ... 36

3.2.3 Tags.. 37

3.3 Type Qualifiers 38

3.4 Declarators 39

3.4.1 Pointer declarators ... 40

3.4.2 Array declarators .. 41

3.4.3 Function declarators (including prototype declarations) ... 42

3.5 Type Names.. 43

3.6 typedef 44

- iv -

3.7 Initialization 46

(1) Objects having static storage duration .. 46

(2) Objects having automatic storage duration ... 46

(3) Character array.. 46

(4) Initializing aggregate and union objects .. 47

CHAPTER 4 TYPE CONVERSION 49
4.1 Arithmetic operands 51

(1) Characters and integers (integral promotion) .. 51

(2) Signed and unsigned integers ... 51

(3) Usual arithmetic conversions... 51

4.2 Other operands 53

(1) Ivalues and function designators ... 53

(2) void .. 53

(3) Pointers ... 53

CHAPTER 5 OPERATORS AND EXPRESSIONS .. 55
5.1 Primary Expressions 57

5.2 Postfix Operators 57

(1) Array subscripting.. 58

(2) Function call .. 59

(3) Structure and union members ... 60

(4) Postfix increment and decrement operators .. 62

5.3 Unary Operators... 63

(1) Prefix increment and decrement operators.. 64

(2) Address and indirection operators... 66

(3) Unary arithmetic operators .. 67

(4) sizeof operator... 68

5.4 Cast Operators 69

5.5 Arithmetic Operators 70

(1) Multiplicative operators.. 71

(2) Additive operators.. 72

5.6 Shift Operators 73

5.7 Relational Operators.. 75

(1) Relational operators .. 76

(2) Equality operators.. 78

5.8 Bitwise Logical Operators... 79

(1) Bitwise AND operator .. 80

(2) Bitwise exclusive OR operator... 81

(3) Bitwise OR operator... 82

5.9 Logical Operators 83

(1) Logical AND operator .. 84

(2) Logical OR operator .. 85

5.10 Conditional Operator 86

5.11 Assignment Operators 88

(1) Simple assignment .. 89

(2) Compound assignment.. 90

5.12 Comma Operator... 92

- v -

5.13 Constant Expressions 93

(1) Integral constant expressions.. 93

(2) Arithmetic constant expressions.. 93

(3) Address constants... 94

(4) Constant expressions in initializers ... 94

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES.. 95
(1) Sequential processing ... 96

(2) Selective processing ... 96

(3) Iterative processing ... 96

(4) Jump processing ... 96

6.1 Labeled Statements.. 97

(1) case... 98

(2) default.. 99

6.2 Compound Statement (Block) 100

6.3 Expression and Null Statements 101

6.4 Selection Statements.. 102

(1) if statement, if-else statement ... 103

(2) switch statement.. 104

6.5 Iteration Statements 105

(1) while statement ... 106

(2) do statement.. 107

(3) for statement ... 108

6.6 Jump Statements... 109

(1) goto statement... 110

(2) continue statement .. 111

(3) break statement... 112

(4) return statement .. 113

CHAPTER 7 STRUCTURES AND UNIONS .. 115
7.1 Structures.. 115

(1) Structure and structure variable declarations.. 115

(2) Structure declaration list.. 115

(3) Arrays and pointers ... 116

(4) Referencing structure members .. 117

7.2 Unions.. 118

(1) Union and union variable declarations .. 118

(2) Union declaration list ... 118

(3) Arrays and pointers ... 119

(4) Referencing union members ... 119

CHAPTER 8 EXTERNAL DEFINITIONS ... 121
8.1 Function Definitions 122

8.2 External Object Definitions 124

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES).. 125
9.1 Conditional Compilation 126

(1) #if directive .. 127

- vi -

(2) #elif directive.. 128

(3) #ifdef directive ... 129

(4) #ifndef directive ... 130

(5) #else directive.. 131

(6) #endif directive .. 132

9.2 Source File Inclusio n ... 133

(1) #include <> directive.. 134

(2) #include " " directive .. 135

(3) #include preprocessing token array directive .. 136

9.3 Macro Replacemen t ... 137

(1) Argument substitution.. 137

(2) # operator .. 137

(3) ## operator .. 137

(4) Rescanning and further replacement .. 137

(5) Scope of macro definitions .. 137

(i) #define directive .. 138

(ii) #define() directive.. 139

(iii) #undef directive... 140

9.4 Line Contro l .. 141

9.5 Error Directiv e .. 141

9.6 Pragma Directiv e.. 141

9.7 Null Directiv e .. 141

9.8 ASM Directiv e ... 142

9.9 Compiler Definition Macro Name s.. 142

CHAPTER 10 LIBRARY FUNCTION S... 143
10.1 Function Interfac e .. 143

10.1.1 Arguments .. 143

10.1.2 Return value ... 144

10.1.3 Saving the registers used by each library... 145

10.2 Header File s .. 146

(1) ctype.h ... 146

(2) setjmp.h ... 147

(3) stdarg.h.. 147

(4) stdio.h .. 147

(5) stdlib.h ... 148

(6) string.h... 148

(7) error.h .. 149

(8) errno.h ... 149

(9) limits.h ... 149

(10) stddef.h.. 150

(11) math.h.. 151

(12) float.h... 151

(13) assert.h.. 153

10.3 Error Checkin g ... 154

10.4 Standard Library Function s .. 154

- vii -

CHAPTER 11 EXTENDED FUNCTIONS... 219
11.1 Macro Names.. 219

11.2 Keywords... 219

(1) Functions... 220

(2) Variables ... 220

11.3 Memory 220

(1) Memory models ... 220

(2) Register banks .. 220

(3) Memory space... 221

11.4 Using Extended Functions... 222

(1) callt [Function] ... 223

(2) Register variables.. 226

(3) Using saddr space... 230

(4) Using the sfr area .. 237

(5) noauto function.. 239

(6) norec [Function]... 244

(7) bit type variables ... 249

(8) ASM statement .. 253

(9) Kanji .. 256

(10) Interrupt functions.. 258

(11) Interrupt function qualifiers (_ _interrupt) .. 264

(12) Interrupt functions.. 266

(13) CPU control instructions.. 269

(14) Absolute address access functions... 271

(15) Bit field declarations .. 274

(16) Changing the compiler output section name ... 278

(17) Binary constants.. 286

(18) Change module name [Function] .. 288

(19) Rotate functions .. 289

(20) Multiplication Function... 292

(21) Division Function ... 294

(22) Data insertion [Function] ... 297

(23) Static Model... 299

(24) Changing Type .. 304

11.5 Modifying the C Source... 307

CHAPTER 12 REFERENCING THE ASSEMBLER... 309
12.1 Accessing Arguments/Automatic Variables 310

12.1.1 Normal model ... 310

12.1.2 Static model.. 313

12.2 Storing Return Values 315

12.3 Calling Assembly Language Routines from the C Language.. 316

(1) C language function calling Procedure.. 316

(2) Saving data from the assembly language routine and returning ... 317

12.4 Calling C Language Routines from Assembly Language .. 321

(1) Calling the C language function from an assembly language program... 321

(2) Referencing arguments in a C language Function .. 323

12.5 Referencing Variables Defined in Other Languages .. 3 24

- viii -

(1) Referencing variables defined in the C language.. 324

(2) Referencing variables defined in the assembly language from the C language.............................. 325

12.6 Warnings... 326

(1) ‘__’ (underscore).. 326

(2) Argument positions on the stack ... 326

(3) Run-time library summary.. 326

CHAPTER 13 EFFICIENT COMPILER USE.. 33 1
13.1 Command Input When Compiling 331

13.2 Efficient Coding... 332

APPENDIX A saddr AREA LABEL SUMMARY.. 335

APPENDIX B SEGMENT NAMES... 339

APPENDIX C FUNCTION INTERFACE LIST .. 345
C.1 Storage Locations of Return Values 345

C.2 Passed on Argument (Function Call Side)... 346

C.2.1 Normal Model.. 346

C.2.2 Static Model .. 346

C.3 Argument/Automatic Variables Storage List (Called Function)... 347

C.3.1 Normal Model.. 347

C.3.2 Static Model .. 348

INDEX ... 349

- ix -

List of Figures

Figure No. Title Page

1-1. Compilation Flow.. 2

1-2. Tprogram Development Procedure Using this C Compiler .. 4

4-1. Tusual Arithmetic Conversions .. 52

6-1. Tselection Statement Control Flow .. 102

6-2. Iteration Statement Control Flow.. 105

6-3. Jump Statement Control Flow.. 109

10-1. Stack Area During a Function Call ... 146

10-2. Syntax Chart for Output format .. 169

10-3. Syntax Chart for Input format ... 173

11-1. Bit Position Based on Bit Field Declaration (Example 1) ... 276

11-2. Bit Position Based on Bit Field Declaration (Example 2) ... 277

12-1. Stack Area After a Call ... 317

12-2. Stack Area After Returning .. 320

12-3. Placing Arguments on the Stack .. 322

12-4. Passing Arguments to the C Language ... 323

12-5. Stack Positions of the Arguments .. 326

- x -

List of Tables

Table No. Title Page

1-1. Optimum Performance of this C Compiler ... 8

2-1. Escape Sequences .. 14

2-2. Basic Types.. 22

4-1. Type Conversions .. 50

4-2. Conversion from Signed to Unsigned Integers... 51

5-1. Order of Operator Evaluation ... 56

5-2. Multiplicative Operators.. 70

5-3. Shift Operators ... 73

5-4. Bitwise AND Operator .. 80

5-5. Bitwise Exclusive OR Operator .. 81

5-6. Bitwise OR Operator... 82

5-7. Logical AND Operator .. 84

5-8. Logical OR Operator... 85

10-1. Argument Passing List (Normal Model).. 143

10-2. Argurment Passing List (Static Model) ... 144

10-3. Return Value Storage List (Normal Model)... 144

10-4. Return Value Storage List (Static Model) ... 144

10-5. Standard Library Function Name List ... 155

11-1. Additional Keywords... 219

11-2. Memory Space Use (for Normal Model) ... 221

11-3. Memory Space Use (for Static Model).. 221

11-4. Usage Limitations on the callt [Function].. 224

11-5. noauto Function Passing List (noauto Function Calling Side).. 239

11-6. noauto Function Interface (noauto Function Definition Side) ... 240

11-7. norec Function Arguments Pass List (norec function calling side)... 249

11-8. norec Function Interface... 245

11-9. Operators That Act Only on the Constants 0 or 1 (When using bit type variables) 250

11-10. Kanji Options .. 256

11-11. Save or Restore Area When Using Interrupt Functions (Normal Model).. 259

11-12. Compiler Output Section Names .. 285

11-13. Segment Placement Destination .. 285

11-14. Type Changes Using -ZI and -QU Options... 305

11-15. Type Changes Using -ZI Options ... 307

12-1. Passing Variables (Function Call Side) .. 310

12-2. Storing of Arguments/Automatic Variables (Inside Called Function).. 311

12-3. Passing Arguments (Function Call Side).. 313

12-4. Storage Format of Arguments and Automatic Variables (Inside Called Function) 313

12-5. Storage Location of Return Values .. 315

12-6. Run-Time Library.. 327

1

CHAPTER 1 OVERVIEW

The CC78K0S C Compiler is a language processing program that converts C language for small general-purpose

products of the 78K/0 series (referred as 78K/0S) and source programs described in ANSI-C into machine language.

A normal model version, which is compatible with the C compiler CC78K0 for the 78K/0 series excluding small

general-purpose products, is provided that offers easy portability. If the static model is used, be sure to read the

section listing differences with the normal model. Object files and assembler source files for 78K/0 series small

general-purpose products can be obtained from the CC78K0S C compiler.

1.1 The C Language and Assembly Language

Programs and data are needed to run a microcontroller. These are programmed by people and stored in the

memory of the microcontroller. Programs and data that can be handled by the microcontroller compose a set of

binary numbers called machine language.

The assembly language has a one-to-one correspondence with the mnemonics of the machine language.

Because of the one-to-one correspondence with the machine language, assembly language can provide detailed

instructions for the computer, such as improving the processing speed during I/O. However, this means that all

computer actions must be individually specified. Therefore, the logical structure of the program is difficult to

understand at a glance and errors easily arise.

High-level languages were developed to replace assembly languages. One of these is the C language.

Consequently, the programmer can write programs without being aware of the computer architecture and more easily

understand the logical structure of the program itself than with assembly language.

Since many components (functions) are written to form a program in the C language, the programmer can write a

program by combining these components.

A feature of the C language is it’s easy for people to understand. However, the microcontroller cannot understand

a program written in the C language. To understand the C language, a program that translates into the machine

language compatible with the microcontroller is required. The C compiler is the program that translates C language

into machine language.

CHAPTER 1 OVERVIEW

2

This C compiler inputs a C source module and outputs an object module and an assembler module. Therefore,

the programmer uses the C language to write programs and can revise the program using assembly language to

describe detailed instructions about program execution. Figure 1-1, “Compiler Flow,” shows the translation flow in

this C compiler.

Figure 1-1. Compilation Flow

Translation program

(C source module file)

C program

(Object module file)

Binary program

 (Compiler)

 Translation program

(Object module file)

Binary program

 (Assembler)

(Assembler source
module file)

Explanation: The C compiler compiles C source module files and generates object module files and assembler

source module files.

CHAPTER 1 OVERVIEW

3

1.2 Development Procedure Using the C Compiler

Product development using the C compiler requires a linker to link the object module files created by the C

compiler, a librarian to create library files, and a debugger to remove bugs from the programs.

This C compiler requires this software:

• Editor : Creates source module files

• RA78K0S Assembler Package

Assembler : Assembles assembler source module files

Linker : Links object module files and determines the addresses for relocatable segments

Object converter : Converts to hexadecimal files

Librarian : Creates library files

• Source debugger : Debugs C source module files

The product development procedure using a C compiler is:

(1) Divide the product into functions.

(2) Write a C source module for each function.

(3) Compile each module.

(4) Build a library of frequently used modules.

(5) Link the modules.

(6) Debug the modules.

(7) Use the object converter to convert to a hexadecimal file.

CHAPTER 1 OVERVIEW

4

Figure 1-2. Program Development Procedure Using this C Compiler

In-circuit
emulator

Structured
assembler
source

Structured assembler

Assembler
source

Object
module
file

Assembler
MX78K0/S

Library
file

Library
file

Include
file

Librarian

Linker

Object converter

PROM programmer

C Source

C compiler

Load module file

Hexadecimal
object

List converter System simulator

Absolute
assembler
list

Assembler
list

Assembler
source

RS-232-C

Integrated debugger

Special parallel
interface

Under
development

*

CHAPTER 1 OVERVIEW

5

1.3 Basic Structure of a C Program

1.3.1 Program structure

A C program is a collection of functions. Each function is created to have an independent function. Then the

functions are collected into one program by the ‘main’ function. The main routine in the C language becomes the

‘main’ function.

A function consists of the header that defines the function names and arguments and the body that specifies the

program itself. Next, the structure of a C program is illustrated.

Variable, constant definitions Definitions of data, variables, and macros

main (arguments) Header of the main Function
 {

 Instruction 1;

 Instruction 2;

 Function 1 (arguments); Body of main Function
 Function 2 (arguments);

}

Function 1 (arguments)

 {

 Instruction 1; Function 1
 Instruction 2;

}

Function 2 (arguments)

 {

 Instruction 1; Function 2
 Instruction 2;

}

CHAPTER 1 OVERVIEW

6

An actual C source program is shown below.

#define TRUE 1

#define FALSE 0 #define xxxxxx - Preprocessor directive (macro definition) (6)
#define SIZE 200

char mark[SIZE+1]; char xxx - Type declaration (1)
main() xx[xx] - Operator (2)
{

 int i, prime, k, count; int xxx - Type declaration (1)

 count = 0; xx = xx - Operator (2)

 for (i = 0; i <= SIZE; i++) for (xx; xx; xx) xxx; - Control structure (3)
 mark[i] = TRUE;

 for (i = 0; i <= SIZE; i++)

 if(mark[i])

 prime = i + i + 3; xxx = xxx + xxx + xxx - Operator (2)
 printf("%6d", prime); xxx(xxx); - External definition (5)

 count++;

 if ((count%8) == 0) putchar(‘\n’); if (xxx) xxx; - Control structure (3)
 for (k = i + prime; k <= SIZE; k += prime)

 mark[k] = FALSE;

 }

 }

 printf("\n%d primes found.", count); xxx(xxx); External definition (5)
}

printf(s, i)

char *s;

int i;

{

 int j;

 char *ss;

 j = i;

 ss = s;

}

putchar(c)

char c;

{

 char d;

 d = c;

}

CHAPTER 1 OVERVIEW

7

(1) Type and storage class declarations

The types and the storage classes of the identifiers that indicate objects are declared. For details on the types

and storage classes, see Chapter 3, “Type and Storage Class Declarations.”

(2) Operators and expressions

Arithmetic operations, logical operations, and assignments are performed. For details about operators and

expressions, see Chapter 5, “Operators and Expressions.”

(3) Control structures

The program flow is specified. The control structure in the C language uses instructions for selection, iteration,

and branching. For details about control structures, see Chapter 6, “C Language Control Structures.”

(4) Structures and unions

Structures or unions are declared. A structure is an object containing different types in a contiguous space. A

union is an object having a space where different types overlap. For details about structures and unions, see

Chapter 7, “Structures and Unions.”

(5) External definitions

A function or external object is defined. A function is one element when a C program is divided into separate

functions. A C program is constructed from a collection of functions. For details about external definitions, see

Chapter 8, “External Definitions.”

(6) Preprocessing directives

These are instructions for the compiler. ‘#define’ is a directive for the C compiler that replaces the first operand

when it appears in the program by the second operand. For details about preprocessing directives, see Chapter

9, “Preprocessing Directives.”

CHAPTER 1 OVERVIEW

8

1.4 Before Starting Program Development

Before starting program development, note the following items.

Table 1-1. Optimum Performance of this C Compiler

No. Item Limit

1 Compound statement, iteration control statement, selection control statement nesting 45

2 Conditional compiling nesting 255

3 Qualified declarator nesting 12

4 Parentheses nesting in an expression 32

5 No. of significant characters in a macro name 31

6 No. of significant characters in an internal or external symbol name 30 (Note 1)

7 No. of symbols in one source module file 1,024 (Note 2)

8 No. of symbols having block scope in one block 255 (Note 2)

9 No. of macros in one source module file 5,000 (Note 3)

10 Parameters in one function definition and function call 39

11 Parameters in one macro definition and macro call 31

12 No. of characters in one logical source line 509

13 No. of characters in a string literal after linking 509

14 One object size (pointing to data) 65535 bytes

15 #include nesting 8

16 No. of case labels in a switch statement 257

17 No. of source lines in one translation unit About 3,000

18 No. of source lines that can be compiled without creating a temporary file About 300

19 Function call nesting 40

20 No. of labels in one Function 33

21 Total size of code, data, stack segments in one object module 65535 bytes

22 Number of members in one structure or union 127

23 Number of enumeration constants in one enumeration 255

24 Nesting of structures or unions in one structure or union 15

25 Nesting of initializer elements 15

26 Number of function definitions in one source module file 400

27 Number of levels of nests of declarators enclosed in parentheses per full declarator. 1

Notes 1. The length of a symbol name can be changed to seven characters by a compiler option.

2. This indicates the maximum that can be processed only in the memory space without using temporary

files. When processing cannot take place in the memory space, temporary files are used. This

maximum is changed by the file size.

3. This includes macro definitions reserved by the compiler. However, the UNIX version has a maximum

of 10,000.

CHAPTER 1 OVERVIEW

9

1.5 C Compiler Features

This C compiler provides extended functions that generate non-ANSI CPU code. The extended functions of the C

compiler include ones for describing special function registers in the 78K/0S Series in the C language and ones for

decreasing the object code size and improving the execution speed. For details about extended functions, see

Chapter 11, “Extended Functions.”

The ways to decrease the object code size and improve the execution speed are as follows.

• Calling a function by using the callt area - callt/_ _callt Function

• Allocating variables to registers - Register variables

• Allocating variables to the saddr area - sreg/_ _sreg variables

• Using sfr names - sfr area

• Creating functions that have no pre- or post-processing (stack frame) - noauto function,

 norec/_ _leaf Function

• Specifying assembly language in the C source programs - ASM statement

• Bit accessing in the saddr and sfr areas - bit type variables,

 boolean/_ _boolean type variables

• Storing functions in the callf area - callf/_ _callf Function

• Enabling the specification of a bit field as an unsigned char - Bit field declaration

• Direct in-line expansion and output of multiplication code - Multiply Function

• Direct in-line expansion and output of division code - Divide Function

• Direct in-line expansion and output of rotate code - Rotate Function

(1) callt/_ _callt functions

The address of the function to be called is placed in the callt area and the function is called. Compared to

ordinary calling, the switching of functions becomes fast. Also the size of the object code can be reduced.

(2) Register variables

These variables can be placed in the registers or the saddr area. Compared to using ordinary variables, the

execution speed improves. Also the size of the object code can be reduced.

(3) sreg/_ _sreg variables

These variables can be used in the saddr area. Compared to using ordinary variables, the execution speed

improves. Also the size of the object code can be reduced. Even if optional, the variables can be used in the

saddr area.

(4) sfr area

The special function register (sfr) can be used in a C source file by using the sfr mnemonic (sfr name).

(5) noauto Function

A function having no pre- or post-processing (stack frame) is generated. When the noauto function is called, the

arguments are passed via the registers. Therefore, the execution speed improves and the object code size can

be reduced. This function is limited to arguments and automatic variables. For details, see “(5) noauto function”

in Chapter 11.

CHAPTER 1 OVERVIEW

10

(6) norec/_ _leaf functions

A function having no pre- or post-processing (stack frame) is generated. When the norec or _ _leaf function is

called, variables are passed via the registers. The automatic variables used in the norec or _ _leaf function are

allocated to registers or the saddr area. Therefore, improved execution speed and reduced the object code size

are possible. These functions are limited to arguments and automatic variables. Also function calls cannot be

made from this function. For details, see “(6) norec function” in Chapter 11.

(7) bit, boolean, and _ _boolean type variables

Variables having a one-bit storage area are created. By using bit, boolean, and _ _boolean type variables, the

saddr area can be accessed in bits.

The boolean and _ _boolean type variables have the same function and use as a bit type variable.

(8) ASM statement

Assembler source described by the user is embedded in the assembler source file output by C compiler.

(9) Kanji

Kanji can be written in comments in the C source file. Shift JIS code, EUC code, or no kanji code can be

selected for the kanji code.

(10) Interrupt functions

A vector table is generated and the object code for interrupts is output. This allows interrupt functions to be

described in a C source level.

(11) Interrupt function qualifiers

By using qualifiers, vector table settings and interrupt function definitions can be described in separate files.

(12) Interrupt operation

Interrupt disable instructions and interrupt enable instructions are embedded in objects.

(13)CPU control instructions

The following instructions are embedded in objects.

halt

stop

nop

(14)Absolute address access functions

Code that accesses the normal memory space in an object does not perform a function call, but is directly

expanded in line and output to generate the object file.

(15)Bit-field declarations

Defining the type of a bit field as unsigned char results in memory savings, object code reduction, and faster

execution speed.

CHAPTER 1 OVERVIEW

11

(16)Change compiler output section name Function

By changing the compiler output section name, the section can be independently located by the linker.

(17)Binary number description Function

Binary numbers can be described in the C source.

(18)Change module name Function

The name of the object module can be freely changed in the C source.

(19)Rotate functions

Code that rotates the value of an expression in an object is directly expanded in line and output.

(20)Multiplication Function

Code that multiplies the value of an expression in an object is directly expanded in line and output. This function

reduces the object code size and improves the execution speed.

(21)Division Function

Code that divides the value of an expression in an object is directly expanded in output. This function reduces

the object code size and improves the execution speed.

(22)Data insertion Function

Constant data is inserted at the current address. Without using assembler descriptions, special data or

instructions can be embedded in the code space.

12

[MEMO]

13

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

This chapter describes the structural elements of a C source module file. A C source module file consists of

‘tokens.’ The tokens are:

Keywords Identifiers Constants

String literals Operators Punctuators

Header names Preprocessing numbers Comments

The tokens used in the following example description of a C program are indicated.

#include ”expand.h”

extern bit data1;

extern bit data2; extern - Keyword
data1, data2 - Identifiers

void main() void - Keyword
{

 data1 = 1; 1 - Constant
 data2 = 0; 0 - Constant

 while (data1){ while - Keyword
 data1 = data2; {} - Punctuators
 testb(); = - Operator
 }

 if (data1 && data2){ if - Keyword
&& - Operator

 } chgb(); () - Operator
}

lprintf(s, i) lprintf - Identifier
char *s; char, int - Keyword
int i; s, i - Identifier
{

 int j;

 char *ss; * - Operator
 j=i;

 ss=s

}

 :

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

14

(1) Character set

The character sets used in a C program are the set of source characters that describe the source files and the

set of execution characters that are interpreted by the execution environment.

The value of a character in the execution character set is JIS code.

The following characters can be used in the source character set and execution character set.

26 uppercase letters
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

26 lowercase letters
a b c d e f g h i j k l m

n o p q r s t u v w x y z

10 decimal numbers
0 1 2 3 4 5 6 7 8 9

29 graphic characters (Note 1)

! ” # % & ’ () * + , - . / :

; < = > ? [¥] ^ _ { | } ~

Control characters indicate the space, vertical tab, horizontal tab, and form feed.

Note 1. In the PC DOS, there is no yen symbol ‘¥,’ but there is a backslash ‘\’.

(2) Multibyte characters

The source character set can use multibyte characters in the extended character set (i.e., comments). The

execution character set can use shift JIS kanji code or EUC kanji code multibyte characters.

(3) Escape sequences

Non-graphic characters like warnings and form feeds are represented by escape sequences. An escape

sequence consists of the yen symbol ¥ and one letter.

The escape sequences that represent non-graphic characters are shown next.

Table 2-1. Escape Sequences

Escape Sequence Represents Character Code

¥a Warning 07H

¥b Backspace 08H

¥f Formfeed 0CH

¥n New line 0AH

¥r Carriage return 0DH

¥t Horizontal tab 09H

¥v Vertical tab 0BH

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

15

2.1 Keywords

Since the following tokens are used as keywords by the compiler, they cannot be used as labels or variable

names.

auto break case char const continue

default do double else enum extern for

float goto if int long register return

short signed sizeof static struct switch

typedef union unsigned void volatile while

To implement extended functions in this C compiler, the following tokens have been added as keywords. (If these

tokens contain uppercase letters, they are not considered to be keywords.)

Specifying the -ZA option disables keywords that do not begin with an underscore (_ _).

callt/_ _callt - callt function declaration
sreg/_ _sreg - sreg variable declaration
noauto - noauto function declaration
norec/_ _leaf - norec function declaration
bit - bit type variable declaration
boolean/_ _boolean - boolean type variable declaration
_ _interrupt - hardware interrupt Function
_ _asm - asm statement

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

16

2.2 Identifiers

The identifiers are:

Functions

Objects

Structure, union, and enumeration tags

Structure, union, and enumeration members

typedef names

Label names

Macro names

An identifier is represented by lowercase letters, uppercase letters, digits, and the underscore.

_ (underscore) a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

The first character in an identifier cannot be a digit. Also an identifier must not be a keyword.

2.2.1 Identifier scope

The valid range where an identifier can be used is determined by the position where it was declared. The valid

range of an identifier is called the scope of the identifier.

Identifiers have these scopes:

Function scope

File scope

Block scope

Function prototype scope

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

17

extern boolean data1, data2; data1, data2 - File scope

void main()

{

 int cot; cot - Function scope
 data1 = 1;

 data2 = 0;

 while(data1){

 data1 = data2;

 j1: j1 - Block scope
 testb(cot);

 }

}

void testb(int x) x - Function prototype scope
{

 .

 .

 .

(1) Function scope

Function scope indicates the entire function. An identifier having function scope can be referenced from

anywhere in the function.

An identifier having function scope is only a label name.

(2) File scope

File scope indicates the entire translation unit.

An identifier declared outside a block or parameter list has file scope. An identifier having file scope can be

referenced from anywhere in the program.

(3) Block scope

The block scope indicates the range until a specific block (enclosed by braces { }) ends.

An identifier declared in a block or a parameter list has block scope. An identifier with block scope is valid in the

specified block.

(4) Function prototype scope

This indicates the range until the end of the declared function.

An identifier declared in the parameter list in a function prototype has function prototype scope. An identifier

having function prototype scope is valid in the specified function.

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

18

2.2.2 Identifier linkage

Identifier linkage is declaring more than one identifier with different or the same scopes so they can be referenced

as the same object or function. These identifiers are considered to be identical by linkage.

The kinds of identifier linkage are external linkage, internal linkage, and no linkage.

(1) External linkage

External linkage links the set of translation units and libraries that form the entire program.

External linkage occurs in the following cases.

• Declared function without a storage-class specifier

• No storage-class specifier for the identifier to be referenced in an object or function declared as extern

• Objects that have file scope and no storage-class specifier

(2) Internal linkage

Internal linkage links inside one translation unit.

Internal linkage occurs in the following case.

• Object or function that has file scope and includes the static storage-class identifier

(3) No linkage

An identifier with no linkage is a unique entity.

Examples of no linkage are:

• Identifier for something other than an object or Function

• Identifier that declares a function parameter

• Identifier of an object that does not have an extern storage-class specifier in the block

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

19

2.2.3 Name spaces of identifiers

All identifiers are classified into the following ‘name spaces.’

• Label name - Disambiguated by the label declaration

• Tags for unions, structures, and enumerations

- Disambiguated by the struct, union, and enum keywords

• Members of structures and unions - Disambiguated in an expression by the . and -> operators

• Ordinary identifiers (identifiers other than the above)

- Declared as ordinary declarators or enumeration constants

2.2.4 Storage durations of objects

Each object has a ‘storage duration’ that determines its lifetime. The two storage durations are static and

automatic.

(1) Static storage duration

An object having static storage duration has its storage reserved before execution. The reserved storage is

initialized only once. A static object exists while the program is executing and retains its last stored value.

Objects having static storage duration are:

• Objects having external linkage

• Objects having internal linkage

• Objects declared by the storage-class specifier static

(2) Automatic storage duration

An object having automatic storage duration has its storage reserved upon entering the block where it is

declared. If entering at the beginning of the block and initialization is specified, the object is initialized. If the

block is entered by jumping to a label, there is no initialization.

The storage for an object having automatic storage duration is not reserved when the execution of the declared

block ends.

Objects having automatic storage duration are:

• Objects with no linkage

• Objects not declared with the storage-class specifier static

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

20

2.2.5 Types

The type determines the meaning of the value stored in the object. The type is specified in the identifier that

declares the object.

A type is classified as one of the following three types based on the declarator.

• Object types - Types that describe objects

• Function types - Types that describe functions

• Incomplete types - Types that describe objects that do not have size information

The types are:

• Basic types (arithmetic types) Integer types char type

Signed integer types signed char

short int

int

long int

Unsigned integer types

Enumerated types

Floating types float, double, log double

* Normal model only supported

• Character types char

signed char

unsigned char

• Incomplete types Array, structure, union, and void types that do not specify the object size

• Derived types Aggregate types Array types

Structure types

Union types

Derived declarator types Array types

Function types

Pointer types

• Scalar types Basic types char type

Signed integer types

Unsigned integer types

Pointer types

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

21

(1) Basic types

The basic types, also called arithmetic types, consist of integer types. The integer types are classified into char

type, signed integer type, unsigned integer type, and enumeration type.

(a) Integer types

There are four integer types. The value of an integer type is represented by the binary numbers 0 and 1.

• char type

• Signed integer type

• Unsigned integer type

• Enumeration type

 (i) char type

The char type is large enough to store any character in the execution character set.

The value of a character stored in a char object is positive. Other characters are handled as signed

integers. If an overflow occurs when storing, the overflow is ignored.

(ii) Signed integer types

The four signed integer types are:

• signed char

• short int

• int

• long int

An object declared with the signed char type has the same amount of storage as a char without a

qualifier.

An int object that has no qualifier has the natural size suggested by the CPU architecture of the

execution environment.

The unsigned integer types that correspond to the signed integer types use the same amount of

storage. Positive numbers having signed integer type are a subset of unsigned integer type.

(iii) Unsigned integer type

An unsigned integer type is represented by the unsigned keyword.

Computations involving unsigned integer types do not overflow. If values that cannot be represented by

integer types occur in computations involving unsigned integer types, the computation result is reduced

modulo the number that is the sum of the largest number that can be represented by the unsigned

integer type plus one.

(iv) Enumeration type

An enumeration is a set of named integer constants. It is formed by a list.

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

22

Table 2-2. Basic Types

Type Range

(signed)char ð128 to +127

unsigned char 0 to 255

(signed) short int ð32768 to +32767

unsigned short int 0 to 65535

(signed) int ð32768 to +32767

unsigned int 0 to 65535

(signed) long int ð2147483648 to +2147483647

unsigned long int 0 to 4294967295

float 1.17549435E-38F to 3.40282347E+38F

double 1.17549435E-38F to 3.40282347E+38F

long double 1.17549435E-38F to 3.40282347E+38F

• signed can be omitted. However, when signed is omitted for char type, signed char or unsigned

char is determined based on the conditions (options) during compilation.

• short int and int are handled as different types with the same range of values.

• unsigned short int and unsigned int are handled as different types with the same range of values.

(2) Character types

There are three character types.

• char

• signed char

• unsigned char

(3) Incomplete types

There are four incomplete types.

• Array of objects of an unknown size

• Structures

• Unions

• void types

(4) Derived types

A derived type can be derived from basic, enumeration, and incomplete types.

• Aggregate type

• Union type

• Derived declarator type

 (a) Aggregate type

The two aggregate types are the array types and the structure types. An aggregate type is a collection of

concatenated member objects. The array type is also included in the derived declarator type.

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

23

(i) Array type

The array type is a set of member objects called the element type. Since the array type is derived from

one member object, it is called an array type derivation. Therefore, all of the member objects have the

same size storage. If there is an array type derivation based on the T element type, the resulting type is

said to be an “array of T.”

(ii) Structure type

The structure type is a set of member objects having different sizes. Each member object can be

specified by its name.

(b) Union type

The union type is a set of overlapping member objects. Each member object has a different size and name,

and can be individually specified.

(c) Derived declarator type

There are three derived declarator types.

• Array type

• Function type

• Pointer type

(i) Array type

The derived declaration of the array type is called an array type derivation.

(ii) Function type

The function type represents a function with the specified return type. The function type is characterized

by the type of its return value, number of parameters, and types of the parameters. A function is

derived from its return type. If the return type is T, that function is said to be a “function returning T.”

Creating a function based on the return type is called function derivation.

(iii) Pointer type

The pointer type is constructed from a function type, an object type, or an incomplete type called the

referenced type. The pointer type describes an object. The value representing the object is used to

reference the entity having the referenced type.

The pointer type constructed from referenced type T is called the “pointer to T.” Constructing a pointer

type from the referenced type is called pointer derivation.

(5) Scalar types

Arithmetic types and pointer types, which are basic types, are generally referred to as scalar types. The scalar

types are:

• char type

• Signed integer type

• Unsigned integer type

• Pointer type

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

24

2.2.6 Compatible types and composite types

(1) Compatible types

If two types are the same, they are said to be compatible types. For example, two structures, unions, or

enumerations declared in separate translation units are compatible types if they have the same number of

members, member names, and compatible member types. Two structures or unions must have members

arranged in the same order. Two enumerations must have members with the same values.

All declarations related to the same object or function must have a compatible type.

(2) Composite types

A composite type is a type that is compatible with two types. A composite type is constructed from two

compatible types. The following situations arise for the composite type.

• If one type is an array with a known size, the composite type is an array having the same size.

• If one type is a function type with a parameter type list (function prototype), the composite type is a function

prototype with a parameter type list.

• If both types are parameter type lists, the parameter type of the composite parameter type list is the

composite type of the corresponding parameters.

These rules apply recursively to the two types that are derived.

[Composite Type Example]

Two declarations having file scope are:
int f(int(*)(), double(*)[3]);

int f(int(*)(char*), double(*)[]);

The composite type of the functions is:
int f(int(*)(char *), double(*)[3]);

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

25

2.3 Constants

A constant is a preset value. The type of each constant is determined by the specified format and value. There

are four types of constants.

• Floating constants

• Integer constants

• Enumeration constants

• Character constants

2.3.1 Floating constants

Floating constants have this syntax:

floating-constant ::=

 fractional-constant exponent-part floating-suffix

| digit-sequence exponent-part floating-suffix

fractional-constant ::=

digit-sequence . digit-sequence

digit-sequence .

exponent-part ::=

 e sign digit-sequence

| E sign digit-sequence

sign ::=

+

| ð

digit-sequence ::=

 digit

| digit-sequence digit

floating-suffix ::=

 f

| l

| F

| L

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

26

2.3.2 Integer constants

Integer constants are integer values specified beforehand. There are three types of integer constants.

• Decimal constants

• Octal constants

• Hexadecimal constants

Integer constants have this syntax:

integer-constant ::=

 decimal-constant ªinteger-suffix¼

| octal-constant ªinteger-suffix¼

| hexadecimal-constant ªinteger-suffix¼

decimal-constant ::=

 nonzero-digit

| decimal-constant digit

nonzero-digit ::= one of

1 2 3 4 5 6 7 8 9

octal-digit ::=

 0

| octal-digit octal-digit

octal-digit ::= one of

0 1 2 3 4 5 6 7

hexadecimal-constant ::=

 0x hexadecimal-digit

| 0X hexadecimal-digit

| hexadecimal-constant hexadecimal-digit

hexadecimal-digit ::= one of

0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

integer-suffix ::=

 unsigned-suffix ªlong-suffix¼

| long-suffix ªunsigned-suffix¼

unsigned-suffix ::= one of

u U

long-suffix ::= one of

l L

The type of an integer constant is considered to be the first type under the ‘Type That Can Be Represented’ in the

following list.

However, the type of an unsuffixed constant can be changed to char or unsigned char by the compilation

conditions (options).

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

27

(Integer Constant) (Type that can be Represented)

• Unsuffixed decimal int, long int, unsigned long int

• Unsuffixed octal, hexadecimal int, unsigned int, long int, unsigned long int

• Suffixed by u or U unsigned int, unsigned long int

• Suffixed by l or L long int, unsigned long int

• Suffixed by u or U and l or L unsigned long int

(1) Decimal constants

A decimal constant is an integer with base 10. To specify, begin with a digit other than 0 followed by the digits 0

to 9.

(2) Octal constants

An octal constant is an integer with base 8. To specify, begin with a 0 followed by the digits 0 to 7.

(3) Hexadecimal constants

A hexadecimal constant is an integer with base 16. To specify, begin with 0x or 0X followed by the decimal digits

and the letters a (or A) to f (or F), which represent the numbers 10 to 15.

2.3.3 Enumeration constants

An enumeration constant is an element in an enumeration type variable. An enumeration type variable can only

have a specific value represented by an identifier. An enumeration constant is used to represent the value of an

enumeration type variable.

The identifier that declared an enumeration constant becomes the int type. The enumeration constant is

represented by an identifier.

2.3.4 Character constants

A character string constant is a character string of one or more characters enclosed by single quotes, such as ‘X’

or ‘ab’.

Character constants have this syntax:

character-constant ::=

‘c-char-sequence’

c-char-sequence ::=

 c-char

| c-char-sequence c-char

c-char ::=

any character in source character set of the machine except the single quote ‘,

backslash \, or new-line character

| escape sequence

escape-sequence ::=

 simple-escape-sequence

| octal-escape-sequence

| hexadecimal-escape-sequence

simple-escape-sequence ::= one of

\’ \” \? \\

\a \b \f \n \r \t \v

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

28

octal-escape-sequence ::=

 \ octal-digit

| \ octal-digit octal-digit

| \ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence ::=

 \x hexadecimal-digit

| hexadecimal-escape-sequence hexadecimal-digit

2.4 Strings

A string literal is a sequence of zero or more characters enclosed by double quotes, as in “xxx”.

A single quote (‘) is represented by itself or the escape sequence \’. A double quote (“) is represented by the

escape sequence \”.

An array element has type char.

String literals have this syntax:

string-literal ::=

“ªs-char-sequence¼“

s-char-sequence ::=

 s-char

| s-char-sequence s-char

s-char ::=

any character in the source character set of the machine except the double quote “,

backslash \, and \n

| escape-sequence

2.5 Operators

An operator specifies how to perform an evaluation. The entity acted on by an operator is called the operand. An

operand is evaluated in the manner specified by the operator. Values, designators, side effects, or their combinations

are generated.

Operators have this syntax:

operator ::= one of

[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= == !=

^ | && ||

?:

= *= /= %= += -= <<= >> =

&= ^= |=

, # ##

The operators [], (), and ?: must occur in pairs. They may contain expressions.

and ## are only used in the macro definitions of preprocessing directives.

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

29

2.6 Punctuators

A punctuator is a symbol that has independent syntactic and semantic significance. However, values cannot be

generated. The punctuators are:

[] () {} * , := ; } #

The punctuators [], (), and { } may contain expressions, declarations, or statements. However, these punctuators

must always be used in pairs.

The # punctuator is only used in preprocessing directives.

2.7 Header Names

The header name indicates the external source file name. This is only used in the #include preprocessing

directive.

Header names have this syntax:

header-name ::=

 <h-char-sequence>

| “q-char-sequence”

h-char-sequence ::=

 h-char

| h-char-sequence h-char

h-char ::=

any character in the source character set of the machine except the new-line

character and >

q-char-sequence ::=

 q-char

| q-char-sequence q-char

q-char ::=

any character in the source character set of the machine except the new-line character

and “

CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE

30

2.8 Preprocessing Numbers

A preprocessing number is the number before conversion to an integer constant. In the preprocessing number

stage, the type and value are not maintained.

Preprocessing numbers have this syntax:

pp-number ::=

 digit

| . digit

| pp-number digit

| pp-number nondigit

| pp-number e sign

| pp-number E sign

| pp-number .

A preprocessing number begins with a digit or a digit preceded by a period (.).

Subsequent digits are any of the following.

Letters

Underscore

Digits

Period

e+

eð

E+

Eð

2.9 Comments

A comment is a note inserted in the C source module. A comment statement begins with /* and ends with */. This

C compiler can identify multibyte strings and kanji can be used.

31

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

This chapter describes the data types, the function types, declarations that are used in the C language, and their

scope. A declaration specifies the interpretation of identifiers or identifier sets and their attributes. A declaration that

also reserves storage space for the object or function named by the identifier is a definition.

Declarations have this syntax:

declaration ::=

declaration-specifiers ªinit-declarator-list¼ ;

declaration-specifiers ::=

 storage-class-specifier ªdeclaration-specifiers¼

| type-specifier ªdeclaration-specifiers¼

| type-qualifier ªdeclaration-specifiers¼

init-declarator-list ::=

 init-declarator

| init-declarator-list , init-declarator

init-declarator ::=

 declarator

| declarator = initializer

Here is an example declaration.

#define TRUE 1

#define FALSE 0

#define SIZE 200

void main()

{

 auto int l, prime, k;

 for(i = 0; I <= SIZE ; i++)

 mark[i] = TRUE;

 .

 .

A declaration specifier is a sequence of specifiers that indicate a portion of the entity types indicating the storage

duration and declarators. An init declarator list is a sequence of declarators separated by commas. Each declarator

can hold additional type information or initializers, or both.

If the identifier for some object is declared with no linkage, the type for that object must be terminated by that

declarator, or the init declarator if there is an initializer.

The type for an object with no linkage must be terminated by a declarator or init declarator.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

32

3.1 Storage-Class Specifiers

A storage-class specifier indicates the storage class of an object. The storage class indicates the storage location

of the value holding the object and the object scope. The declaration specifier in one declaration can describe only

one storage class specifier. The five storage class specifiers are:

• typedef

• extern

• static

• auto

• registe

(1) typedef

The typedef specifier becomes a storage class specifier only in a suitable syntax. The typedef specifier declares

an synonym for the specified type.

For details about the typedef specifier, see Section 3.6, “typedef.”

(2) extern

The extern specifier indicates an external variable.

(3) static

The static specifier indicates that the object has static storage duration.

An object having static storage duration reserves storage before program execution. The value to be stored is

initialized only once. The object exists during program execution and the last value stored is saved.

(4) auto

The auto specifier indicates that the object has automatic storage duration.

An object having automatic storage duration reserves storage during execution. When entering at the beginning

of a block and initialization is specified, the object is initialized. When entering by jumping to a label within a

block, there is no initialization.

An object space having automatic storage duration is not maintained after the execution of the declared block

ends.

(5) register

The register specifier indicates that the object is allocated to the CPU register. In this C compiler, register

specifiers are allocated to the registers and saddr space. For details on register variables, see Chapter 11,

“Extended Functions.”

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

33

3.2 Type Specifiers

Type specifiers indicate the type of an object. The type specifiers are as follows:

• void

• char

• short

• int

• long

• float*

• double*

• long double*

• signed

• unsigned

• struct-or-union-specifier

• enum-specifier

• typedef-name

• bit, boolean, _ _ boolean

* Only normal model can be specified.

Each type specifier is listed below. There are no other type specifications. The bit, boolean, and _ _ boolean

types are compiler independent types.

• void - Null value set

• char - Size that can store the basic character set

• signed char - Signed integer (ð128 to +127)

• unsigned char - Unsigned integer (0 to 255)

• short, signed short, short int, signed short int

- Signed integer (ð32,768 to +32,767)

• unsigned short, unsigned short int

- Unsigned integer (0 to 65,535)

• int, signed, signed int - Signed integer (ð32,768 to +32,767)

• unsigned, unsigned int - Unsigned integer (0 to 65,535)

• long, signed long, long int, signed long int

- Signed integer (ð2,147,483,648 to +2,147,483,647)

• unsigned long, unsigned long int

- Unsigned integer (0 to 4,294,967,295)

• float - Floating-point (1.17549435E-38F to 3.40282347E+38F)

• double - Double precision floating-point (1.17549435E-38F to 3.40282347E+38F)

• long double - Extended precision floating-point (1.17549435E-38F to 3.40282347E+38F)

• struct-or-union-specifier - Member object set

• enum-specifier - Set of int constants

• typedef-name - Synonym for the specified type

• bit, boolean, _ _ boolean - Integer that be represented by one bit (0 and 1)

Type specifiers delimited by commas have the same size.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

34

3.2.1 Structure specifiers and union specifiers

Structure specifiers and union specifiers indicate a set of named member objects. Each member object can have

different types.

Structure specifiers and union specifiers have this syntax:

struct-or-union-specifier ::=

 struct-or-union-specifier identifier {struct-declaration-list}

| struct-or-union-specifier identifier

struct-or-union ::=

 struct

| union

struct-declaration-list ::=

 struct-declaration

| struct-declaration-list struct-declaration

struct-declaration ::=

specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list ::=

 type-specifier ªspecifier-qualifier-list¼

| type-qualifier ªspecifier-qualifier-list¼

struct-declarator-list ::=

 struct-declarator

| struct-declarator-list, struct-declarator

struct-declarator ::=

 declarator

| ªdeclarator¼ : constant-expression

Structure declaration example

struct tnode

 int count;

 struct tnode *left, *right;

};

The structure declaration declares a set of different types as one object to the compiler. Each type is called a

member object and can be assigned a name. The member objects are reserved in contiguous space in the declared

order.

A union specifier declares a set of different types as one object to the compiler. The member objects in the union

are reserved in overlapping space.

• Member object declaration

The member objects are declared by a structure declaration list. The types of the member objects can be

any type other than the incomplete or function type. Also member objects can have bit fields.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

35

• Bit field

A bit field is an area for an integral type composed of the specified number of bits. The int, unsigned int, and

signed int types can be specified in a bit field. (In the CC78K Series, the char, unsigned char, and signed

char types can also be specified, but the signed type is not supported so this type is always considered to be

the unsigned type.) The most-significant bit in an int bit field and signed bit field that is not a qualifier is

considered to be the sign bit. In this compiler, the allocation direction of a bit field can be changed by the

compilation conditions (options). (For details, see Chapter 11, “Extended Functions.”)

For multiple bit fields, if sufficient space remains in the same memory unit, the next bit field is packed in the

next bit and entered. When an unnamed bit field with zero width is positioned, the next bit field in the same

memory unit is not packed. An unnamed bit field is declared without a declarator and consists of only a colon

and the width.

struct data {

 unsigned inta:2;

 unsigned intb:3;

 unsigned intc:1;

}no1;

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

36

3.2.2 Enumeration specifiers

An enumeration specifier indicates ordered objects. An object declared by an enumeration specifier is declared as

a constant of type int.

Enumeration specifiers have this syntax:

enum-specifier ::=

 enum ªidentifier¼ {enumerator-list}

| enum identifier

enumerator-list ::=

 enumerator

| enumerator-list, enumerator

enumerator ::=

enumeration-constant

enumeration-constant = constant-expression

The objects are declared in the enumerator list. The objects are defined by starting with 0 in the declared order.

Subsequent objects are defined by adding 1 in order. A constant value can be specified by using an equal sign (=).

In the following example, hue is an enumeration tag, col is an object having this type, and cp is a pointer to an

object having this type. In this declaration, the enumeration values become {0, 1, 20, 21}.

enum hue

 chartreuse,

 burgundy,

 claret=20,

 winedark

};

 /* }*/

enum hue col, *cp;

col = claret;

cp = &col;

/* }*/(*cp != burgundy)/* }*/

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

37

3.2.3 Tags

A tag is the name assigned to a structure, union, or enumeration type. The tag has the declared type. An object

having the same type can be declared by using the tag.

The identifier in the following declarations is the tag.

struct-or-union identifier {structure-declaration-list}

or

enum identifier {enumerator-list}

A tag holds the contents of the structure, union, or enumeration declared by the list. The tag can be specified

once, and the list specifying the structure, union, or enumeration omitted. In subsequent declarations, structures

identical to the list having the tag result. Subsequent declarations in the same scope must omit the braced list.

This type specifier

struct-or-union identifier

has undefined contents, so the structure or union has incomplete type. This tag is only used when the size of the

object is not required. By defining the tag contents in the same scope, the type becomes complete.

In the following example, tnode specifies a structure containing an integer and two pointers to objects having the

same type.

struct tnode {

 int count;

 struct tnode *left, *right;

};

The following example declares s to be an object with the type indicated by the tag and sp as a pointer to an

object having the type indicated by the tag. Based on this declaration, the expression sp->left is a pointer to the

struct tnode of the left object indicated by sp.

s.right ->count indicates count which is a member of the right struct tnode of s.

typedef struct tnode TNODE;

struct tnode

 int count;

 TNODE *left, *right;

};

TNODE s[5], *sp;

sp = s;

sp->left = s[0];

sp->right = s[1];

s[0].right->count = 2;

The following example specifies structures that have a pointer to the other’s structure.

struct s1 {struct s2 *s2p; /* }*/}; /* D1 */

struct s2 {struct s1 *s1p; /* }*/}; /* D2 */

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

38

Within the enclosed scope, if s2 has already been declared as a tag, declaration D1 does not reference the s2 tag

that is declared in D2, but an entity declared previously. To eliminate this dependence on context, a meaningless

struct s2 declaration is inserted before D1. This declares a new s2 tag within the internal scope. The following D2

declaration completes the new type specification.

3.3 Type Qualifiers

The two type qualifiers are const and volatile. They only affect the lvalues.

An object defined with a const qualifier type by using an lvalue having a non-const qualifier type cannot be

modified. An object defined with a volatile qualifier type by using an lvalue having a non-volatile qualifier type cannot

be referenced.

An object having volatile-qualified type can be changed in ways unknown to the compiler or can have other

unknown side effects. Therefore, an expression referencing this object must be strictly evaluated according to the

ordering rules on how to execute a program written in the C language. The values stored last in the object at all

sequence points must agree with the ones selected by the program, except for ones changed by unknown factors.

When a type qualifier appears in an array type specification, the type qualifier qualifies the elements in the array

and not the array. A type qualifier cannot be included in a function type specification. However, callt, callf, noauto,

and norec described in section 2.1, “Keywords,” can be included as type qualifiers.

Two compatible qualifier types must be qualifier types with the same compatible type. The order of the type

qualifiers in a specifier list or qualifier list is not affected by the specified type. Another type qualifier is sreg (qualifier

independent of this compiler) described in section 2.1, “Keywords.”

The next example has a real_time_clock that can be modified by the hardware, but operations like assignment,

increment, and decrement cannot be performed.

extern const volatile int real_time_clock;

This example shows the case where the type qualifier qualifies the aggregate type.

const struct s {int mem;} cs = {1};

struct s ncs; /* The ncs object can be modified. */
typedef int A[2][3];

const A a = {{4,5,6},{7,8,9}}; /* Array of const int arrays */
int *pi;

const int *pci;

ncs = cs; /* Valid */
cs = ncs; /* Violates constraints on lvalues that can be modified for = */
pi = &ncs.mem; /* Valid */
pi = &cs.mem; /* Violates type constraints for = */
pci = &cs.mem; /* Valid */
pi = a[0]; /* Invalid: a[0] has the type ‘const int*’ */

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

39

3.4 Declarators

A declarator declares one identifier. In particular, pointer declarators, array declarators, and function declarators

are described here. Functions or objects with identifier scope, storage duration, and type are determined by the

declarators.

Declarators have this syntax:

declarator ::=

ªpointer¼ direct-declarator

pointer ::=

 * ªtype-qualifier-list¼

| * ªtype-qualifier-list¼ pointer

type-qualifier-list ::=

 type-qualifier

| type-qualifier-list type-qualifier

direct-declarator ::=

 identifier

| (declarator)

| direct-declarator [ªconstant-expression¼]

| direct-declarator ªparameter-type-list¼

| direct-declarator [ªidentifier-list¼]

parameter-type-list ::=

 parameter-list

| parameter-list,...

parameter-list ::=

 parameter-declaration

| parameter-list, parameter-declaration

parameter-declaration ::=

 declaration-specifiers declarator

| declaration-specifiers ªabstract-declarator¼

identifier-list ::=

 identifier

| identifier-list, identifier

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

40

3.4.1 Pointer declarators

A pointer declarator indicates that the identifier to be declared is a pointer. A pointer points to a place where a

value is stored.

By declaring the type of the object to be pointed at, the offset is obtained by computing the pointer variable.

Pointer declaration

T D1

T: Declaration identifier specifying the T1 type (i.e., int)

D1: Declarator including the D identifier (i.e., ident)

Here, D1 has this format.

* ªtype-qualifier-list¼ D

This declaration makes D a pointer qualified by the type qualifier.

The next two declarations show a “variable pointer to a constant value” and a “constant pointer to a variable

value.”

const int *ptr_to_constant;

int *const constant_ptr;

The first declaration means that the contents of the const int pointed to by ptr_to_constant is not changed, but the

ptr_to_constant itself may be changed to point to another const int. Similarly, in the second declaration, the contents

of the int pointed to by constant_ptr can be changed, but constant_ptr itself always points to the same position.

The declaration of the constant point constant_ptr can be clarified by including the definition for the type “pointer to

int.”

The next example declares constant_ptr as an object with type “const-qualified pointer to int.”

typedef int *int_ptr;

const int_ptr constant_ptr;

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

41

3.4.2 Array declarators

An array declarator declares that the identifier to be declared is an object with the array type.

Array declaration

T D1

T: Declaration specifier specifying the T1 type (i.e., int)

D1: Declarator including the identifier D (i.e., ident)

D1 has this format.

D [ªconstant-expression¼]

This declaration makes D1 an array having the size of type T1. The value of a constant expression becomes the

number of elements in the array. The constant expression is an integer constant expression holding values greater

than 0. When a constant expression is not specified in the array declaration, the array is the incomplete type.

The next example declares fa[], a char type array of 11 elements, and afp[], an array of pointers to char type of 17

elements.

char fa[11], *afp[17];

The next example declares that the first declaration of x is a pointer to type int. The second declaration declares

that y is an array of type int with unknown size that is declared at another location.

extern int *x;

extern int y[];

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

42

3.4.3 Function declarators (including prototype declarations)

A function declarator declares the value returned by a function and the argument types.

Function declaration

T D1

T : Declaration specifier specifying the T1 type (i.e., int)

D1 : Declarator including the identifier D (i.e., ident)

D1 has this format.

D (parameter-type-list)

or

D (ªidentifier-list¼)

This declaration declares D to be a function that has parameters specified in the parameter type list and returns a

value of type T1. The identifiers representing the function parameters are specified by the parameter type list. The

identifiers that indicate the parameters and their types are set by the parameter type list. A macro defined in the

stdarg.h header file converts a list specified by an ellipsis (,...) into a parameter. A function with no parameters has

its parameter type list set to void.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

43

3.5 Type Names

The type name is the name of a type that indicates the size of a function or object. Syntactically, the type name

omits the identifier from the declaration for a function or an object.

Type name has this syntax:

type-name ::=

specifier-qualifier-list ªabstract-declarator¼

abstract-declarator ::=

 pointer

| ªpointer¼ direct-abstract-declarator

direct-abstract-declarator ::=

 (abstract-declarator)

| ªdirect-abstract-declarator¼ [ªconstant-expression¼]

| ªdirect-abstract-declarator¼ [ªparameter-type-list¼

Here are examples of type names.

• int - Specifies the int type.

• int* - Specifies a pointer to the int type.

• int*[3] - Specifies an array (3 elements) whose elements are pointers to int.

• int(*)[3] - Specifies a pointer to an array (3 elements) whose elements have type int.

• int *() - Specifies a function that returns the pointer to int and has no parameter specifications.

• int(*)(void) - Specifies a pointer to a function that has no parameters and returns int.

• int(*const[])(unsigned int,...)

- Specifies an array (undefined number of elements) that has an unsigned int parameter and an

unspecified number of other parameters.

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

44

3.6 typedef

typedef defines a synonym for the type specified by the identifier. The defined identifier becomes the typedef

name.

typedef name has this syntax

typedef-name ::=

identifier

The next example defines type_ident as the typedef name having the type (T1) specified by the declaration

specifier T. Therefore, the type_ident identifier has type T1.

typedef T type_ident;

type_ident D;

In the next example, distance has type int, and metricp is a pointer to a function that has no parameter

specifications and returns type int. The type of z is the specified structure. zp is a pointer to this structure. The

object distance is compatible with other int objects.

typedef int MILES, KLICKSP();

typedef struct {double re, im} complex;

/* }*/

MILES distance;

extern KLICKSP *metricp;

complex z, *zp;

In the next declaration, type t1, the type pointed to by tp1, and the struct s1 type are compatible. However, the

struct s2 type, type t2, the type pointed to by tp2, and the int type are not compatible.

typedef struct s1{int x ;}t1, *tp1;

typedef struct s2{int x ;}t2, *tp2;

This example

typedef signed int t;

typedef int plain;

struct tag{

 unsigned t:4;

 const t:5;

 plain t:5;

};

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

45

declares typedef name t having signed int type, typedef name plain having type int, and a structure having three

bit fields, one named t included in the range [0, 15], an unnamed const-qualified bit field that should include values in

the range [ð16, ò15] (if it could be accessed), and one named r that includes value in the range [ð16, +15]. The first

two bit field declarations are different because unsigned is a type specifier (t becomes the name of a structure

member) and const is a type qualifier (qualifies t that can be referenced as a typedef name). Within the internal

scope, if this declaration follows these declarations, as in

t f(t(t));

long t;

the f function is declared with type “function returning signed int with one unnamed parameter with type pointer to

function returning signed int with one unnamed parameter with type signed int.” The identifier t is declared as type

long.

On the other hand, typedef names can be used to improve code readability. The three declarations of the signal

function shown below specify the same type as the first without using the typedef name.

typedef void fv(int);

typedef void(*pfv)(int);

void (*signal(int, void(*)(int)))(int);

fv *signal(int, fv*);

pfv signal(int, pfv);

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

46

3.7 Initialization

Initialization specifies the initial values for objects. Object initialization is performed by initializers.

Initializers have this syntax:

initializer ::=

 assignment-expression

| {initializer-list}

| {initializer-list, }

initializer-list ::=

 initializer

| initializer-list, initializer

The object type or array type of unknown size can be initialized. Initializers are specified only for the number of

objects that are initialized in the initializer list.

All expressions in the initializers or initializer lists for objects having static storage duration and objects having

aggregate or union type are specified by constant expressions.

Identifiers declared with block scope and identifiers having external or internal linkage cannot be initialized.

(1) Objects having static storage duration

When an arithmetic type object having static storage duration is not initialized, it is implicitly initialized to 0.

Similarly, a pointer type object having static storage duration is initialized to a null pointer constant.

(2) Objects having automatic storage duration

The initial value of an object having automatic storage duration that was not initialized is not guaranteed. A

structure or union object having automatic storage duration is initialized by an initializer list or primary expression

having compatible type.

(3) Character array

A character array can be initialized by a character string literal. Similarly, successive characters in the character

string literal initialize the elements in the array.

This example defines the s array object with no type qualifier and array object t. The elements in each array are

initialized by a character string literal.

char s[] = "abc", t[3] = "abc";

This example is identical to the initialization shown above.

char s[] = {'a', 'b', 'c', '\0'},

 t[] = {'a', 'b', 'c'};

This example defines the pointer p to an object having type char array whose members are initialized by a

character string literal.

char *p = "abc";

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

47

(4) Initializing aggregate and union objects

• Aggregates

An aggregate type object is initialized by an initializer list written in increasing subscript or member order. The

specified initializer-list enclosed by bracec.

If there are fewer initializers in the list than the number of members in the aggregate, the remaining members

are implicitly initialized in the same way as objects having static storage duration.

An array of unknown size has its size determined by the number of elements in the array based on the

number of initializers and does not become an incomplete type.

• Unions

A union object is initialized by an initializer enclosed by braces for the first member of the union.

This example initializes an array x of unknown size to a one-dimensional array of type int having three members.

int x[] = {1, 3, 5},

This example is a complete definition of initializers enclosed by braces. {1, 3, 5} initializes the first row of y[0][0],

y[0][1], and y[0][2] in the y[0] array object list. Similarly, the next two rows initialize y[1] and y[2].

char y[4][3] = {

 {1, 3, 5},

 {2, 4, 6},

 {3, 5, 7},

};

An array can be initialized by the following specification.

char z[4][3] = {

 1, 3, 5, 2, 4, 6, 3, 5, 7

};

This example has the same result as the above example.

char z[4][3] = {

 {1}, {2}, {3}, {4}

};

CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS

48

This example initializes the first column of z and sets the remaining elements to 0.

This example initializes a three-dimensional array.

q[0][0][0] is initialized to 1, q[1][0][0] to 2, and q[1][0][1] to 3, q[2][0][0] to 4, q[2][0][1] to 5, and q[2][1][0] to 6. The

rest become 0.

short q[4][3][2] = {

 {1},

 {2, 3},

 {4, 5, 6}

};

This example initializes the three-dimensional array to the same values as above.

short q[4][3][2] = {

 1, 0, 0, 0, 0, 0,

 2, 3, 0, 0, 0, 0,

 4, 5, 6

};

This example shows the fully bracketed form of the above initialization.

short q[4][3][2] = {

 {

 {1},

 },

 {

 {2, 3},

 },

 {

 {4, 5, 6},

 }

};

49

CHAPTER 4 TYPE CONVERSION

If there are two operands of different types in an expression, conversion is automatically performed. This is

identical to the conversion obtained by using the cast operators. Automatic type conversion is called implicit type

conversion. This chapter describes implicit type conversion.

Type conversion consists of usual conversion, truncation or rounding off conversion, or sign conversion. Table 4-

1, “Type Conversions,” lists the type conversions.

CHAPTER 4 TYPE CONVERSION

50

Table 4-1. Type Conversions

After conversion

Before conversion

(signed) char ×+ ± ± ±

×– + + + + ± ± ±

(signed) char

unsigned char

(signed) short int

unsigned short int

(signed) int

unsigned int

(signed) long int

unsigned long int

float

double

long double

unsigned char ± × ± ± ±

(signed) short int + × × ± ± ±

– × + × + + ±

unsigned short int ± × ± ×

(signed) int + × ×

– × + × + +

unsigned int ± × ± ×

(signed) long int + ×

– × +

unsigned long int ± ×

float ×

double ×

long double ×

signed can be omitted. However, signed char or unsigned char is applied depending on the compilation conditions

(options, etc.) only for type char.

 : Valid conversion

× : Cannot convert type

+ : Invalid value results (regarded as an unsigned integer).

± : There is no change in the bit image, but when a positive value cannot be represented, a valid value does

not result.

Space: The overflow during conversion is discarded. Sometimes the sign changes depending on the type after

conversion.

CHAPTER 4 TYPE CONVERSION

51

4.1 Arithmetic operands

(1) Characters and integers (integral promotion)

Objects of char, short int, and int bit fields, or their signed or unsigned versions, or the enumeration type are

converted to the int type if they fall within the ranges that can be represented by the int type. If the object cannot

be represented by the int type, the conversion is to the unsigned int type. These are called integral promotions.

All other arithmetic types are not modified by integral promotion.

Integral promotion preserves the value including the sign. A char without a qualifier is treated as signed.

(2) Signed and unsigned integers

When converting an unsigned integer to a larger signed integer, the value of the unsigned integer does not

change. When a signed or unsigned integer is demoted to a smaller signed integer, or when an unsigned integer

is converted into a larger signed integer, values that cannot be represented are discarded.

The following cases are conversions from signed integers to unsigned integers.

Table 4-2. Conversion from Signed to Unsigned Integers

unsigned

Small Value Range Large Value Range

signed + / o

ð / +

o : Correct conversion

+ : Conversion to positive integers

/ : Reduced modulo (remainder) of the maximum value of the converted type plus one

(3) Usual arithmetic conversions

The type of the result of an arithmetic operation becomes a type having the wider range of values.

CHAPTER 4 TYPE CONVERSION

52

Figure 4-1. Usual Arithmetic Conversions

unsigned long int

long int

If one operand is unsigned long int, the other operand is long int, and all of the values of

unsigned int cannot be represented by long int when another operand is unsigned int,

both operands are converted to unsigned long int.

· · ·

Otherwise, if one operand is long int and all of the operand values of the other can be

represented by long int, conversion is to long int.

· · ·

unsigned int

Otherwise, if one operand is unsigned int, the other is converted to unsigned int.· · ·

int Otherwise, convert to the int type.· · ·

This compiler can be set to not intentionally convert to the int type based on the compilation conditions

(optimization options). (For details, see Chapter 5, “Compiler Options,” in the CC78K3 C Compiler, Operation.)

CHAPTER 4 TYPE CONVERSION

53

4.2 Other operands

(1) lvalues and function designators

An lvalue is an expression (with an object type or an incomplete type other than void) that designates an object.

An lvalue that does not have an array type, incomplete type, or const-qualified type, or a structure or union that

does not have const-qualified type members is a modifiable lvalue.

Except when the lvalue is the operand of the sizeof operator, the unary & operator, the ++ operator, the ð ð

operator, the left operand of the . operator, or the assignment operator, the lvalue that does not have an array

type is converted to the value stored in the designated object. Conversion does not make the lvalue disappear.

If the lvalue has qualified type, the value has the unqualified version of the type of the lvalue. Otherwise, an

lvalue that has incomplete type and not array type is not guaranteed.

Except for character arrays, an lvalue having type “array of type” is converted to an expression having type

“pointer to type” that points to the first member of the array object. This is not an lvalue.

The function designator is an expression that has function type. Except for the operand of the sizeof operator or

unary & operator, a function designator that has type “function returning type” is converted into an expression

that has type “pointer to function returning type.”

(2) void

The (nonexistent) value of a void expression (an expression having type void) cannot be used in any way.

Implicit or explicit conversions, except to void, cannot be applied to this expression. If an expression of another

type occurs in a context requiring a void expression, its value or designator is discarded.

(3) Pointers

A pointer to void can be converted to a pointer to any incomplete type or object type. A pointer to any incomplete

type or object type can be converted to a pointer to void. The result must be equal to the original pointer.

For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to a q-qualified version of

that type. Its value is stored at the original pointer. The converted pointer is equal to the original pointer.

An integral constant expression with value 0 or such an expression cast to the void * type is called a null pointer

constant. If a null pointer constant is assigned to some pointer or is equal to some pointer, or is compared, the

null pointer constant is converted into that pointer. The pointer called a null pointer is not guaranteed to be equal

to the pointer to any object or function.

Two null pointers that are cast to type “pointer to type” become equal.

54

[MEMO]

55

CHAPTER 5 OPERATORS AND EXPRESSIONS

This chapter describes the operators and constant expressions used in the C language.

The C language offers a rich variety of operators for performing arithmetic and logical operations. In particular, the

C language has operators that perform bit and address computations.

An expression is a sequence of operators and operands that specifies the computation of values, designates an

object or a function, generates side effects, or is their combination.

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1]; + - Arithmetic operator

main()

{

 int i, prime, k, count;

 count = 0; = - Assignment operator
 for (i = 0; i <= SIZE; i++) ++ - Postfix operator
 mark[i] = TRUE; <= - Relational operator

 for (i=0; i <= SIZE; i++)

 if(mark[i])

 prime = i + i + 3; + - Relational operator
 lprintf("%d",prime);

 count++; ++ - Postfix operator
 if((count%8) == 0) == - Relational operator
 putchar('\n');

 for (k = i+prime; k <= SIZE; k += prime) += - Assignment operator
 }

 }

 lprintf ("Total %d\n", count);

CHAPTER 5 OPERATORS AND EXPRESSIONS

56

loop1:

 goto loop1;

}

lprintf (s, i)

char *s;

int i;

{

 int j;

 char *ss;

 j = i;

 ss = s;

}

putchar (c)

char c;

{

 char d;

 d = c;

}

Table 5-1, “Order of Operator Evaluation,” shows the operators used in the C language and their precedence.

Table 5-1. Order of Operator Evaluation

Type Operator Associativity Precedence

Postfix [] () . -> ++ ð ð o High

Unary ++ ð ð & * + ð ~ m

! sizeof

Cast (type-name) m

Multiplicative * / % o

Additive + ð o

Shift << >> o

Relational < > <= >= o

Equality == != o

Bitwise AND & o

Bitwise-exclusive OR ^ o

Bitwise OR | o

Logical AND && o

Logical OR || o

Conditional ? . : m

Assignment = *= /= %= += ð= m

<<= >>= &= ^= _=

Comma , o Low

CHAPTER 5 OPERATORS AND EXPRESSIONS

57

Operators in the same row have the same precedence. If an expression has two or more operators with the same

precedence, evaluation is in the direction of the arrows shown under Associativity in the table.

5.1 Primary Expressions

The primary expressions are:

• Identifier declared as an object or Function

• Constant

• String literal

• Parenthesized expression

An identifier which becomes a primary expression is an lvalue for an object and a function designator for a

function. The type of the constant is determined based on the value to be set as described in section 2.3,

“Constants.” A string literal is an lvalue that has a type described in section 2.4, “Strings.”

5.2 Postfix Operators

A postfix operator is an operator placed after an object to indicate its name. Postfix operators have this syntax:

postfix-expression ::=

 primary-expression

| postfix-expression [subscript]

| postfix-expression (ªargument-expression-list¼)

| postfix-expression . identifier

| postfix-expression -> identifier

| postfix-expression ++

| postfix-expression ð ð

argument-expression-list ::=

 assignment-expression

| argument-expression-list, assignment-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

58

(1) Array subscripting

Postfix operator [] Subscript operator

[] Subscript operator

[Function]

The subscript operator [] specifies a member in the array object. The array E1[E2] defines the same element as

(*(E1+(E2))). That is, the value of E1 is the pointer to the first member of the array. E2 is member E2 (counting

from 0) in E1. For a multidimensional array, the number of dimensions in the array and the subscript operator

are successive.

In this example, x becomes a 3-by-5 array of int. x has three member objects and each one is an array of five

integer members.

int x[3][5];

By successively specifying the subscript operator, a multidimensional array can be specified. When E is an n-

dimensional array of i x j x....x k (n ³ 2), E can be represented by n subscript operators. E becomes a pointer to

the (nð1)-dimensional array of j x...x k.

[Syntax]

postfix-expression [subscript-expression]

[Constraints]

The postfix expression must be a “pointer to object type.” The subscript expression is specified by an integral

type. The result has type “type.”

CHAPTER 5 OPERATORS AND EXPRESSIONS

59

(2) Function call

Postfix operator () Function call

() Function call

[Function]

A function is called. A function call is performed by the postfix operator (). The postfix expression denotes the

called function and indicates the arguments passed to the called function enclosed by parentheses.

A called function without a storage class or type specification is interpreted as being an external object or calling

a function that returns int without information related to the arguments. That is, this next declaration is performed

implicitly.

extern int identifier ();

In a function call, more efficient objects are generated by the function prototype declaration. A function prototype

declaration specifies the value returned by the function, argument type, and storage class.

If a function prototype declaration is not referenced in a function call, each argument is integral promoted. This is

called default integral promotion.

[Syntax]

postfix-expression (ªargument-expression-list ¼)

[Constraints]

The called function is a function that returns void or an object except for an array. The postfix expression is a

pointer to this function.

In a function call that includes a prototype, the argument type becomes a type that can be assigned to the

corresponding parameter. The number of arguments must match.

CHAPTER 5 OPERATORS AND EXPRESSIONS

60

(3) Structure and union members

Postfix operators . , ->

<1> .Dot

[Function]

The dot (.) specifies a member object in a structure or union. The value of the postfix expression becomes the

value of specified member.

[Syntax]

postfix-expression . identifier

<2> -> arrow

[Function]

The right arrow -> specifies the member object in a structure or union. The value of the postfix expression

becomes the value of the specified member.

CHAPTER 5 OPERATORS AND EXPRESSIONS

61

Postfix operators . , ->

Example using the dot (.), comma (,), and member-selection (->) operators

union{

 struct{

 int type;

 }n;

 struct{

 int type;

 int intnode;

 }ni;

 struct{

 int type;

 struct{

 long longnode;

 }*nl_p;

 }nl;

}u;

/* }*/

u.nl.type = 1;

u.nl.nl_p -> longnode = -31415L;

/* }*/

if (u.n.type == 1)

 u.nl.nl_p -> longnode = labs (u.nl.nl_p -> longnode);

[Syntax]

postfix-expression -> identifier

CHAPTER 5 OPERATORS AND EXPRESSIONS

62

(4) Postfix increment and decrement operators

Postfix operators ++, ðððð ðððð

<1> Postfix increment operator

[Function]

The postfix increment operator adds one to the value of the object. This operation considers the type of the

object.

[Syntax]

postfix-expression ++

<2> Postfix decrement operator

[Function]

The postfix decrement operator subtracts one from the value of the object. This operation considers the type of

the object.

[Syntax]

postfix-expression ð ð

[Constraints]

The operand of the postfix increment and postfix decrement operators is a modifiable lvalue that has qualified or

unqualified scalar type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

63

5.3 Unary Operators

A unary operator operates on one object and item. The unary operators are:

• Prefix increment and decrement operators

++ ð ð

• Address and indirection operators

& *

• Unary arithmetic operators

+ ð ~ !

• sizeof operator

sizeof

Unary operators have this syntax:

unary-expression ::=

 postfix-expression

| ++ unary-expression

| ð ð unary-expression

| unary-operator cast-expression

| sizeof unary-expression

| sizeof (type-name)

unary-operator ::= one of

& * + ð ~ !

CHAPTER 5 OPERATORS AND EXPRESSIONS

64

(1) Prefix increment and decrement operators

Unary operator ++, ð ð

<1> Prefix increment operator

[Function]

The prefix increment operator adds one to the value of the object. The expression ++E of the prefix increment

operator has the same result as the following expressions.

E = E + 1

or

E += 1

[Syntax]

++ unary-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

65

Unary operator ++, ðððð ðððð

<2> Prefix decrement operator

[Function]

The prefix decrement operator subtracts one from the value of the object. The expression ð ðE of the prefix

decrement operator has the same result as the following expressions.

E = E ð 1

or

E ð= 1

[Syntax]

ðððð ðððð unary-expression

[Constraint]

The operand of the prefix increment and prefix decrement operator is a modifiable lvalue that has qualified or

unqualified scalar type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

66

(2) Address and indirection operators

Unary operators &, *

<1> Unary & operator

[Function]

The address of the specified object is returned.

[Syntax]

& cast-expression

<2> Unary * operator

[Function]

The value pointed to by the specified pointer is returned.

[Syntax]

* cast-expression

[Constraints]

The operand of the unary & operator is an lvalue that points to an object that is not declared with the register

storage-class specifier. A function designator or bit field cannot be used as the operand of the unary & operator.

The operand of the unary * operator has the pointer type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

67

(3) Unary arithmetic operators

Unary operators +, ð, ~, !

+, ð, ~, ! operators

[Function]

The unary + operator performs positive integral promotion on the operand.

The unary ð operator performs negative integral promotion on the operand.

The unary ~ operator returns the bitwise complement of the operand.

The unary ! operator is called the logical negation ! operator. The logical negation ! operator returns 1 when the

operand is 0. Otherwise, it returns 0.

[Syntax]

+ cast-expression

ð cast-expression

~ cast-expression

! cast-expression

[Constraints]

The operand of the unary + operator has scalar type.

The operand of the unary ð operator has arithmetic type.

The operand of the unary ~ operator has integral type.

The operand of the unary ! operator has scalar type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

68

(4) sizeof operator

Unary operator sizeof operator

sizeof operator

[Function]

The size of the specified object is returned in byte units. The return value is determined by the object type. The

value of the object is not evaluated.

sizeof applied to an object of type char, unsigned char, or signed char (including qualified versions) returns one.

For an object of the array type, the result is the total number of bytes in the array. When the object has structure

or union type, the result is the total number of bytes in the object including internal padding, that was inserted to

guarantee the space.

The result is an integer constant of type size_t. This is defined in the stddef.h header file. The sizeof operator is

primarily used in storage allocation and exchanges in the I/O system.

This example determines the number of members in an array by dividing the total number of bytes in the array by

the size of a member.

sizeof array/sizeof array[0];

[Syntax]

sizeof unary-expression

sizeof (type-name)

[Constraints]

An expression having function type or incomplete type or an lvalue pointing to the bit field object cannot be used.

CHAPTER 5 OPERATORS AND EXPRESSIONS

69

5.4 Cast Operators

The cast operator changes the type of the data. The cast operator is used for pointer type conversion.

Cast operator (type-name)

Cast operator

[Function]

The object type converts to the type in the parentheses.

[Syntax]

(type-def) cast-expression

[Constraints]

The type name, except when void type is specified, has scalar type. The converted object file also has scalar

type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

70

5.5 Arithmetic Operators

Arithmetic operators are divided into multiplicative operators and additive operators based on the precedence. A

multiplicative operator determines the product, or the quotient and remainder between two operands. An additive

operator determines the sum or difference between two operands.

The sum, difference, product, quotient, and remainder of two operands are represented by the binary + operator,

binary - operator, binary * operator, binary / operator, and binary % operator, respectively.

• Multiplicative operators *, /, %

• Additive operators +, ð

Both operands of the binary + operator have arithmetic type, or one is a pointer to an object and the other has

integral type.

The operands of the binary ð operator have the following types.

• Both have arithmetic types.

• Both are pointers to objects (including qualified and unqualified) having compatible types.

• The first operand is a pointer to an object and the second operand has integral type.

The operands of the binary * operator and the binary / operator have arithmetic type. The operands of the binary

% operator have integral type.

Table 5-2. Multiplicative Operators

a/b
b

++a –

–– +

+ –
a%b

b

++a +

–– –

+ –

Division is performed on signed digits and the fractional part is discarded. Similarly, a multiplicative operation is

performed on signed digits. The result of the % (modulo) operator assigns the signs shown in Table 5-2 to the value

computed with the sign. Table 5-2 shows the computation result of the signs of only two operands.

CHAPTER 5 OPERATORS AND EXPRESSIONS

71

(1) Multiplicative operators

Multiplicative operators *, /, %

<1> Binary * operator

[Function]

The * operator determines the product of two operands.

[Syntax]

multiplicative-expression * cast-expression

<2> Binary / operator

[Function]

The / operator determines the quotient when the first operand is divided by the second.

[Syntax]

multiplicative-expression / cast-expression

<3> Binary % operator

[Function]

The % operator determines the remainder when the first operand is divided by the second.

[Syntax]

multiplicative-expression % cast-expression

 [Constraints]

Both operands of a multiplicative operator have arithmetic type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

72

(2) Additive operators

Additive operators +,-

<1> Binary + operator

[Function]

This determines the sum of two operands.

[Syntax]

additive-expression + multiplicative-expression

<2> Binary - operator

[Function]

This determines the difference obtained by subtracting the second operand from the first.

[Syntax]

additive-expression - multiplicative-expression

[Constraints]

Both operands have arithmetic type, or one is a pointer to an object and the other has integral type. The

operands for subtractions have the following types.

• Both have arithmetic type.

• Both are pointers to objects (qualified and unqualified) having compatible types.

• The first operand is a pointer to an object. The second object has integral type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

73

5.6 Shift Operators

A shift operator shifts the operand of the operator in the direction specified by the symbol. If the shifting operator

has a signed type, an arithmetic shift is performed. If an unsigned type, a logical shift is performed.

The shift operator has this syntax:

shift-expression ::=

 additive-expression

| shift-expression << additive-expression

| shift-expression >> additive-expression

Table 5-3. Shift Operators

a<<b

0+a

0–

bNote 1 a>>b

0+a

–1–

bNote 1

Note 1 • The table shows cases where the digit exceeds the bit width or the result of the shift overflows.

• If a negative number is specified, it has unsigned type and processed as a positive number.

CHAPTER 5 OPERATORS AND EXPRESSIONS

74

Shift operators <<, >>

<1> << operator

[Function]

The left operand is shifted left by the value in the 16 least-significant bits of the right operand. The vacated bits

are filled with zeros.

If E1 has unsigned type in E1 << E2, the result is E1 multiplied by the square of E2. If E1 has unsigned long

type, the result is reduced modulo ULONG_MAX+1 or UINT_MAX+1.

ULONG_MAX+1 and UINT_MAX+1 are defined in limits.h.

For information on limits.h, see Section 10.2 (8), “limits.h.”

[Syntax]

shift-expression << additive-expression

<2> >> operator

[Function]

The left operand is shifted to the right by value in the right operand. If E1 has unsigned type, a logical shift is

performed. In a logical shift, vacated bits are filled with zeros after shifting.

When E1 has signed type, an arithmetic shift is performed. In an arithmetic shift, vacated bits are filled with the

sign bit. The result is E1 divided by the square of E2.

[Syntax]

shift-expression >> additive-expression

[Constraints]

The operand to be shifted must have integral types.

CHAPTER 5 OPERATORS AND EXPRESSIONS

75

5.7 Relational Operators

The operators that indicate relations are relational operators that indicate the relative sizes between two operands

and equality operators that indicate whether they are equal.

In a relational operator, the size relationship when two pointers are compared is determined by the relative

position in the address space of the objects being pointed to.

The relational operators have this syntax:

relational-expression ::=

 shift-expression

| relational-expression < shift-expression

| relational-expression > shift-expression

| relational-expression <= shift-expression

| relational-expression >= shift-expression

The equality operators have this syntax:

equality-expression ::=

 relational-expression

| equality-expression == relational-expression

| equality-expression != relational-expression

When comparing the sizes by relational operators, the following types hold.

• Both operands have arithmetic type.

• Both are pointers to objects (qualified and unqualified) having compatible types.

• Both are pointers to incomplete types having compatible types.

When comparing by equality operators, the following types hold.

• Both operands have arithmetic type.

• Both are pointers to objects (qualified and unqualified) having compatible types.

• One is a pointer to an object type or incomplete type and the other is a pointer to void.

• One is a pointer and the other is a null pointer constant.

CHAPTER 5 OPERATORS AND EXPRESSIONS

76

(1) Relational operators

Relational operators <, >, <=, >=

<1> < operator

[Function]

If the first operand is less than the second operand, 1 is returned. Otherwise, 0 is returned.

[Syntax]

relational-expression < shift-expression

<2> > operator

[Function]

If the first operand is greater than the second operand, 1 is returned. Otherwise, 0 is returned.

[Syntax]

relational-expression > shift-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

77

Relational operators <, >, <=, >=

<3> <= operator

[Function]

If the first operand is less than or equal to the second operand, 1 is returned. Otherwise, 0 is returned.

[Syntax]

relational-expression <= shift-expression

<4> >= operator

[Function]

If the first operand is greater than or equal to the second operand, 1 is returned. Otherwise, 0 is returned.

[Syntax]

relational-expression >= shift-expression

[Constraints]

When comparing the size, the following types hold.

• Both operands have arithmetic type.

• Both are pointers to objects (qualified and unqualified) having compatible types.

• Both are pointers to incomplete types having compatible types.

CHAPTER 5 OPERATORS AND EXPRESSIONS

78

(2) Equality operators

Equality operators ==, !=

<1> == operator

[Function]

If the two operands are equal, 1 is returned. Otherwise, 0 is returned.

[Syntax]

equality-expression == relational-expression

<2> != operator

[Function]

If the two operands are not equal, 1 is returned. Otherwise, 0 is returned.

[Syntax]

equality-expression != relational-expression

[Constraints]

When comparing, the following types hold.

• Both operands have arithmetic type.

• Both are pointers to objects (qualified and unqualified) having compatible types.

• One is a pointer to an object type or incomplete type, and the other is a pointer to void.

• One is a pointer, and the other is a null pointer constant.

CHAPTER 5 OPERATORS AND EXPRESSIONS

79

5.8 Bitwise Logical Operators

Bitwise logical operators perform logical operations in bit units on the object values. The bitwise logical operators

are AND, exclusive OR, and OR, represented by &, ^, and |, respectively.

Bitwise logical operators have this syntax:

AND-expression ::=

 equality-expression

| AND-expression & equality-expression

exclusive-OR-expression ::=

 AND-expression

| exclusive-OR-expression ^ AND-expression

inclusive-OR-expression ::=

 exclusive-OR-expression

| inclusive-OR-expression | exclusive-OR-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

80

(1) Bitwise AND operator

Bitwise logical operator &

Binary & operator

[Function]

The bitwise AND operator & returns the bitwise logical product. The bitwise AND operator returns 1 if each

corresponding bit is 1. The bitwise AND operator is specified by the binary & operator.

Table 5-4. Bitwise AND Operator

Value of Bit 1 in Left Operand

1 0

Value of Bit 1 in Right Operand 1 1 0

0 0 0

[Syntax]

AND-expression & equality-expression

[Constraints]

Both operands of the binary & operator have an integral type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

81

(2) Bitwise exclusive OR operator

Bitwise logical operator ^

Binary ^ operator

[Function]

The exclusive OR operator ^ returns the bitwise logical sum. The bitwise exclusive OR operator returns 1 if the

corresponding bits are different.

Table 5-5. Bitwise Exclusive OR Operator

Value of Bit 1 in Left Operand

1 0

Value of Bit 1 in Right Operand 1 0 1

0 1 0

[Syntax]

exclusive-OR-expression ^ AND-expression

[Constraints]

Both operands of the binary ^ operator have integral types.

CHAPTER 5 OPERATORS AND EXPRESSIONS

82

(3) Bitwise OR operator

Bitwise OR operator |

Binary | operator

[Function]

The bitwise OR operator | returns the bitwise logical sum. The bitwise OR operator returns 0 if the corresponding

bits are 0.

Table 5-6. Bitwise OR Operator

Value of Bit 1 in Left Operand

1 0

Value of Bit 1 in Right Operand 1 1 1

0 1 0

[Syntax]

inclusive-OR-expression ^ exclusive-OR-expression

[Constraints]

Both operands of the binary | operator have integral types.

CHAPTER 5 OPERATORS AND EXPRESSIONS

83

5.9 Logical Operators

Logical operators find the logical product and logical sum of two operands. The logical product is specified by the

logical AND operator &&. The logical sum is specified by the logical OR operator ||. Both operands of both logical

operators have scalar type. A 0 or 1 integral type is returned.

Logical operators have this syntax:

logical-AND-expression ::=

 OR-expression

| logical-AND-expression && OR-expression

logical-OR-expression ::=

 logical-AND-expression

| logical-OR-expression || logical-AND-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

84

(1) Logical AND operator

Logical operator &&

Binary && operator

[Function]

The binary && operator takes logical AND of two operands. The logical AND returns 1 if both operands are not 0.

Otherwise, it returns 0.

Table 5-7. Logical AND Operator

Value of Left Operand

0 Not 0

Value of Right Operand 0 0 0

Not 0 0 1

[Syntax]

logical-AND-expression && OR-expression

[Constraints]

Both operands of the binary && operator have scalar type.

The binary && operator evaluates the operands from left to right. If the value of the left operand is 0, the right

operand is not evaluated.

CHAPTER 5 OPERATORS AND EXPRESSIONS

85

(2) Logical OR operator

Logical operator | |

Binary | | operator

[Function]

The binary | | operator takes the logical OR of two operands. The logical OR returns 0 if both operands are 0.

Otherwise, it returns 1.

Table 5-8. Logical OR Operator

Value of Left Operand

0 Not 0

Value of Right Operand 0 0 1

Not 0 1 1

[Syntax]

logical-OR-expression || logical-AND-expression

[Constraints]

Both operands of the binary | | operator have scalar type.

The binary | | operator evaluates the operands from left to right. If the value of the left operand is not 0, the right

operand is not evaluated.

CHAPTER 5 OPERATORS AND EXPRESSIONS

86

5.10 Conditional Operator

Conditional operator determines the next process to perform based on the value of the first operand. The

conditional operator is specified by ? and :.

The conditional operator evaluates the first operand and if the value is not 0, the second operand is evaluated. If

the first operand is 0, the third operand is evaluated. The result of the conditional operator becomes the second or

third operand.

The conditional operator has this syntax:

conditional-expression ::=

 logical-OR-expression

| logical-OR-expression ? expression : conditional-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

87

Conditional operator ? :

Conditional operator ?, :

[Function]

The conditional operator evaluates the first operand. If it is not 0, the second operand is evaluated. If it is 0, the

third operand is evaluated. The value of the conditional operator becomes the value of the second or third

operand.

[Syntax]

logical-OR-expression ? expression : conditional-expression

[Constraints]

The operands of the conditional operator have the following types.

• The first operand has scalar type.

The second and third operands have one of the following types.

• Both operands have arithmetic type.

• Both have compatible structure or union types.

• Both have void type.

• Both are pointers to objects having a qualified or unqualified version of compatible types.

• One is a pointer, and the other is a null pointer constant.

• One is a pointer to an object or incomplete type, and the other is a pointer to void or qualified version of void.

CHAPTER 5 OPERATORS AND EXPRESSIONS

88

5.11 Assignment Operators

The assignment operators are simple assignment that stores the right operand in the left object and compound

assignment that stores the result of the operation on both operands in the left object.

The assignment expression has this syntax:

assignment-expression ::=

 conditional-expression

| unary-expression assignment-operator assignment-expression

assignment-operator ::= one of

= *= /= %= += ð= <<= >>= &= ^= |=

CHAPTER 5 OPERATORS AND EXPRESSIONS

89

(1) Simple assignment

Simple assignment =

Unary assignment operator =

[Function]

Simple assignment converts the right operand to the type of the left operand and stores it in the left object.

In the next example, the value of type int that is returned from the function by the type conversion of simple

assignment is converted into type char. The overflow is discarded. When comparing to ð1, conversion to the int

type is repeated. If the c variable declared without a qualifier is regarded as unsigned char, the conversion result

will not be negative. Therefore, the comparison to ð1 is never equal. In this case, the c variable for full portability

is declared with type int.

int f(void);

char c;

/* }*/((c=f()) == ð1)/* }*/

[Syntax]

unary-expression = simple-assignment

[Constraints]

The operands of simple assignment has the following types.

• Both operands have arithmetic type.

• The left operand has qualified arithmetic type. The right operand has arithmetic type.

• Both are structures or unions having compatible types.

• The right operand has a structure or union type. The left operand is its qualified version.

• Both are pointers to compatible types.

• One is a pointer to an object or incomplete type. The other is a pointer to void.

• One is a pointer. The other is a null pointer constant.

• Both are pointers. The left operand is a pointer to the qualified version of the right operand.

CHAPTER 5 OPERATORS AND EXPRESSIONS

90

(2) Compound assignment

Assignment operators *= /= %= += ð= <<= >>= &= ^= |=

Compound assignment

[Function]

The compound assignment operators store the result of an operation on the left and right operands in the left

object. The stored value is converted into the type of the left operand.

The compound assignment E1 op= E2 is identical to the simple assignment expression E1 = E1 op (E2) except

the lvalue E1 is only evaluated once.

The following compound assignment operations have identical results as the simple assignments on the right.

a *= b; a = a*b;

a /= b; a = a/b;

a %= b; a = a%b;

a += b; a = a+b;

a ð= b; a = a ðb;

a <<= b; a = a<<b;

a >>= b; a = a>>b;

a &= b; a = a&b;

a ^= b; a = a^b;

a |= b; a = a|b

CHAPTER 5 OPERATORS AND EXPRESSIONS

91

Assignment operators *= /= %= += ð= <<= >>= &= ^= |=

[Syntax]

simple-expression *= assignment-expression

simple-expression /= assignment-expression

simple-expression %= assignment-expression

simple-expression += assignment-expression

simple-expression ð= assignment-expression

simple-expression <<= assignment-expression

simple-expression >>= assignment-expression

simple-expression &= assignment-expression

simple-expression ^= assignment-expression

simple-expression |= assignment-expression

[Constraints]

The left operand of the += and ð= operators is a pointer to an object. The right operand has integral type. Or the

left operand has qualified or unqualified arithmetic type. The operands of the other operators have arithmetic

type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

92

5.12 Comma Operator

Comma operator ,

Comma operator

[Function]

The comma operator evaluates the left operand as void. Then the operand on the right is evaluated and its value

is returned.

The comma operator in this chapter cannot appear when the comma is used as a punctuator as indicated by the

syntax (in a function argument list or initializer list).

In the next example, the value of the second argument passed to function f() is determined by using the comma

operator. The value of the second argument becomes 5 by the comma operator.

f(a, (t=3,t+2), c)

[Syntax]

expression, assignment-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

93

5.13 Constant Expressions

The constant expressions are integral constant expressions, arithmetic constant expressions, address constant

expressions, and constant expressions in initializers. The evaluation of constant expressions does not occur during

execution but almost always during compilation.

The following operators cannot be used in a constant expression, except when used in the sizeof operator.

• Assignment operator

• Increment operator

• Decrement operator

• Function call operator

• Comma operator

(1) Integral constant expressions

An integral constant expression has integral type. The following can be used as operands in an integral constant

expression.

• Integral constant

• Enumeration constant

• Character constant

• sizeof expression

Type conversion performed by a cast operator in an integral constant expression only converts from an arithmetic

type to an integral type.

(2) Arithmetic constant expressions

An arithmetic constant expression has arithmetic type. The following can be used as operands in an arithmetic

constant expression.

• Integral constant

• Enumeration constant

• Character constant

• sizeof expression

Type conversion by a cast operator in an arithmetic constant expression only converts from an arithmetic type to

an arithmetic type, except when in a sizeof expression.

CHAPTER 5 OPERATORS AND EXPRESSIONS

94

(3) Address constants

An address constant is a pointer to an object having a static storage duration or a pointer to a function

designator. An address constant can be implicitly specified by using an expression of array or function type.

When explicitly specified, the unary & operator is used.

An address constant can be specified by using the following operators. However, this cannot reference the value

of the object.

• Array subscript []

• . operator

• -> operator

• Address and unary operator

• Indirection * operator

• Pointer cast

(4) Constant expressions in initializers

The constant expression in an initializer is one of the following.

• Arithmetic constant expression

• Null pointer constant

• Address constant expression

• Address constant for an object where an integral constant was added or subtracted

95

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

This chapter describes the control structure of the C language and statements that are executed by C.

Generally, three basic control structures can be represented no matter how complex the processing. These three

control structures are sequencing, selection, and iteration. In addition, jumps are used to forcibly alter the program

flow.

The six statements executed in the C language are:

• Labeled statement - Indicates the value of a switch statement and the branch destination of

a goto statement.

• Compound statement (block) - Set of multiple statements to be processed as one grammatical unit

• Expression statement - Statement composed of one expression and a semicolon

• Selection statement - Statement executed with the control expression of a selection processing

structure

• Iteration statement - Statement executed with the control expression having the loop structure

• Jump statement - Controlled jump and its destination

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

96

char mark[SIZE+1];

main()

{

 int i, prime, k, count;

 count = 0;

 for (i=0; i <= SIZE; i++) for - Iteration statement
 mark [i] = TRUE;

 for (i=0; i <= SIZE; i++)

 if (mark[i]){ if - Selection statement
 prime = i + i + 3;

 lprintf("%d", prime);

 if ((count%8)==0)putchar('\n'); if - Selection statement
 for (k=i+prime; k <= SIZE; k += prime)

 mark[k] = FALSE;

 }

 }

 lprintf ("Total %d\n", count);

loop1: xxx : - Labeled statement
 goto loop1; goto - Jump statement
}

(1) Sequential processing

A sequential process is executed from the top to the bottom in the order stipulated by the program. Sequentially

executed statements are executed sequentially without any particular specification.

(2) Selective processing

Selective processing selects and executes the next statement to be executed based on the state of the executing

program. The selection conditions are specified as control statements. A selection is made for execution from

two statements or one that has many branches based on the control statement.

(3) Iterative processing

Iterative processing executes the same process multiple times. The statement being controlled is repeatedly

executed for the state specified in the control statement or for the specified count.

(4) Jump processing

Jump processing forcibly leaves the current program flow and moves control to the specified label. Execution

begins at the statement following the label name specified by the jump.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

97

6.1 Labeled Statements

A labeled statement designates the jump destination of switch and goto statements. A switch statement selects

and executes the statement specified by the control expression from the statement having multiple selections. The

labeled statement becomes the label of the statement that is executed by the switch statement. The goto statement

unconditionally branches to the corresponding label from the normal process flow.

A labeled statement has this syntax:

labeled-statement ::=

 identifier : statement

| case constant-expression : statement

| default : statement

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

98

(1) case

Labeled statement case label

case label

[Function]

case is used only in a switch statement. The values for the control expression of the switch statements are

enumerated.

[Syntax]

case constant-expression : statement

 [Example]

int f(void), i;

switch(f())

{

 case 1: I=I+4;

 break;

 case 2: I=I+3;

 break;

 case 3: I=I+2;

{

[Description]

In this example, when f() returns the value 1, the first cast statement is selected and i=i+4 is executed. Similarly,

when the value is 2, the second case is selected. And when 3, the third case is selected. The break statements

in the example are placed in the switch statement to leave it.

The case statement is used when there are multiple selections.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

99

(2) default

Labeled statement default label

default label

[Function]

default is only used in the switch statement. default specifies the processing when there is no corresponding

case in the switch statement.

[Syntax]

default: statement

[Example]

int f(void), i;

switch(f())

{

 case 1; i=i+4;

 break;

 case 2: i=i+3

 break;

 case 3: i=i+2

 default: i=1;

}

[Description]

In the example, when 1 to 3 is the value returned by f(), the corresponding case is selected and subsequent

statements are executed. The break statements in the example are included to leave the switch statement.

When a value other than 1 to 3 is returned by f(), the statement following the default is executed and i is set to 1.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

100

6.2 Compound Statement (Block)

A compound statement treats multiple statements as one grammatical unit. Multiple statements become a

compound statement by enclosing them with braces { }. For example, when multiple processes will be performed in

some state, those statements are enclosed by braces { } and executed.

A compound statement has this syntax.

compound-statement ::=

{ ªdeclaration-list¼ ªstatement-list¼ }

declaration-list ::=

 declaration

| declaration-list declaration

statement-list ::=

 statement

| statement-list statement

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

101

6.3 Expression and Null Statements

A statement composed of one statement and a semicolon is called an expression statement. A statement

composed of a semicolon is called a null statement. The null statement is used in a null loop body or to place a label.

The expression statement and null statement have this syntax.

ªexpression-statement ¼ :
 ªexpression ¼;

As shown in the following example, the function that is evaluated only to obtain the side effects as the expression

statement can use the cast expression and explicitly discard the return value.

int p(int);

/* }*/

(void)p(0);

The null statement can be used as the loop body of the iteration statement.

char *s;

/* }*/

while(*s++! = '0');

This also can be used to place the label before the } that closes the compound statement.

while(loop1){

 /* }*/

 while(loop2){

 /* }*/

 if(want_out)

 goto end_loop1;

 /* }*/

 }

end_loop1: ;

}

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

102

6.4 Selection Statements

The selection statements are the if statement and switch statement. The selection statement selects the

processing from the set of statements by using the value of the control expression enclosed by ().

The if and switch statements have this syntax.

selection-statement ::=

 if (expression) statement

| if (expression) statement else statement

| switch (expression) statement

The control flow of the if and switch statements are shown in the figure.

Figure 6-1. Selection Statement Control Flow

switch statement control flow

switch

case3 default: Execute statement

following if.

Execute statement

following else.

case2case1

if statement control flow

if condition
False

True

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

103

(1) if statement, if-else statement

Selection statement if statement, if-else statement

[Function]

The if and if-else statements execute the next statement if the value of the control expression enclosed by () is

not 0. For the if-else statement, when the value of the expression is 0, the statement in the else statement is

executed.

[Syntax]

if (expression) statement

if (expression) statement else statement

[Example]

if(i<10){

 /*111*/

}

else{

 /*222*/

}

[Description]

In this example, when the value of i is less than 10 in the control expression in the if statement, the {/*111*/} block

is executed. If 10 or greater, the {/*222*/} block is executed.

[Constraints]

The control expression of the if statement has scalar type.

If the processing is not enclosed by braces { } after the if or if-else statement, only the processing in the

statement after the if statement or else statement is considered to be the loop body.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

104

(2) switch statement

Selection statement switch statement

[Function]

The switch statement moves control to the switch body of the case corresponding to the control expression

enclosed by parentheses (). If there is no corresponding case statement for the control expression, the

statement after default is executed. If there is no default, no statements are executed.

[Syntax]

switch (expression) statement

[Example]

int f(void), i;

switch(f())

{

 case 1: i=i+4;

 break;

 case 2: i=i+3:

 break;

 case 3: i=i+2;

}

[Description]

In the example, if the value returned by f() is 1, the first case is selected, and the i=i+4 expression is executed.

Similarly, if the value is 2, the second case statement is selected. If the value is 3, the third case statement is

selected. The break statements in the example are included to leave the switch statement.

[Constraints]

The constant expression has integral type. Each case expression is an integral constant expression.

Each case in one switch statement cannot be set to the same value. default can only be used once in one switch

statement.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

105

6.5 Iteration Statements

An iteration statement repeats execution of the loop body while the control statement enclosed by parentheses ()

is true (while not 0). The three iteration statements are:

• while statement

• do statement

• for statement

The iteration statements have this syntax:

ªiteration-statement¼ ::=

 while (expression) statement

| do statement while (expression) ;

| for (expression ; expression ; expression) statement

The figure shows the control flow of the iteration statements.

Figure 6-2. Iteration Statement Control Flow

Execute the statement

following while.

while statement control flow

while condition
False

True

Loop

Execute the statement

following for.

Re-evaluate the

constant expression.

for statement control flow

for condition
False

True

Loop

Execute the statement

following do.

do, while statement control flow

while condition

False

True

Loop
Initial settings

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

106

(1) while statement

Iteration statement while statement

[Function]

The while statement repeatedly executes the body of the loop while the constant expression enclosed by

parentheses () is true (while not 0). The while statement evaluates the constant expression before executing the

loop body.

[Syntax]

while (expression) statement

[Example]

int i, x ;

i=1, x=0;,

while (i<11){

 x+=i;

 i++;

}

[Description]

The example determines the sum of integers from 1 to 10 in x. The loop body of this while statement is the part

enclosed by the braces { }. The control expression i < 11 returns 0 when i reaches 11. Therefore, the loop body

is repeatedly executed while i from 1 to 10.

[Constraints]

The control expression has scalar type.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

107

(2) do statement

Iteration statement do statement

[Function]

The do statement repeatedly executes the loop body while the control expression enclosed by parentheses () is

true (while not 0). The do statement evaluates the control expression after executing the loop body.

[Syntax]

do statement while (expression);

[Example]

int i, x;

i=1, x=0;

do{

 x+=i;

 i++;

}

while(i<11)

[Description]

The example determines the sum of the integers from 1 to 10 in x. The loop body of the do statement is the part

enclosed by braces. The control expression i < 11 returns to 0 when i becomes 11. Therefore, the loop body is

repeatedly executed while i is from 1 to 10.

[Constraints]

The control expression has scalar type.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

108

(3) for statement

Iteration statement for statement

[Function]

The for statement repeatedly executes the loop body while the second expression enclosed by parentheses () is

true (while not 0). The first expression initializes the variable used as the counter and is only executed once at

the beginning of the loop. The decision about the counter is performed by the second expression. The third

expression is executed last after each loop. After executing this expression, the variable is re-evaluated.

[Syntax]

for (ªfirst-expression ¼; ªsecond-expression ¼; ªthird-expression ¼) statement

[Example]

int i, x=0;

for (i=1; i<11; ++i)

 x+=i;

[Description]

The example determines the sum of the integers from 1 to 10 in x. The body of this for loop is x+=i. The control

expression i<11 returns 0 when i reaches 11. Therefore, the loop body is repeatedly executed while i is from 1 to

10.

[Constraints]

The control expression has scalar type.

When no processing is enclosed by braces { } after the for statement, only the processing in the next line after

the for statement is considered to be the loop body of the for statement.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

109

6.6 Jump Statements

A jump statement leaves the current control flow and unconditionally moves control to any location. There are four

jump statements

• goto statement

• continue statement

• break statement

• return statement

A jump statement has this syntax.

jump-statement ::=

 goto identifier ;

| continue ;

| break ;

| return ªexpression¼ ;

The figure shows the control flow of the jump statement.

Figure 6-3. Jump Statement Control Flow

Loop

continue

continue

Loop

break

break

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

110

(1) goto statement

Jump statement goto statement

[Function]

The goto statement unconditionally jumps to the label name specified in the current function.

[Syntax]

goto identifier;

[Example]

do{

 /* }*/

 goto point;

 /* }*/

}while (/* }*/);

 /* }*/

point: ;

[Description]

In this example, when control moves to the goto statement, the loop processing is leaved unconditionally and

control moves to the statement following point.

[Constraints]

The jump destination (label name) indicated by the goto statement always points to any place in a function

containing the goto statement.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

111

(2) continue statement

Jump statement continue statement

[Function]

The continue statement is used in the loop body of an iteration statement. Control flow by the continue statement

unconditionally jumps to the end of the loop body. The continue statement is used in the iteration statement of

the innermost side enclosing it.

[Syntax]

continue;

[Example]

while (/* }*/){

 /* }*/

 continue;

 /* }*/

contin: ;

}

[Description]

In this example, when the processing in the loop body reaches the continue statement, control unconditionally

jumps to the contin label. The contin label does not have to indicate the jump destination. This example

performs the same action as using the goto statement to replace the continue statement by goto contin.

[Constraints]

The continue statement can be the loop body or used only in the loop body.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

112

(3) break statement

Jump statement break statement

[Function]

The break statement moves control to the statement following the iteration statement or the switch statement to

leave the iteration statement or switch statement.

[Syntax]

break;

[Example]

int f(void), i;

switch(f())

{

 case 1:

 i=i+4;

 break;

 case 2:

 i=i+3;

 break;

 case 3:

 i=i+2;

}

[Description]

This example uses the break statement in order to avoid performing unneeded evaluations in the switch

statement. In the switch evaluation, when there is a corresponding case label, the switch statement is exited by

the break statement.

[Constraints]

The break statement can be used as the switch body or only as the loop body.

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

113

(4) return statement

Jump statement return statement

[Function]

The return statement leaves the function containing the return and moves control to the calling function. There

can be multiple return statements in one function.

Closing the end of the function by the } is the same as executing a return statement that has no expression.

[Syntax]

return expression;

[Example]

void main()

{

 /* }*/

 int i;

 y=f(i);

 /* }*/

}

int f(int i)

{

 int x;

 /* }*/

 return(x);

}

CHAPTER 6 C LANGUAGE CONTROL STRUCTURES

114

Jump statement return statement

[Description]

The f() function in this example returns to the main function when control moves to the return statement. Since

the value of variable x is returned as the return value by the return statement, the value of variable x is assigned

to variable y by the assignment operator.

[Constraints]

In a function returning void, an expression having a return value cannot be used in the return statement.

115

CHAPTER 7 STRUCTURES AND UNIONS

Structures and unions are sets of member objects having different types and assembled under one name. A

structure assigns its member objects in contiguous space. A union assigns overlapping space.

7.1 Structures

A structure is a set of member objects contiguously allocated.

(1) Structure and structure variable declarations

For a structure, the structure declaration list and structure variables are declared by the struct keyword. Any

name called the tag can be assigned to the structure declaration list. Then this tag can be used to declare

structure variables having the same structure.

• Structure declaration

struct tag-name {structure-declaration-list} variable-name;

The next example declares the name, addr, and tell character arrays in the first struct having the tag data. no1 is

declared as the variable. In the next struct, the no2, no3, no4, and no5 structure variables, which are identical to

no1, are declared by using the tag.

struct data{

 int code;

 char name[12];

 char addr[50];

 char tel[12];

}nol;

struct data no2, no3, no4, no5;

(2) Structure declaration list

The structure declaration list describes the structure of the declared structure type. Each element in the structure

declaration list is called a member. Storage is obtained in the order of the declared members.

The type of the member object is neither the incomplete type (array of unknown size) nor the function type.

Consequently, a structure declaration list cannot be included in itself. Members can have any object type, except

for the above types. Furthermore, a bit field that specifies the number of bits in the member can be specified.

When the variable value has the two values of 0 or 1, the bit field specifies one bit which is the minimum number

of required bits. Multiple members can be stored in one integer space in the specification for the minimum

number of required bits.

CHAPTER 7 STARTUP PROCESSING

116

• Structure declaration list
 int a;

 char b[7];

 char c[5][10];

• Bit fields
 unsigned int a:2;

 unsigned int b:3;

 unsigned int c:1;

(3) Arrays and pointers

A structure variable can be an array similar to other objects and can have a pointer. The elements in the array

become structures in the structure array.

• Structure array

The declaration of a structure array 1is performed in the same way as for other objects.

struct data{

 char name[12];

 char addr[50];

 char tel[12];

};

struct data no[5];

• Structure pointer

A structure pointer has the features of the structure pointed to by the pointer. That is, when the pointer to the

structure is incremented, the pointer is incremented by the structure size and points to the next structure.

In this example, dt_p is a pointer to the value of type struct data. When dt_p is incremented, it has the same

value as &no[1].

struct data no[5];

struct data *dt_p;

dt_p=no;

CHAPTER 7 STARTUP PROCESSING

117

(4) Referencing structure members

The two ways to reference structure members are to use the structure variables and to use the pointers to the

variables. The . operator is used when referencing by using the structure variable. The -> operator is used when

referencing by using a pointer.

• Referencing by a structure variable

Referencing a member by using a structure variable uses the . operator.

struct data{

 char name[12];

 char addr[50];

 char tel[12];

}no[5] = {"NAME", "ADDR", "TEL"}, *data_ptr=no;

void main(){

 char c;

 c = no[0]. name[1];

}

• Referencing by a pointer

Referencing a member by using a pointer variable uses the -> operator.

struct data{

 char name[12];

 char addr[50];

 char tel[12];

}no[5] = {"NAME", "ADDR", "TEL"}, *data_ptr = no;

void main(){

 char c;

 data_ptr -> tel[3] = 'E';

}

CHAPTER 7 STARTUP PROCESSING

118

7.2 Unions

A union is a collection of member objects that are allocated to the same space.

(1) Union and union variable declarations

For a union, the union keyword is used to declare a union list declaration and union variable. Any name called

the tag can be assigned to the union declaration list. Then this tag can be used to declare union variables having

the same structure.

• Union declaration

union tag {union-declaration-list} variable-name;

The example declares the name, addr, and tel character arrays in the first union that has the tag data. no1 is

declared as its variable. Next, the no2, no3, no4, and no5 union variables, which have the same structure as

no1, are declared by the tag of the union.

union data{

 char name[12];

 char addr[50];

 char tel[12];

}no1;

union data no2, no3, no4, no5;

(2) Union declaration list

A union declaration list describes the structure of the declared union type. Each element in the union declaration

list is called a member. The declared members use the same space.

The type of the member object is neither the incomplete type (array of unknown size) nor the function type.

Consequently, a union declaration list cannot be included in itself. Members can have any object type, except for

the above types.

• Union declaration list

int a;

char b[7];

char c[5][10];

CHAPTER 7 STARTUP PROCESSING

119

(3) Arrays and pointers

As with other objects, union variables can be arrays and pointers.

• Union array

A union array declaration is performed in the same way as for other objects.

union data{

 char name[12];

 char addr[50];

 char tel[12];

};

union data no[5];

• Union pointer

A union pointer has the features of the union indicated by the pointer. That is, when a union pointer is

incremented, the pointer is increased by the size of the union and points to the next union.

In the example, dt_p is a pointer to the value of type union data.

union data no[5];

union data *dt_p;

dt_p = no;

(4) Referencing union members

The two ways to reference union members are to use the union variables and the pointers to the variables. The .

operator is used when referencing by using the union variable. The -> operator is used when referencing by

using a pointer.

• Referencing by a union variable

The . operator references a member by using a union variable.

union data{

 char name[12];

 char addr[50];

 char tel[12];

}no[5] = {"NAME", "ADDR", "TEL"};

• Referencing by a pointer

The -> operator references a member by using a pointer variable.

union data{

 char name[12];

 char addr[50];

 char tel[12];

}*data_ptr;

data_ptr -> name[1] = 'N';

120

[MEMO]

121

CHAPTER 8 EXTERNAL DEFINITIONS

The program text after preprocessing becomes the translation unit. The program text of the translation unit is a

column of external declarations. Since these are visible outside the function, they are called external.

An external definition defines functions or external objects. If identifiers declared with external linkage are used in

expressions (except the operand of the sizeof operator), one external definition is required for the identifier

somewhere in the program.

An external definition has this syntax.

translation-unit ::=

 external-declaration

| translation-unit external-declaration

external-declaration ::=

 function-declaration

| declaration

CHAPTER 8 EXTERNAL DEFINITIONS

122

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1]; External object declaration

main()

{

 int i, prime, k, count;

 count = 0;

 for (i=0; i <= SIZE; i++)

 mark[i] = TRUE;

 for (i=0; i <= SIZE; i++){

 if(mark[i]){

 prime = i+i+3;

 lprintf("%d", prime);

 count++;

 if((count%8) == 0)putchar('\n');

 for (k = i+prime; k <= SIZE; k += prime)

 mark[k] = FALSE;

 }

 }

 lprintf("Total%d\n",count);

loop1:

 goto loop1;

}

8.1 Function Definitions

A function definition is an external definition. Even when the storage-class specifier is omitted, a function definition

is considered to be defined by extern. An external function definition means that a defined function can be

referenced from another file. For example, when some function in another file is used in a program composed of

multiple files, this function has an external definition.

The storage-class specifier of a function is extern or static. When defined as extern, the function can be

referenced from other functions. However, when defined as static, the function cannot be referenced from other files.

The external definition has this syntax.

function-definition ::=

 ªdeclaration-specifiers¼ ªdeclarator declaration-list¼ compound-statement

CHAPTER 8 EXTERNAL DEFINITIONS

123

In the example, extern is the storage class specifier, and int is the type specifier. These can be omitted since they

are the defaults. max(int a, int b) is the function declarator. {return a>b?a:b;} is the function body.

extern int max(int a,int b)

{

 return a > b?a: b;

}

Since this function definition specifies the types of the parameters in the function declaration, type conversion is

forcibly performed on the arguments. The function definition can be described based on the format of the identifier

list for the parameter. The next example illustrates this.

extern int max(a,b)

int a, b;

{

 return a > b?a: b;

}

A function address can be passed as an argument of a function call. The pointer to this function is created by

using the function name in the expression.

int f(void);

g(f);

This example passes the f function to the g function by passing the pointer to the f function. The following is

defined in the g function.

 g(int(*funcp)(void))

 {

 (*funcp)()/* or funcp()*/

 }

or

 g(int func(void))

 {

 func()/* or (*func)()*/

 }

CHAPTER 8 EXTERNAL DEFINITIONS

124

8.2 External Object Definitions

An external object definition indicates that the identifier declaration for an object has file scope and an initializer.

Also, an identifier declaration for an object having file scope that does not have a storage-class specifier nor an

initializer, or a static storage-class specifier is a tentative definition. This definition has the file scope of an initializer

equal to 0.

This list shows examples of external object definitions.

• int i1 = 1; - Definition with external linkage

• static int i2 = 2; - Definition with internal linkage

• extern int i3 = 3; - Definition with external linkage

• int i4; - Tentative definition with external linkage

• static int i5; - Tentative definition with internal linkage

• int i1; - Valid tentative definition refers to previous one

• int i2; - Linkage disagreement

• int i3; - Valid tentative definition refers to previous one

• int i4; - Valid tentative definition refers to previous one

• int i5; - Linkage disagreement

• extern int i1; - Refers to previous object with external linkage

• extern int i2; - Refers to previous object with internal linkage

• extern int i3; - Refers to previous object with external linkage

• extern int i4; - Refers to previous object with external linkage

• extern int i5; - Refers to previous object with internal linkage

125

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

A preprocessing directive is a sequence of preprocessing tokens beginning with the # preprocessing token and

ending with the new line character.

The only white space characters that can be used in a preprocessing token sequence are the space and the

horizontal tab.

A preprocessing directive specifies the processing performed before compiling the source file. Preprocessing

includes directives to conditionally process or skip a part of the source file, directives to include other source files, and

directives to replace macros.

The preprocessing directive has this syntax.

preprocessing-file ::=

ªgroup¼

group ::=

 group-part

| group group-part

group-part ::=

 ªpp-tokens¼ new-line

| if-section

| control-line

if-section ::=

if-group ªelif-groups¼ ªelse-group¼ endif-line

if-group ::=

 #if constant-expression new-line ªgroup¼

| #ifdef identifier new-line ªgroup¼

| #ifndef identifier new-line ªgroup¼

elif-groups ::=

 elif-group

| elif-groups elif-group

elif-group ::=

#elif constant-expression new-line ªgroup¼

else-group ::=

#else new-line ªgroup¼

endif-line ::=

#endif new-line

control-line ::=

 #include pp-tokens new-line

| #define identifier replacement-list new-line

| #define identifier lparen ªidentifier-list¼) replacement-list new-line

| #undef identifier new-line

| #line pp-tokens new-line

| #error ªpp-tokens¼ new-line

| #pragma ªpp-tokens¼ new-line

| # new-line

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

126

lparen ::=

 (without preceding white space

replacement-list ::=

 ªpp-tokens¼

pp-tokens ::=

 preprocessing-token

| pp-tokens preprocessing-token

new-line ::=

 new-line character

9.1 Conditional Compilation

Conditional compilation skips compiling a part of the source file based on the values of a constant expression.

When the value of the constant expression defined by a conditional compilation directive is false, the next statement

is not compiled. The sizeof operator, casts, and enumeration constants cannot be used in a constant expression.

#if, #elif, #ifdef, #ifndef, #else, and #endif are conditional compilation directives.

The following simple expressions can be specified in conditional compilation.

defined identifier

or

defined (identifier)

This simple expression returns 1 if the identifier is defined in the #define preprocessing directive. If the identifier is

not defined or the definition has been undefined, 0 is returned.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

127

(1) #if directive

Conditional compilation #if

[Function]

If the value of the constant expression is false, the compilation of a part of the source file is skipped.

[Syntax]

#if constant-expression new-line ªgroup ¼

[Example]

#if FLAG == 0

 :

#endif

[Description]

This example determines whether the next statement is compiled based on “FLAG == 0.”

If the value of FLAG is not 0, the program between the #if directive and #endif directive is not compiled and is

compiled if 0.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

128

(2) #elif directive

Conditional compilation #elif

[Function]

This directive occurs after an ordinary #if directive. If the constant expression of the #if directive is false, the

constant expression following #elif is evaluated. If false, compiling the program after #elif is skipped.

[Syntax]

#elif constant-expression new-line ªgroup ¼

[Example]

#if FLAG == 0

 :

#elif FLAG != 0

 :

#endif

[Description}

This example determines whether to compile the next statement depending on the value of FLAG. IF FLAG is 0,

the program between #if to #endif is compiled. If not 0, the program between #elif and #endif is compiled.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

129

(3) #ifdef directive

Conditional compilation #ifdef

[Function]

The #ifdef directive has the defined identifier as the constant expression of the #if directive.

If the identifier is defined by a #define directive, the rest of the program is compiled. If not defined or the

declaration is removed, the compilation is skipped.

[Syntax]

#ifdef identifier new-line ªgroup ¼

[Example]

#define ON

#ifdef ON

 :

#endif

[Description]

Since ON is defined by the #define directive in the example, the program between #ifdef and #endif is compiled.

If ON is not defined, the program between #ifdef and #endif is not compiled.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

130

(4) #ifndef directive

Conditional compilation #ifndef

[Function]

The #ifndef directive is identical to the !defined identifier as the constant expression of the #if directive. If this

directive has been previously defined, the rest of the program is not compiled.

[Syntax]

#ifndef identifier new-line ªgroup ¼

[Example]

#define ON

#ifndef ON

 :

#endif

[Description]

Since ON is defined by the #define directive in the example, the program between #ifndef and #endif is not

compiled. If ON is not defined, the program between #ifndef and #endif is compiled.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

131

(5) #else directive

Conditional compilation #else

[Function]

For the #else directive, the rest of the program is compiled only when the identifier of the preceding conditional

compilation directive is false. The directives before the #else directive are the #if, #elif, #ifdef, and #ifndef

directives.

[Syntax]

#else new-line ªgroup ¼

[Example]

#define ON

#ifdef ON

 :

#else

 :

#endif

[Description]

Since ON is defined by a #define directive in this example, the program between #ifdef and #else is compiled. If

ON is not defined, the program between #else and #endif is compiled.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

132

(6) #endif directive

Conditional compilation #endif

[Function]

The #endif directive indicates the end of the scope of the preceding conditional compilation directive.

[Syntax]

#endif new-line

[Example]

#define ON

#ifdef ON

 :

#endif

[Description]

#endif in the example indicates the end of the scope of #ifdef directive for conditional compilation.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

133

9.2 Source File Inclusion

The #include preprocessing directive retrieves the specified header file and replaces the #include directive by the

entire contents of the header file. There are three ways to include the source file by #include.

• #include <file-name>

• #include “file-name”

• #include preprocessing-tokens

* preprocessing-tokens: character sequence defined by a #define directive

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

134

(1) #include < > directive

Source file inclusion #include < >

[Function]

The specified header file is searched for in the directory specified in the environment variable, and the entire

contents of the header file replace the #include directive.

[Syntax]

#include <file-name> new-line

[Example]

#include <stdio.h>

[Description]

stdio.h is searched for in the directory specified by the environment variable. The #include <stdio.h>

preprocessing directive is replaced by the contents of stdio.h.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

135

(2) #include “ ” directive

Source file inclusion #include “ ”

[Function]

The source file included by this preprocessing directive is first searched for in the current directory. If the target

file is not found, the directory specified by the environment variable is searched. The retrieved file replaces the

#include directive.

[Syntax]

#include ”file-name” new-line

[Example]

#include ”myprog.h”

[Description]

myprog.h is searched for in the current directory or the directory specified by the environment variable. The

preprocessing directive #include “myprog.h” is replaced by the contents of myprog.h.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

136

(3) #include preprocessing token array directive

Source file inclusion #include preprocessing tokens

[Function]

The header file is indicated by replacing the preprocessing tokens. The header file is searched for and replaces

the #include directive.

[Syntax]

#include preprocessing-tokens new-line

[Example]

#define INCFILE “myprog.h”

#include INCFILE

[Description]

When including a source file by the #include preprocessing-tokens new-line, the specified preprocessing tokens

must be replaced by <file-name> or “file-name” by macro replacement. When replaced by <file-name>, the

source file is searched for in the directory specified by the environment variable. If there is a q character

sequence, the current directory is searched. If not, the directory specified by the environment variable is

searched.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

137

9.3 Macro Replacement

Macro replacement replaces the character string (macro name) specified by the identifier with the replacement list.

The macro name is replaced whenever it is specified. Macro replacement has the two formats of the object-like

macro and function-like macro.

• Object-like macro

#define identifier replacement-list new-line

• Function-like macro

#define identifier (ªidentifier-list¼) replacement-list new-line

(1) Argument substitution

Argument substitution is performed after the calling arguments of the function macro have been identified. If a #

or ## preprocessing token is not placed before and a ## preprocessing token is not placed after the replacement

list parameter, the macros in the list are expanded, and then all of them are replaced by the corresponding

arguments.

(2) # operator

The # preprocessing token replaces the corresponding argument by the char character string processing token.

If this is placed before the parameters in the replacement list, the corresponding arguments become a character

or a character string.

(3) ## operator

The ## preprocessing token is linked to tokens in front and behind. Linking is performed before the next macro

expansion, and the ## preprocessing token is deleted. If a macro name is in the generated token, the macro is

expanded.

operator example

 #define debug(s,t) printf("x"#s"=%d,x"#t"=%s",x##s,x##t);

 debug(1,2);

This is expanded to:
 printf("x""1""=%d,x""2""=%s",x1,x2);

The char character string is linked to:
 printf("x1=%d,x2=%s",x1,x2);

(4) Rescanning and further replacement

If there are macro names in a preprocessing token that underwent macro replacement and in preprocessing

tokens in the rest of the source file, macro replacement is performed. The replaced macro is not replaced even

when it is found while scanning a replacement list that does not include a preprocessing token sequence in the

rest of the source file.

(5) Scope of macro definitions

A macro definition continues replacement until the corresponding #undef directive appears.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

138

(i) #define directive

Macro replacement #define

[Function]

The #define directive replaces the specified identifier by the replacement list. Identical identifiers after this

directive are replaced by the replacement list.

[Syntax]

#define identifier replacement-list new-line

[Example]

#define PAI 3.1415

[Description]

This example replaces all PAIs that appear in the source file with 3.1415.

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

139

(ii) #define() directive

Macro replacement #define()

[Function]

A function-like macro directive replaces the identifier specified in the function format with the replacement list.

Identical identifiers following this directive are replaced by the replacement list. Function-like macro replacement

can handle replacements that include arguments.

[Syntax]

#define identifier (ªidentifier-list ¼) replacement-list new-line

[Example]

#define F(n)(n*n)

int i;

i=F(2);

[Description]

F(2) in the example is replaced by (2*2) by the #define directive. Consequently, the value of i is 4.

A function-like macro is simple character replacement in contrast to a function definition. For safety, the

replacement list in the #define directive is enclosed by parentheses ().

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

140

(iii) #undef directive

Macro replacement #undef

[Function]

This ends the macro replacement directive.

[Syntax]

#undef identifier new-line

[Example]

#define F(n)(n*n)

 :

#undef F

[Description]

#undef in the example undefines the previously specified #define F(n)(n*n).

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

141

9.4 Line Control

Line control replaces the number of the line used while the compiler is compiling by the number specified by #line.

If a character string is specified, the source file name in the compiler is replaced by the specified character string.

• If the line number is changed, this is specified:

#line digit-sequence new-line

• If the line number and file name are changed, this is specified:

#line digit-sequence ªcharacter-string ¼ new-line

• Specifications other than the above are possible. In this case, the specified preprocessing tokens become

one of the two described examples after all of the replacements.

#line preprocessing-tokens new-line

9.5 Error Directive

An error directive produces a message containing the specified preprocessing token sequence. This is specified

by:

#error ªpp-tokens ¼ new-line

9.6 Pragma Directive

The #pragma directive tells the compiler about the specified character string. This C compiler uses the #pragma

directive to produce 78K/0 code.

For details on the pragma directive, see CHAPTER 11, “EXTENDED FUNCTIONS.”

9.7 Null Directive

The null directive has no effect on the compiler.

new-line

CHAPTER 9 PROCESSING DIRECTIVES (COMPILER DIRECTIVES)

142

9.8 ASM Directive

The ASM directive includes the following lines as assembler source in the assembler source file module file output

by the C compiler.

#asm indicates the beginning and #endasm indicates the end of the assembler source in the ASM directive.

[Syntax]

#asm

 :

#endasm

[Example]

#asm

 callf !init

#endasm

[Description]

In this example, callf !init between #asm and #endasm are not compiled, but are written to the assembler source

module file output by the compiler.

9.9 Compiler Definition Macro Names

This compiler predefines the following macro names. These macro names cannot be changed during translation.

Except for _ _LINE_ _ and _ _FILE_ _, the #define or #undef preprocessing directive cannot be applied.

_ _LINE_ _ Line number in current source (decimal number)

_ _FILE_ _ Source file name (character string literal)

_ _DATE_ _ Translation date of the source file (character string literal with the format of Mmmddyyyy)

_ _TIME_ _ Translation time of the source file (character string literal in the format of hh:mm:ss)

_ _STDC_ _ Decimal constant 1

In addition to the above, macro names indicating the series names of a device and ones indicating the device

name are provided based on the target development device of the application product. These are specified based on

the compilation options or device type in the C source in order to output object code for the target device.

• Macro name indicating the device’s series name

_ _KOS_ _

• Macro name indicating the device name

A name for a device type name is preceded by _ _ and followed by _

(Example) _ _9024_

* The device type name is identical to the one specified by the -C option.

See data about device files for the device type names.

143

CHAPTER 10 LIBRARY FUNCTIONS

The C language does not have instructions to perform input and output (I/O) with external (peripheral) devices and

equipment. The designers of the C language employed this design to keep the functions in the C language to a

minimum. However, I/O operations are required in actual system development. Therefore, library functions are

provided to perform I/O in the C language.

This C compiler has library functions for I/O, character manipulation, memory manipulation, program control, and

mathematical functions.

10.1 Interface

A library function is used by issuing a function call. The call instruction performs function calls. In the case of the

normal model, arguments are passed via a stack, or when possible, via a register, and return values are passed via a

register. In the case of the static model, all arguments and return values are passed via a register.

10.1.1 Arguments

The calling side pushes arguments on and pops them off the stack. The called side only references that value.

The arguments are pushed on the stack in order from the end to the beginning.

The smallest unit pushed on the stack is 16 bits. A type larger than 16 bits is placed in 16-bit units in order from

the high-order position. An 8-bit type is expanded to 16 bits.

The table lists the passing of the arguments or return values.

Table 10-1. Argument Passing List (Normal Model)

Argument Type First Argument Second Argument

1-byte, 2-byte integer AX Pass on stack

3-byte integer AX, BC Pass on stack

4-byte integer AX, BC Pass on stack

Floating-point number (float type) AX, BC Pass on stack

Other Pass on stack Pass on stack

CHAPTER 10 LIBRARY FUNCTIONS

144

In the static model, all arguments are passed via a register. Up to 3 arguments, or a total of 6 bytes, can be

passed. Structure arguments passing is not supported in the static model.

Table 10-2. Argurment Passing List (Static Model)

Argument Type First Argument Second Argument Third Argument

1-byte integer A B H

2-byte integer AX BC HL

4-byte integer* AX, BC

Floating-point number

Other

* In the case of 4-byte integer arguments, they are allocated to AX and BC, and remaining arguments (up to 2

bytes) are allocated to the HL or H registers.

10.1.2 Return value

A return value is stored in 16-bit units from the most-significant bits in registers BC to DE with a minimum unit of

16 bits. If a structure is returned, the first address of a structure is stored in BC. If a pointer is returned, it is stored in

BC.

Table 10-3. Return Value Storage List (Normal Model)

Return Value Type Storage Method

1-bit CY

1-byte, 2-byte integer BC

4-byte integer BC (low-order), DE (high-order)

Floating-point number (float

type)

BC (low-order), DE (high-order)

Structure The structure to be returned is copied to a function-specific space.

The address is stored in BC.

Pointer BC

Table 10-4. Return Value Storage List (Static Model)

Return Value Type Storage Method

1-bit CY

1-byte A

2-byte integer AX

4-byte integer AX (low-order), BC (high-order)

Floating-point number

Structure

Pointer AX

* Storage method for the floating-point number and structure are not supported.

CHAPTER 10 LIBRARY FUNCTIONS

145

10.1.3 Saving the registers used by each library

A library which uses the following registers saves the register to be used on the stack

: HL register for the normal model

: DE register for the static model

A library that uses the saddr area saves the saddr area being used on the stack.

The work area used by the library uses the stack area.

This example shows the passing procedure for the arguments and the return value.

calling function "long func(int a, long b, char *c);"

• For normal model

<1> Push the arguments on the stack (calling side).

The most-significant 16 bits of c and b, and the least-significant 16 bits of b are pushed in order on the stack.

a is passed by the ax register.

<2> Call func by using the call instruction (calling side).

The return address is pushed after the least-significant 16 bits of b, and control moves to the func function.

<3> Save the register used in the function (called side).

When HL is used, HL is pushed on the stack.

<4> Push the first argument passed in the register on the stack.

<5> Perform func function processing and store the return value in the register (called side).

The least-significant 16 bits of the long return value is stored in BC and the most-significant 16 bits in DE.

<6> Restore the first stored argument (called side).

<7> Restore the saved register (called side).

<8> Use the ret instruction to return control to the function called (called side).

<9> Remove an argument from the stack (calling side).

The number of bytes (2 byte units) in the argument is added to the stack pointer.

Six is added in the example in Figure 10-1.

CHAPTER 10 LIBRARY FUNCTIONS

146

Figure 10-1. Stack Area During a Function Call

HIGH address

<5> Return value storage

Least-significant
16 bits

Most-significant
16 bits

a

c

HL

Return address

Least-significant 16 bits in b

Stack pointer after <4>

Stack pointer after <3>

Stack pointer after <2>

Stack pointer after <1>

Stack pointer before
pushing arguments

Stack pointer after <6>

Stack pointer after <7>

Stack pointer after <8>

Stack pointer after <9>

Most-significant 16 bits in b

BC DE

10.2 Header Files

This C compiler has 13 header files that define or declare each library function, type, and macro.

However, the function defined in each header file differs depending on the presence/absence of model

specification (-SM) or -ZI/-ZL options. For details, refer to Table 10-5, Standard Library Functions.

The header files for this C compiler are:

ctype.h setjmp.h stdarg.h stdio.h

stdlib.h string.h error.h errno.h

limits.h stddef.h math.h float.h assert.h

(1) ctype.h

ctype.h defines character and string functions. The following functions are defined in ctype.h.

However, if the -ZA compiler option (option that disables non-ANSI functions and enables of portion of ANSI

functions) is specified, _toupper and _tolower are not defined. Instead, tolow and toup are defined. If -ZA is not

specified, tolow and toup are not defined. In the static model, the following functions are not supported when

specifying the -ZI (int and short are treated as char) option.

isalnum isalpha iscntrl isdigit isgraph

islower isprint ispunct isspace isupper

isxdigit tolower toupper isascii toascii

_toupper _tolower tolow toup

CHAPTER 10 LIBRARY FUNCTIONS

147

(2) setjmp.h

setjmp.h defines program control functions. setjmp and longjmp are defined in setjmp.h.

However, in the case of the static model, the following functions are not supported when specifying the -ZI option.

The following object is declare in setjmp.h.

• Declaration of jmp_buf, an int type array of size 11 (Normal Model)

typedef int jmp_buf[11];

• Declaration of jmp_buf, an int type array of size 2 (Static Model)

typedef int jmp_buf[2];

(3) stdarg.h

stdarg.h defines special functions. These functions are defined in stdarg.h.

The following function supports only normal model.

va_start va_arg va_end

This object is defined in stdarg.h. (only normal model)

• Declaration of va_list of type pointer to char

typedef char *va_list;

(4) stdio.h

stdio.h defines the I/O functions. These functions are defined in stdio.h.

sprintf sscanf printf scanf vprintf vsprintf

getchar gets putchar puts

These macros are declared.

#define EOF ð1

#define NULL OL

CHAPTER 10 LIBRARY FUNCTIONS

148

(5) stdlib.h

stdlib.h defines character and string functions, memory functions, program control functions, mathematical

functions, and special functions. The following functions are defined in stdlib.h.

However, if the -ZA compiler option (option that disables non-ANSI functions and enables of portion of ANSI

functions) is specified, brk, sbrk, itoa, ltoa, and ultoa are not defined. Instead, strbrk, strsbrk, stritoa, strltoa, and

strultoa are defined. If -ZA is not specified, strbrk, strsbrk, stritoa, strltoa, and strultoa are not defined.

atoi atol strtol strtoul calloc free malloc realloc

abort atexit exit abs div labs ldiv brk

sbrk atof strtod itoa ltoa ultoa rand srand

bsearch qsort strbrk strsbrk stritoa strltoa strultoa

These objects are declared in stdlib.h.

• Declaration of div_t structure with int members quot and rem

typedef struct{

 int quot;

 int rem;

}div_t;

• Declaration of ldiv_t structure with long int members quot and rem

typedef struct{

 long int quot;

 long int rem;

}ldiv_t;

• Definition of RAND_MAX macro

#define RAND_MAX 32767

• Declarations of macros

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

(6) string.h

string.h defines character and string functions, memory functions, and special functions. These functions are

defined in string.h.

memcpy memmove strcpy strncpy strcat strncat memcmp

strcmp strncmp memchr strchr strcspn strpbrk strrchr

strspn strstr strtok memset strerror strlen

strcoll strxfrm

CHAPTER 10 LIBRARY FUNCTIONS

149

(7) error.h

error.h includes errno.h.

(8) errno.h

These objects are defined.

• Definitions of the EDOM, ERANGE, and ENOMEM macros

#define EDOM 1

#define ERANGE 2

#define ENOMEM 3

• Declaration of the errno external variable of type volatile int

extern volatile int errno;

(9) limits.h

These macros are defined in limits.h.

#define CHAR_BIT 8

#define CHAR_MAX +127

#define CHAR_MIN ð128

#define INT_MAX +32767

#define INT_MIN ð32768

#define LONG_MAX +2147483647

#define LONG_MIN -2147483648

#define SCHAR_MAX +127

#define SCHAR_MIN ð128

#define SHRT_MAX +32767

#define SHRT_MIN ð32768

#define UCHAR_MAX 255U

#define UINT_MAX 65535U

#define ULONG_MAX 4294967295U

#define USHRT_MAX 65535U

#define SINT_MAX +32767

#define SINT_MIN -32768

#define SSHRT_MAX +32767

#define SSHRT_MIN -32768

However, when the -QU option is specified so that unqualified char is regarded as unsigned char, CHAR_MAX

and CHAR_MIN are declared as shown below by the _ _CHAR_UNSIGNED_ _ macro declared by the compiler.

#define CHAR_MAX (255U)

#define CHAR_MIN (0)

CHAPTER 10 LIBRARY FUNCTIONS

150

Moreover, when compiler option -ZI (int/short and unsigned int/unsigned short are treated as char type and

unsigned char type, respectively) is specified, INT_MAX, INT_MIN, SHRT_MAX, SHRT_MIN, SINT_MAX, SINT_MIN,

SSHRT_MAX, and SSHRT_MIN are declared as follows via the macro

_ _FROM_INT_TO_CHAR_ _ declared by the compiler.

#define INT_MAX CHAR_MAX

#define INT_MIN CHAR_MIN

#define SHRT_MAX CHAR_MAX

#define SHRT_MIN CHAR_MIN

#define SINT_MAX SCHAR_MAX

#define SINT_MIN SCHAR_MIN

#define SSHRT_MAX SCHAR_MAX

#define SSHRT_MIN SCHAR_MIN

#define UINT_MAX UCHAR_MAX

#define USHRT_MAX UCHAR_MAX

When compiler option -ZL (long type and unsigned long type are treated as int type and unsigned int type,

respectively) is specified, LONG_MAX, LONG_MIN, AND ULONG_MAX are declared as follows via the macro

_ _FROM_LONG_TO_INT_ _ declared by the compiler.

#define LONG_MAX (+32767)

#define LONG_MIN (-32768)

#define ULONG_MAX (65535U)

(10) stddef.h

These objects are declared and defined in stddef.h.

• Type declaration of int type ptrdiff_t

typedef int ptrdiff_t;

• Type declaration of unsigned int type size_t

typedef unsigned int size_t;

• Definition of NULL macro

#define NULL(void*)0;

CHAPTER 10 LIBRARY FUNCTIONS

151

• Definition of offsetof macro

#define offsetof(type,member) ((size_t)&(((type*)0) -> member))

* offsetof(type, member-designator)
This expands to an integral constant expression having type size_t. Its value is the offset in bytes from the
beginning of the structure (designated by type) to the structure member (designated by the member
designator). If the member designator is a declaration like “static type t;”, the result of evaluating the
expression &(t.member-designator) must be an address constant. If the designated member is a bit field,
the behavior is undefined.

(11) math.h

The following function is defined in math.h. (normal model only)

matherr

The following object is defined.

• Definition of HUGE_VAL macro

#define HUGE_VAL _HUGE

(12) float.h

The following objects are defined in float.h.

The macros are divided into the macros declared by the compiler when the size of the double type is 32 bits and

macros defined by _ _DOUBLE_IS_32BITS_ _.

CHAPTER 10 LIBRARY FUNCTIONS

152

#ifndef _FLOAT_H

#if defined (_ _K0_ _)|| defined (_ _K0S_ _)

#ifndef _ _STATIC_MODEL_ _

#define FLT_ROUNDS 1

#define FLT_RADIX 2

#ifdef_ _DOUBLE_IS_32BITS_ _

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 24

#define LDBL_MANT_DIG 24

#define FLT_DIG 6

#define DBL_DIG 6

#define LDBL_DIG 6

#define FLT_MIN_EXP ð125

#define DBL_MIN_EXP ð125

#define LDBL_MIN_EXP ð125

#define FLT_MIN_10_EXP ð37

#define DBL_MIN_10_EXP ð37

#define LDBL_MIN_10_EXP ð37

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +128

#define LDBL_MAX_EXP +128

#define FLT_MAX_10_EXP +38

#define DBL_MAX_10_EXP +38

#define LDBL_MAX_10_EXP +38

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 3.40282347E+38F

#define LDBL_MAX 3.40282347E+38F

#define FLT_EPSILON 1.19209290E-07F

#define DBL_EPSILON 1.19209290E-07F

#define LDBL_EPSILON 1.19209290E-07F

#define FLT_MIN 1.17549435E-38F

#define DBL_MIN 1.17549435E-38F

#define LDBL_MIN 1.17549435E-38F

#else /*_ _DOUBLE_IS_32BITS_ _*/

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 53

#define LDBL_MANT_DIG 53

#define FLT_DIG 6

#define DBL_DIG 15

#define LDBL_DIG 15

CHAPTER 10 LIBRARY FUNCTIONS

153

#define FLT_MIN_EXP ð125

#define DBL_MIN_EXP ð1021

#define LDBL_MIN_EXP ð1021

#define FLT_MIN_10_EXP -37

#define DBL_MIN_10_EXP -307

#define LDBL_MIN_10_EXP -307

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +1024

#define LDBL_MAX_EXP +1024

#define FLT_MAX_10_EXP +38

#define DBL_MAX_10_EXP +308

#define LDBL_MAX_10_EXP +308

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 1.7976931348623157E+308

#define LDBL_MAX 1.7976931348623157E+308

#define FLT_EPSILON 1.19209290E-07F

#define DBL_EPSILON 2.2204460492503131E-016

#define LDBL_EPSILON 2.2204460492503131E-016

#define FLT_MIN 1.17549435E-38F

#define DBL_MIN 2.225073858507201E-308

#define LDBL_MIN 2.225073858507201E-308

#endif /*_ _DOUBLE_IS_32BITS_ _*/

#endif /* !_ _STATIC_MODEL_ _*/

#endif /* _ _K0_ _||_ _K0S_ _*/

#define _FLOAT_H

#endif /*!_FLOAT_H*/

(13) assert.h

The following object is defined in assert.h. (normal mode only)

#ifdef NDEBUG

#define assert(p) ((void)0)

#else

extern int _ _assertfail(char*_ _msg, char*_ _cond, char*_ _file, int_ _line);

#define assert(p) ((p) ? (void)0 : (void)_ _assertfail

 "Assertion failed: %s,file %s,line %d\n",#p,_ _FILE_ _,_ _LINE_ _))

#endif /*NDEBUG*/

CHAPTER 10 LIBRARY FUNCTIONS

154

10.3 Error Checking

The compiler calls some standard library for error checking and generates objects based on the option

specification. The error checking contents are described next.

Error checking contents

Stack overflow: Checks whether stack usage exceeds the stack area. An error results if stack usage exceeds

the stack.

If an error is discovered during error checking, an error processing function in the run-time library is called. The

error processing function is errstk.

10.4 Standard Library Functions

The standard library functions in this C compiler are classified and described based on their functions.

• Section (1-x) - Character and string functions

• Section (2-x) - Program control functions

• Section (3-x) - Special functions

• Section (4-x) - I/O functions

• Section (5-x) - Utility functions

• Section (6-x) - String and memory functions

• Section (7-x) - Mathematical functions

• Section (8-x) - Diagnostic functions

If there is error checking, the function name in the standard library is prefixed by “_@”. (Error checking is

performed by specifying the error check option -L [S].)

The standard library functions are listed below.

{: Function supported

u: Function not supported

': Function supported but with restrictions

CHAPTER 10 LIBRARY FUNCTIONS

155

Table 10-5. Standard Library Function Name List (1/3)

Normal Model Static Model

Section Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

1-01 isalnum { { { { { u { u None ctype.h

1-02 isalpha { { { { { u { u None

1-03 iscntrl { { { { { u { u None

1-04 isdigit { { { { { u { u None

1-05 isgraph { { { { { u { u None

1-06 islower { { { { { u { u None

1-07 isprint { { { { { u { u None

1-08 ispunct { { { { { u { u None

1-09 isspace { { { { { u { u None

1-10 isupper { { { { { u { u None

1-11 isxdigit { { { { { u { u None

1-12 tolower { { { { { u { u None

1-13 toupper { { { { { u { u None

1-14 isascii { { { { { u { u None

1-15 toascii { { { { { u { u None

1-16 _tolower { { { { { u { u None

1-17 _toupper { { { { { u { u None

1-18 tolow { { { { { u { u None

1-19 toup { { { { { u { u None

2-01 setjmp { { { { { u { u None setjmp.h

2-02 longjmp { { { { { u { u None

3-01 va_arg { { { { u u u u None stdarg.h

3-02 va_start ' ' ' ' u u u u None

3-03 va_end { { { { u u u u None

4-01 sprintf { u { u u u u u stdio.h

4-02 sscanf { u { u u u u u

4-03 printf { u { u u u u u

4-04 scanf { u { u u u u u

4-05 vprintf { u { u u u u u

4-06 vsprintf { u { u u u u u

4-07 getchar { { { { { u { u None

4-08 gets { { { { { { { { None

4-09 putchar { { { { { u { u None

4-10 puts { { { { { u { u None

Stack

Over-

flow

Header

File

Error

Check

Function

Name

CHAPTER 10 LIBRARY FUNCTIONS

156

Table 10-5. Standard Library Function Name List (2/3)

Normal Model Static Model

Section Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

5-01 atoi { u { u { u { u None stdlib.h

5-02 atol { { u u u u u u None

5-03 strtol { { u u u u u u None

5-04 strtoul { { u u u u u u None

5-05 calloc { { { { { u { u None

5-06 free { { { { { u { u None

5-07 malloc { { { { { u { u None

5-08 realloc { { { { { u { u None

5-09 abort { { { { { { { { None

5-10 atexit { { { { { u { u None

5-11 exit { { { { { u { u None

5-12 abs { u { u { u { u None

5-13 div { { { { u u u u None

5-14 labs { { u u u u u u None

5-15 ldiv { { u u u u u u None

5-16 brk { { { { { u { u None

5-17 sbrk { { { { { u { u None

5-20 itoa { { { { { u { u None

5-21 ltoa { { u u u u u u None

5-22 ultoa { { u u u u u u None

5-23 rand { u { u { u { u None

5-24 srand { { { { { u { u None

5-25 bsearch { { { { u u u u None

5-26 qsort { { { { u u u u None

5-27 strbrk { { { { { u { u None

5-28 strsbrk { { { { { u { u None

5-29 stritoa { { { { { u { u None

5-30 strltoa { { u u u u u u None

5-31 strultoa { { u u u u u u None

Header

File

Error

Check

Function

Name

CHAPTER 10 LIBRARY FUNCTIONS

157

Table 10-5. Standard Library Function Name List (3/3)

Normal Model Static Model

Section Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

Without zi

Without zi

With zi

Without zi

Without zi

With zi

With zi

With zi

6-01 memcpy { { { { { u { u None string.h

6-02 memmove { { { { { u { u None

6-03 strcpy { { { { { { { { None

6-04 strncpy { { { { { u { u None

6-05 strcat { { { { { { { { None

6-06 strncat { { { { { u { u None

6-07 memcmp { u { u { u { u None

6-08 strcmp { u { u { u { u None

6-09 strncmp { u { u { u { u None

6-10 memchr { { { { { u { u None

6-11 strchr { { { { { u { u None

6-12 strcspn { u { u { u { u None

6-13 strpbrk { { { { { { { { None

6-14 strrchr { { { { { u { u None

6-15 strspn { u { u { u { u None

6-16 strstr { { { { { { { { None

6-17 strtok { { { { { { { { None

6-18 memset { { { { { u { u None

6-19 strerror { { { { { u { u None

6-20 strlen { u { u { u { u None

6-21 strcoll { u { u { u { u None

6-22 strxfrm { u { u { u { u None

7-01 matherr { { { { u u u u None math.h

8-01 _ _

assertfail

{ { { { u u u u assert.hStack

Over-

flow

Header

File

Error

Check

Function

Name

CHAPTER 10 LIBRARY FUNCTIONS

158

1-1 is~ Character and String Functions

[Function]

• is~ tests the character type.

[Header file]

• ctype.h for all

[Function prototype]

• int is~ (int c);

Function Name Argument Return Value

is~ c - Test character If the c character is the target character - 1

If the c character is not the target character - 0

[Description]

Function Name Range

isalpha Tests whether c is a letter (A to Z, or a to z).

isupper Tests whether c is an uppercase letter (A to Z).

islower Tests whether c is a lowercase letter (a to z).

isdigit Tests whether c is a digit (0 to 9).

isalnum Tests whether c is an alphanumeric character (0 to 9, A to Z, or a to z).

isxdigit Tests whether c is a hexadecimal character (0 to 9, A to F, or a to f).

isspace Tests whether c is a white-space character (space, tab, carriage return, new line, vertical, form feed).

ispunct Tests whether c is a printing character other than space or an alphanumeric character.

isprint Tests whether c is a printing character.

isgraph Tests whether c is a printing character other than a space.

iscntrl Tests whether c is a control character.

isascii Tests whether c is an ASCII character.

CHAPTER 10 LIBRARY FUNCTIONS

159

1-2 toupper

tolower Character and String Functions

[Function]

• Converts the character type.

• toupper converts a lowercase letter to an uppercase letter.

• tolower converts an uppercase letter to a lowercase letter.

[Header file]

• ctype.h

[Function prototype]

• int to~ (int c);

Function Name Argument Return Value

toupper c - Character to be converted If c can be converted

- Character after conversion of c character

tolower If c cannot be converted - c

[Description]

toupper

• toupper converts the argument when a lowercase letter into an uppercase letter.

tolower

• tolower converts the argument when an uppercase letter into a lowercase letter.

CHAPTER 10 LIBRARY FUNCTIONS

160

1-3 toascii Character and String Functions

[Function]

• toascii converts to ASCII code.

[Header file]

• ctype.h

[Function prototype]

• int toascii (int c);

Function Name Argument Return Value

toascii c - Character to be converted Value where bits outside the ASCII code range of c

are set to 0

[Description]

• Converts to the ASCII code of c. Bits (bits 7 to 15) outside the ASCII code range (bits 0 to 6) are set to 0.

CHAPTER 10 LIBRARY FUNCTIONS

161

1-4 __toupper/toup

__tolower/tolow Character and String Functions

[Function]

• __toupper and toup subtract ‘a’ from c and add ‘A’. a: Lowercase letter

• __tolower and tolow subtract ‘A’ from c and add ‘a’. A: Uppercase letter

(__toupper and toup, and __tolower and tolow are completely identical.)

[Header file]

• ctype.h

[Function prototype]

• int_to~ (int c);

Function Name Argument Return Value

_toupper toup c - Character to be converted Value of ‘a’ subtracted from c and added to ‘A’

_tolower tolow Value of ‘A’ subtracted from c and added to ‘a’

a: Lowercase letter

A: Uppercase letter

[Description]

_toupper

• _toupper resembles toupper, but it does not confirm that the argument is a lowercase letter.

_tolower

• _tolower resembles tolower, but it does not confirm that the argument is an uppercase letter.

CHAPTER 10 LIBRARY FUNCTIONS

162

2-1 setjmp

longjmp Program Control Functions

[Function]

• setjmp saves the environment during a call.

• longjmp restores the environment saved by setjmp.

[Header file]

• setjmp.h

[Function prototype]

• int setjmp (jmp_buf env);

• void longjmp (jmp_buf env, int val);

Function Name Argument Return Value

setjmp env - Array that saves the environment If directly called - 0

If returning from the call of the corresponding

longjmp - value of val when calling the

corresponding longjmp call, but 1 when

val is 0

longjmp env - Array of the environment saved by setjmp

val - Return value to setjmp

Since the execution following the setjmp that saved

the environment in env is moved to, longjmp is not

returned to.

[Description]

setjmp

• If setjmp was directly called, the HL register (for normal model), the DE register (for static model), saddr area

used as the register variable, sp, and the return address of the function are saved in env and 0 is returned.

longjmp

• longjmp restores the environment saved in env (HL register (for normal model), the DE register (for static

model), saddr used as the register variable, and sp). Program execution continues as if the corresponding

setjmp returned val (but is 1 when val is 0).

CHAPTER 10 LIBRARY FUNCTIONS

163

3-1 va_start

va_arg

va_end Special Functions

[Function]

• va_start is for setting a process with a variable number of arguments. (Macro)

• va_arg processes a variable number of arguments. (Macro)

• va_end indicates the end of processing of a variable number of arguments. (Macro)

[Header file]

• stdarg.h

[Function prototype]

• void va_start (va_list ap, parmN);

• type va_arg (va_list ap, type);

• void va_end (va_list ap);

Function Name Argument Return Value

va_start ap - Variable initialized for use in va_arg and va_end

parmN - Argument that is one before the variable

 arguments

None

va_arg ap - Variable for argument list processing

type - Type for pointing to a suitable location in the

 variable arguments

(type is a variable length type. For example, if

va_arg(va_list ap, int) is described, type is int. If

va_arg(va_list ap, long) is described, type is long.)

If normal - Value of a suitable location in the

 variable arguments

If ap is a null pointer - 0

va_end ap - Variable for processing a variable number of

arguments

None

CHAPTER 10 LIBRARY FUNCTIONS

164

3-1 va_start

va_arg

va_end Special Functions

[Description]

va_start

• In va_start, the ap argument is an object of type va_list (char* type).

• The pointer that points to the argument after parmN is stored in ap.

• parmN is the name of the parameter on the right side in the function definition.

• If parmN is declared in the register storage class, the behavior is undefined.

va_arg

• In va_arg, the ap argument must be identical to ap of type va_list initialized by va_start. (Otherwise, the

behavior is undefined.)

• The value of a suitable location in the variable arguments (at the head of the variable argument immediately

after va_start and later proceeds to each va_arg) is returned with the type specified by type.

• If ap is a null pointer, 0 having the type specified by type returns.

va_end

• va_end sets ap to the null pointer in order to notify the macro system that the all variable arguments have

been processed.

CHAPTER 10 LIBRARY FUNCTIONS

165

4-1 sprintf I/O Functions

[Function]

• sprintf writes data into a string in accordance with the format.

[Header file]

• stdio.h

[Function prototype]

• int sprintf (char *s, const char *format, ...);

Function Name Argument Return Value

sprintf s - Pointer to the output string

format - Pointer to the string indicating the output

 conversion specifications

... - Zero or more arguments to be converted

Number of characters written to s (the terminating

null character is not counted)

[Description]

• The behavior is undefined if there are insufficient arguments for the format. If the format is exhausted while

arguments remain, the excess arguments are evaluated but otherwise ignored.

• In accordance with the output conversion specification defined by format, the arguments (0 or more) following

format are converted and written to the string pointed to by s.

• The output conversion specification has zero or more directives. Ordinary characters (other than conversion

specifications that begin with %) are output unchanged to the string s. The conversion specification fetches

successive arguments (0 or more), converts and outputs them to string s.

• Each conversion specification begins with % and is followed in order by the elements shown next. (When the

conversion setting is invalid, that character is output. At this time, the flag and the minimum field width are

valid.)

• Format

• Zero or more flags (described later) modify the meaning of the conversion specification.

• Decimal integer of the option that specifies the minimum field width

CHAPTER 10 LIBRARY FUNCTIONS

166

4-1 sprintf I/O Functions

If the width after conversion is less than this field width, it is padded on the left. (If the left justification (-) is set,

the right side is padded.) There is no padding if the field width begins at 0 and there is right adjustment.

Otherwise, the padding is the space character. The width after conversion that exceeds the field width is not

discarded.

• Optional precision specification (.integer)

For d, i, o, u, x, and X conversion, the minimum number of digits is specified. In s conversion, the maximum

number of characters is specified. In e, E, and f conversion, the digits that should be output after the decimal-

point character is specified. For g and G conversion, the maximum number of significant digits is specified.

The precision specification is an integer. If the integral part is omitted, the default is 0. The amount of

padding produced by the precision setting has precedence over the padding specified by the field width.

• Optional h, l, or L

h specifies that a following d, i, o, u, x, or X conversion is applied to short int or unsigned short int. In addition,

h specifies that a following n conversion is applied to a pointer to short int.

i specifies that a following d, i, o, u, x, or X conversion is applied to long int or unsigned long int. Also l

specifies that a following n conversion is applied to a pointer to long int.

h, l, and L are ignored for other conversions.

• Characters that specify the conversion (conversion specifications to be described later)

The field width or precision specification can specify an asterisk (*) instead of an integer string. In this case,

the int argument provides an integer value (before the argument to be converted). A negative field width

produced by this result is interpreted as a - flag followed by a positive field. Negative precision is ignored.

¡ The flags are:

• ð : The conversion result is left justified in the field.

• + : A + or - sign is attached to the result of the signed conversion.

• Space : If there is no sign in the result of the signed conversion, spaces are added at the beginning. If the

space and + flags are simultaneously specified, the space flag is ignored.

• # : The result is converted into an “alternate form.”

For o conversion, the precision is increased so that the first digit becomes zero. For x or X

conversion, 0x (or 0X) is prefixed to a non-zero result.

For e, E, or f conversion, the decimal-point character is always forcibly inserted in the output

value. (In the default without #, a decimal-point character appears only if a digit follows.)

For g or G conversion, the decimal-point character is always forcibly entered in the output value.

Trailing zeros are not removed. (In the default without #, the decimal-point character appears

only if a digit follows. Trailing zeros are removed.) For other conversions, the # flag is ignored.

CHAPTER 10 LIBRARY FUNCTIONS

167

4-1 sprintf I/O Functions

¡ The conversion specifications are:

• d, i, o, u, x, X : An int argument is converted to signed decimal (d or i), unsigned octal (o), unsigned

decimal (u), or unsigned hexadecimal (x or X). x conversion uses letters a to f as the

hexadecimal characters, and X conversion uses A to F.

The precision specification indicates the minimum number of digits in the result. If the result is too small,

leading zeros are added. If the precision is not specified, the default is 1. If precision of 0 is specified and 0 is

converted, nothing appears.

• f : A double argument is converted as a signed value in the style [ð]dddd.dddd.

dddd is one or more decimal numbers. The number of digits preceding the decimal point is

determined by the absolute value of the number. The number of digits following the decimal point is

determined by the required precision. If the precision is omitted, the precision is taken to be 6.

• e : A double argument is converted as a signed value in the style [ð]d.dddd e [sign] ddd. d is one decimal

digit. dddd is one or more decimal digits. ddd is exactly three decimal digits. sign is + or ð.If the

precision is omitted, the precision is taken to be 6.

• E : This format is identical to the e format, except E and not e precedes the exponent.

• g : A double argument uses the f or e format depending on whichever produces a more compact result in

a conversion based on the specified precision.

The e format is only used when the exponent of the value is less than ð4 or greater than or equal to

the number specifying the precision.

Trailing zeros are removed. The decimal point appears only when followed by one or more digits.

• G : This format is identical to the g format, except E and not e precedes the exponent.

• c : The int argument is converted to unsigned char and the resulting character is written.

• s : The argument is a pointer to a string. Each character from this string is written until the terminating

null character (which is not included in the output).

If the precision is specified, unnecessary characters are not written.

When the precision is not specified or the precision exceeds the size of the array, the array must

include a null character.

• p : The argument is a pointer to void and represented by an unsigned 4-digit hexadecimal number

(leading zeros added when less than 4 digits). The large model represents the argument by an

unsigned 8-digit hexadecimal number. (The two most-significant digits are padded by 0. Leading

zeros are added when there are less than six digits.) The precision specification is ignored.

CHAPTER 10 LIBRARY FUNCTIONS

168

4-1 sprintf I/O Functions

• n : The argument is a pointer to an integer. The number of characters that have been written in the s

string are entered in this argument. No conversion is performed.

• %: % is written. No argument is converted.

(The flag and minimum field width are valid.)

• The behavior for an invalid conversion specifier is undefined.

• If the actual argument is a union or structure, or a pointer to one (except for a character array in a %s

conversion or a pointer in a %p conversion), the behavior is undefined.

• If there is no field width or it is small, the conversion result is not truncated. That is, when the number of

characters in the conversion result is larger than the field width, the field is expanded to a width that holds the

conversion result.

• The style of the special output string for %f, %e, %E, %g, or %G conversion are:

Not-a-number o “(NaN)”

+f o “(+INF)”

ðf o “(ðINF)”

A null character is written at the end of the s string (not included in count of the return value).

Figure 10-2 is a syntax chart of format.

CHAPTER 10 LIBRARY FUNCTIONS

169

4-1 sprintf I/O Functions

Figure 10-2. Syntax Chart for Output format

Conversion
specifications

Ordinary
character

format

Flag

Character other
than %

Ordinary
character

% h

l

d

i

o

u

x

X

c

s

p

n

f

e

E

g

G

%

L

Flag

–

Min. field width Digit

∗

Precision Digit.

∗

+

PrecisionMin. field widthConversion
specifications

Space

#

Conversion
specifications

Conversion
specifications

CHAPTER 10 LIBRARY FUNCTIONS

170

4-2 sscanf I/O Functions

[Function]

• Data is read in from the input string in accordance with format.

[Header file]

• stdio.h

[Function prototype]

• int sscanf (const char *s, const char *format, ...);

Function Name Argument Return Value

sscanf s - Pointer to input string

format - Pointer to string indicating the input

 conversion specification

... - (Zero or more) pointer arguments to objects that

input the converted value

If the s string is empty - ð1

If the s string is not empty

- Number of substituted input items

[Description]

• Input is from the string pointed to by s. The allowed input string is specified by the string pointed to by format.

The arguments after format are used as pointers to objects. format specifies how to convert the input string.

• If there are not enough arguments for format, the behavior is undefined. If there excess arguments, the

expression is evaluated, but nothing is input.

• format consists of zero or more directives. The directives are:

(1) One or more white space characters (characters where isspace is true)

(2) Ordinary characters (not %)

(3) Conversion specification

• A conversion specification begins with % followed in order by

• An optional assignment-suppressing character * (indicates no assignment to the argument)

• An optional decimal number specifying the maximum field width (no specification when 0)

• An optional h, l, or L (indicates the size of the object on the receiving side)

If h precedes the d, i, n, o, or x conversion specifier, the argument is not a pointer to int but to short int. If i

precedes these conversion specifiers, the argument is a pointer to long int.

Similarly, if h precedes the u conversion specifier, the argument is a pointer to unsigned short int. If i

precedes it, the argument is a pointer to unsigned long int.

CHAPTER 10 LIBRARY FUNCTIONS

171

4-2 sscanf I/O Functions

• If l precedes the e, E, f, g, or G conversion specifier, the argument is a pointer to double. (In the default

without l, the argument is a pointer to float.) If L precedes, it is ignored.

* Conversion specifier : Character indicating the type for the conversion (described later)

sscanf is executed in the order of the directives in format. If a directive fails, sscanf returns.

(1) A directive composed of white-space characters is executed by reading the input until the first non-white-

space character (which is not read) or no more characters can be read. If the white-space character

directive cannot find a non-white-space character, it fails.

(2) A directive composed of ordinary characters is executed by reading the next characters. If any of those

characters differ from the directive characters, the directive fails.

(3) A directive that is a conversion specification defines an input string that matches each conversion specifier

(described later). A conversion directive is executed in the following order.

• Input white-space characters (specified by isspace) are skipped, unless the conversion specifier is [, c, or

n.

• The input item is read from the s string, unless the conversion specifier is n. The input item is defined as

the longest input array in the beginning of the string specified by the conversion specifiers; however, if

the maximum field width is specified, the length is truncated. The next character in the input item

remains unread. If the length of the input item is zero, the execution of the directive fails.

• Except for the % conversion specifier, the input item (number of input characters for the %n directive) is

converted into the type determined by the conversion specifier. If the input item does not match the

format, the execution of the directive fails. Unless input is suppressed by *, the conversion result is

stored in the object that points to the first argument following the format that has not received a

conversion result.

The conversion specifiers are:

• d : Converts to a decimal integer (sign optional). The corresponding argument is a pointer to integer.

• i : Converts to an integer (sign optional). If the number begins with 0x or 0X, it is a hexadecimal integer. If

it begins with 0, it is an octal integer. Otherwise, it is a decimal integer. The corresponding argument is

a pointer to integer.

• o : Converts to an octal integer (sign optional). The corresponding argument is a pointer to integer.

• u : Converts to an unsigned decimal number. The corresponding argument is a pointer to an unsigned

integer.

CHAPTER 10 LIBRARY FUNCTIONS

172

4-2 sscanf I/O Functions

• x : Converts to a hexadecimal integer (sign optional).

• e, E, f, g, G : Floating-point number that consists of an optional sign (+ or ð), one or more consecutive

decimal digits that include a decimal point, an optional exponent (e or E), followed by an

optional signed integer. If the conversion result overflows, it becomes ±f. If it underflows, it

becomes an unnormalized number or ±0. The corresponding argument is a pointer to float.

• s : Input is from a non-white-space characters string. The corresponding argument is a pointer to integer.

0x or 0X can be prefixed to a hexadecimal integer. The corresponding argument is a pointer to an array

that is large enough to hold this string and the terminating null character. The terminating null character

is automatically added.

• [: A string is input from a set of expected characters (called the scanset). The corresponding argument is a

pointer to an array that is large enough to hold this string and the terminating null character. The

terminating null character is automatically added.

The conversion directive continues from the character after this one until the right bracket (]). The string

enclosed by the brackets (called the scanlist) forms the scanset except when the character following the

left bracket is a circumflex (^). The circumflex (^) means that the scanset consists of all characters other

than those after the circumflex and up to the right bracket in the scanlist. However, if it begins with [] or

[^], the right bracket is a part of the scanlist, and the next right bracket ends the scanlist. A hyphen (-)

anywhere but at the right or left end of the scanlist specifies a range.

If the ASCII code character to the left of the - is greater than that of the character to the right, the hyphen

is simply a character.

• c : A string composed of the number of characters specified by the field width (1 when not specified) is

input. The corresponding argument is a pointer to an array that is large enough to hold this string. A

terminating null character is not added.

• p : Converts an unsigned hexadecimal number. The corresponding argument is a pointer to a pointer to

void.

• n : Nothing is input from the s string. The corresponding argument is a pointer to integer. The number

characters already read from the s string by this function are stored in the object pointed to by this

pointer.

The %n directive is not included in the assignment count of the return value.

• % : Reads %. No conversions nor assignments are performed.

If a conversion directive is invalid, the directive fails.

If the terminating null character appears in the input string, sscanf returns.

If d, i, o, u, x, or p overflow during integer conversion, the part exceeding the number of bits of the type after

conversion are truncated.

The syntax chart for format is shown next.

CHAPTER 10 LIBRARY FUNCTIONS

173

4-2 sscanf I/O Functions

Figure 10-3. Syntax Chart for Input format

Directiveformat

scanlist

Max. field width

Directive

i ^]

o

u

x

s

 []

c

p

n

f

e

E

g

G

%

Conversion
specifier

Space

\f

\n

\r

\t

\v

Character other than % or white space
Ordinary

character

White-space character

Ordinary character

Conversion directive

% h

l

L

∗ Conversion
specifierMax. field widthConversion

specification

scanlist

d

Character
other than]

Character
other than]

Digit

CHAPTER 10 LIBRARY FUNCTIONS

174

4-3 printf I/O Functions

[Function]

• printf outputs data to SFR in accordance with the format.

[Header file]

• stdio.h

[Function prototype]

• int printf (const char *format, ...);

Function Name Argument Return Value

printf format - Pointer to the string indicating by the output

 conversion specification

... - Zero or more arguments to be converted

Number of characters output to s (terminating null

character is not counted)

[Description]

• The arguments (zero or more) following format are conversion in accordance with the output conversion

specification described by format and output by using the putchar function.

• The output conversion specification consists of zero or more directives. An ordinary character (not a

conversion specification beginning with %) is output unchanged by using putchar. The conversion

specification fetches successive arguments (zero or more), and then converts and outputs them by using the

putchar function.

• Each conversion specification is identical to the sprintf function.

CHAPTER 10 LIBRARY FUNCTIONS

175

4-4 scanf I/O Functions

[Function]

• Reads data in accordance with the format from SFR.

[Header file]

• stdio.h

[Function prototype]

• int scanf (const char *format, ...);

Function Name Argument Return Value

scanf format - Pointer to string indicating the input

 conversion specification

... - (Zero or more) pointer arguments to objects that

input the converted values

When the s string is not empty

- Number of assigned input items

[Description]

• The getchar function is used to perform input. The allowed input string is specified by the string pointed to by

format. The arguments after format are used as pointers to the objects. format specifies how to convert the

input string.

• When there are insufficient arguments for format, the behavior is undefined. If there are too many arguments,

the expression is evaluated, but is not input.

• The format consists of zero or more directives. The directives are

(1) One or more white-space characters (character where isspace is true)

(2) Ordinary characters (except %)

(3) Conversion directive

• If conversion is terminated by an input character that is invalid for the directive, the invalid input character is

discarded. The conversion directive is identical to the sscanf function.

CHAPTER 10 LIBRARY FUNCTIONS

176

4-5 vprintf I/O Functions

[Function]

• vprintf outputs data to SFR in accordance with the format.

[Header file]

• stdio.h

[Function prototype]

• int vprintf (const char *format, va_list p);

Function Name Argument Return Value

printf format - Pointer to string indicating the output

 conversion specification

p - Pointer to argument sequence

Number of characters output (terminating null

character is not counted)

[Description]

• The argument pointed to by the pointer in the argument sequence is converted in accordance with the output

conversion specification designated by format and output by using the putchar function.

• Each conversion specification is identical to the sprintf function.

CHAPTER 10 LIBRARY FUNCTIONS

177

4-6 vsprintf I/O Functions

[Function]

• vsprintf writes data to a string in accordance with the format.

[Header file]

• stdio.h

[Function prototype]

• int vsprintf (char *s, const char *format, va_list p);

Function Name Argument Return Value

printf s - Pointer to a string to be output

format - Pointer to the string designating the output

 conversion specification

p - Pointer to argument sequence

Number of characters output to s (terminating null

character not counted)

[Description]

• The arguments pointed to by the pointers in the argument sequence are output to the string pointed to by s in

accordance with the output conversion specification designated by format.

• The output conversion specification is identical to the sprintf conversion.

CHAPTER 10 LIBRARY FUNCTIONS

178

4-7 getchar I/O Functions

Function]

• One character is read from SFR.

[Header file]

• stdio.h

[Function prototype]

• int getchar (void);

Function Name Argument Return Value

getchar One character read from SFR

[Description]

• The value read from the SFR symbol P0 (port 0) is returned.

• No error checking is performed for the read.

• If the SFR to be read is changed, the source must be modified and registered again in the library, or the user

must create a new getchar function.

CHAPTER 10 LIBRARY FUNCTIONS

179

4-8 gets I/O Functions

[Function]

• Reads a string.

[Header file]

• stdio.h

[Function prototype]

• char *gets (char *s);

Function Name Argument Return Value

gets s - Pointer to input string If normal - s

If end-of-file is detected before any character is

read

- Null pointer

[Description]

• The string is read by the getchar function and stored in the array pointed to by s.

• When the end-of-file is detected (when getchar returns -1), or when a new line character is read, reading the

string ends. The new line character that was read is discarded and a null character is written after the last

character stored in the array.

• When correct, s returns.

• If the end of the file is detected before reading any characters in the array, the contents of the array are not

changed, and the null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

180

4-9 putchar I/O Functions

[Function]

• One character is output to SFR.

[Header file]

• stdio.h

[Function prototype]

• int putchar (int c);

Function Name Argument Return Value

putchar c - Output character Output character

[Description]

• The character specified by c in the SFR symbol P0 (port 0) is converted to unsigned char type and written.

• No error checking is performed for the read.

• If the SFR to be written is changed, the source must be modified and registered again in the library, or the

user must create a new putchar function.

CHAPTER 10 LIBRARY FUNCTIONS

181

4-10 puts I/O Functions

[Function]

• A string is output.

[Header file]

• stdio.h

[Function prototype]

• int puts (const char *s);

Function Name Argument Return Value

puts s - Pointer to the output string If normal - 0

If putchar returned ð1 - ð1

[Description]

• The putchar function is used to write the string pointed to by s. The new line character is added to the end of

the output.

• The terminating null character of the string is not written.

• If normal, 0 is returned. If putchar returned ð1, ð1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

182

5-1 atoi

atol Utility Functions

[Function]

• atoi converts a decimal constant string to int.

• atol converts a decimal constant string to long.

[Header file]

• stdlib.h

[Function prototype]

• int atoi (const char *nptr);

• long int atol (const char *nptr);

Function Name Argument Return Value

atoi nptr - Converted string If normal - Converted value

If a positive overflow occurs - INT_MAX(32767)

If a negative overflow occurs - INT_MIN(-32768)

If an invalid string - 0

atol If normal - Converted value

If a positive overflow occurs

- LONG_MAX(2147483647)

If a negative overflow occurs

- LONG_MIN(-2147483648)

If an invalid string - 0

[Description]

atoi

• The first part of the string pointed to by nptr is converted to int.

• An array of zero or more white-space characters (character where isspace is true) at the beginning is skipped.

The array of decimal digits following an optional sign after the next character (until a character other than a

decimal digit or a terminating null character appears) is converted to integer. If there are no decimal digits, 0

is returned. If an overflow occurs, INT_MAX(32767) is returned when positive, and INT_MIN(ð32768) is

returned when negative.

atol

• The first part of the string pointed to by nptr is converted to long.

• An array of zero or more white-space characters (character where isspace is true) at the beginning is skipped.

The array of decimal digits following an optional sign after the next character (until a character other than a

decimal digit or a terminating null character appears) is converted to integer. If there are no decimal digits, 0

is returned. If an overflow occurs, LONG_MAX(2147483647) is returned when positive, and LONG_MIN(ð

2147483648) is returned when negative.

CHAPTER 10 LIBRARY FUNCTIONS

183

5-2 strtol

strtoul Utility Functions

[Function]

• strtol converts a string to long.

• strtoul converts a string to unsigned long.

[Header file]

• stdlib.h

[Function prototype]

• long int strtol (const char *nptr, char **endptr, int base);

• unsigned long int strtoul (const char *nptr, char **endptr, int base);

Function Name Argument Return Value

strtol nptr - Converted string

endptr - Pointer storing the pointer to the

unrecognizable part

base - Specified base

If normal - Converted value

If a positive overflow occurs

- LONG_MAX(2147483647)

If a negative overflow occurs

- LONG_MIN(-2147483648)

If not converted - 0

strtoul If normal - Converted value

If an overflow occurs

- ULONG_MAX(4294967295U)

If not converted - 0

[Description]

strtol

• The string pointed to by nptr is decomposed into these three parts.

(1) White-space string (specified by isspace) even if empty

(2) Integer expression in the base set by the value in base

(3) Sequence of one or more unrecognized characters (including terminating null character)

The string in (2) is converted to integer and the result is returned.

• If base is 0, a C numerical expression is interpreted (0x- or 0X- (hexadecimal number), 0- (octal number), digit

other than 0 (decimal number), a sign is optional).

• If base is 2 to 36, it becomes the base (can begin with a sign). a (or A) to z (or Z) represents 10 to 35. If the

base is 16, 0x or 0X may follow the sign (if present).

• The pointer to the string in (3) (if endptr is not a null pointer) is stored in the object pointed to by endptr.

• If there is positive overflow, LONG_MAX(2147483647) is returned. If there is negative overflow, LONG_MIN(ð

2147483648) is returned. ERANGE(2) is set in errno.

• If the string in (2) is empty or does not have the expected format, without performing any conversion, the

pointer to the string is stored in the object pointed to by endptr (if endptr is not a null pointer), and 0 is

returned. This is similar to the cases where the base is not 0 or 2 to 36.

CHAPTER 10 LIBRARY FUNCTIONS

184

5-2 strtol

strtoul Utility Functions

strtoul

• The string pointed to by nptr is decomposed into three parts.

(1) White-space character string (specified by isspace) even if empty

(2) Integer expression in the base set by the value in base

(3) Sequence of one or more unrecognized characters (including terminating null character)

The string in (2) is converted to unsigned integer and the result is returned.

• If base is 0, a C numerical expression is interpreted (0x- or 0X- (hexadecimal number), 0- (octal number), digit

other than 0 (decimal number)).

• If base is 2 to 36, it becomes the base. a (or A) to z (or Z) represents by 10 to 35. If the base is 16, 0x or 0X

may be added.

• The pointer to the string in (3) (if endptr is not a null pointer) is stored in the object pointed to by endptr.

• If there is overflow, ULONG_MAX(4294967295U) is returned. ERANGE(2) is set in errno.

• If the string in (2) is empty or does not have the expected format, without performing any conversion, the

pointer to the string is stored in the object pointed to by endptr (if endptr is not a null pointer), and 0 is

returned. This is similar to the cases where the base is not 0 or 2 to 36.

CHAPTER 10 LIBRARY FUNCTIONS

185

5-3 calloc Utility Functions

[Function]

• calloc allocates an array space and initializes it to 0.

[Header file]

• stdlib.h

[Function prototype]

• void *calloc (size_t nmemb, size_t size);

Function Name Argument Return Value

calloc nmemb - Number of objects in the array

size - Size of the array

If allocated

- Pointer to the beginning of the allocated

space

If not allocated - Null pointer

[Description]

• Space for nmemb objects is allocated in the array of size bytes and initialized to 0.

• The pointer to the beginning of the allocated space is returned.

• If space is not allocated, the null pointer is returned.

• Allocation begins at the break value. The address following the allocated space becomes the new break

value. The break value is specified by brk. For information on brk, see “5-11 brk. ”

CHAPTER 10 LIBRARY FUNCTIONS

186

5-4 free Utility Functions

[Function]

• Frees an allocated block.

[Header file]

• stdlib.h

[Function prototype]

• void free (void *ptr);

Function Name Argument Return Value

free ptr - Pointer to the beginning of the block to be freed None

[Description]

• Space allocated (up to the break value) from the space pointed to by ptr is freed. (Calling malloc, calloc, or

realloc after free allocates space from ptr.)

• If ptr does not point to allocated space, nothing happens. (Freeing is performed by setting ptr to a new break

value.)

CHAPTER 10 LIBRARY FUNCTIONS

187

5-5 malloc Utility Functions

[Function]

• malloc allocates a block.

[Header file]

• stdlib.h

[Function prototype]

• void *malloc (size_t size);

Function Name Argument Return Value

malloc size - Size of the allocated block If allocated

- Pointer to the beginning of the allocated

space

If not allocated - Null pointer

[Description]

• Space having size bytes is allocated. The pointer to the beginning of the allocated space is returned.

• If nothing is allocated, the null pointer is returned.

• Allocation begins at the break value. The address following the allocated space becomes the new break

value. The break value is specified by brk. For information on brk, see “5-11 brk .”

CHAPTER 10 LIBRARY FUNCTIONS

188

5-6 realloc Utility Functions

[Function]

• realloc reallocates a block.

[Header file]

• stdlib.h

[Function prototype]

• void *realloc (void *ptr, size_t size);

Function Name Argument Return Value

realloc ptr - Pointer to the beginning of the block to be

reallocated

size - Size of the block being reallocated

If reallocated

- Pointer to the beginning of the reallocated

 space

If allocated with ptr that is a null pointer

- Pointer to the beginning of the allocated

 space

If reallocation or allocation is not possible

- Null pointer

[Description]

• This size of the space allocated from the space pointed to by ptr (until the break value) changes to size. The

contents are not changed in the smaller of the space to be allocated and the allocated space to be reallocated.

If the size is increased, the additional part is allocated. If decreased, the reduced part is freed.

• If ptr is a null pointer, a new space specified by size is allocated (same as malloc).

• If ptr does not point to the allocated space, or nothing is allocated, the null pointer is returned without doing

anything.

• Reallocation makes the address of size bytes added to ptr the new break value.

CHAPTER 10 LIBRARY FUNCTIONS

189

5-7 abort Utility Functions

[Function]

• abort aborts the program.

[Header file]

• stdlib.h

[Function prototype]

• void abort (void);

Function Name Argument Return Value

abort None Does not return.

[Description]

• Does not loop and return.

• The user creates abort processing.

CHAPTER 10 LIBRARY FUNCTIONS

190

5-8 atexit

exit Utility Functions

[Function]

• atexit registers the function to be called upon normally exiting a program.

• exit terminates a program

[Header file]

• stdlib.h

[Function prototype]

• int atexit (void (*func)(void));

• void exit (int status);

Function Name Argument Return Value

atexit func - Pointer to the function to be registered If function registration was successful - 0

If the function cannot be registered - 1

exit status - Value indicating the exit status Does not return.

[Description]

atexit

• atexit registers that the function pointed to by func is called without arguments when the program exits

normally.

• Up to 32 functions can be registered. If registration was successful, 0 is returned. If 32 functions are

registered and no more can be registered, 1 is returned without any registration.

exit

• exit terminates the program normally.

• The functions registered initially by atexit are called in reverse order of registration.

• Does not loop and return.

• The user writes the exit processing.

CHAPTER 10 LIBRARY FUNCTIONS

191

5-9 abs

labs Utility Functions

[Function]

• abs determines the absolute value of a value of type int.

• labs determines the absolute value of a value of type long.

[Header file]

• stdlib.h

[Function prototype]

• int abs (int j);

• long int labs (long int j);

Function Name Argument Return Value

abs j - Value whose absolute value is taken If ð32767 d j d 32767 - Absolute value of j

If j is ð32768 - ð32768 (0x8000)

labs If ð2147483647 d j d 2147483647

- Absolute value of j

If j is ð2147483648

- ð2147483648 (0x80000000)

[Description]

abs

• abs determines the absolute value of the value of j (int type).

• If j is -32768, -32768 is returned.

labs

• labs determines the absolute value of the value of j (long type).

• If j is -2147483648 -2147483648 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

192

5-10 div

ldiv Utility Functions

[Function]

• div performs division on type int to find the quotient and remainder.

• ldiv performs division on type long to find the quotient and remainder.

[Header file]

• stdlib.h

[Function prototype]

• div_t div (int numer, int denom);

• ldiv_t ldiv (long int numer, long int denom);

Function Name Argument Return Value

div numer - Numerator

denom - Denominator

The quotient is returned in member quot and the

remainder in rem in type div_t.

ldiv The quotient is returned in member quot and the

remainder in rem in type ldiv_t.

[Description]

div

• div determines the quotient and remainder of numer divided by denom.

• The absolute value of the quotient is the maximum integer less than the absolute value of the numerator

divided by the absolute value of the denominator. The sign is the same as the number (positive when the

signs of both numer and denom are positive, negative when they differ).

• The remainder is the value of the numer - denom * quotient.

• If denom is 0, the quotient is 0 and the remainder is numer.

• If numer is ð32768 and denom is ð1, the quotient is 32768 and the remainder is 0.

ldiv

• ldiv determines the quotient and remainder of numer divided by denom.

• The absolute value of the quotient is the maximum integer (type long int) less than the absolute value of the

numer divided by the absolute value of the denom. The sign is the same as the number (positive when the

signs of both numer and denom are positive, negative when they differ).

• The remainder is the value of the numer - denom * quotient.

• If denom is 0, the quotient is 0 and the remainder is numer.

• If numer is ð2147483648 and denom is ð1, the quotient is 2147483648 and the remainder is 0.

CHAPTER 10 LIBRARY FUNCTIONS

193

5-11 brk

sbrk Utility Functions

[Function]

• brk sets the break value.

• sbrk increments or decrements the break value.

[Header file]

• stdlib.h

[Function prototype]

• int brk (char *endds);

• char *sbrk (int incr);

Function Name Argument Return Value

brk endds - Break value to be set If normal - 0

If break value cannot be changed - ð1

sbrk incr - Amount to increase or decrease the break value If normal - Former break value

If the break value cannot be increased or

decreased - ð1

[Description]

brk

• brk sets the value given by endds to the break value.

• If endds is outside the scope, the break value is not changed and ENOMEM(3) is set in errno.

sbrk

• sbrk increases or decreases the break value by incr bytes (based on the sign of incr).

• If the break value after the increase or decrease is outside the scope, the break value does not change and

ENOMEM(3) is set in errno and ð1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

194

5-12 itoa

ltoa

ultoa Utility Functions

[Function]

• itoa converts int to a string.

• ltoa converts long to a string.

• ultoa converts unsigned long to a string.

[Header file]

• stdlib.h

[Function prototype]

• char *itoa (int value, char *string, int radix);

• char *ltoa (long value, char *string, int radix);

• char *ultoa (unsigned long value, char *string, int radix);

Function Name Argument Return Value

itoa

ltoa

ultoa

value - Value being converted

string - Pointer to the conversion result

radix - Specified base

If normal - Pointer to the converted string

Otherwise - Null pointer

[Description]

itoa, ltoa, ultoa

• The specified number value is converted into a string terminated by a null character. The result is stored in

the space pointed to by string. Conversion is performed with the specified base radix. The pointer to the

converted string is returned.

• radix must be in the range from 2 to 36. Otherwise, conversion is not performed and the null pointer is

returned.

CHAPTER 10 LIBRARY FUNCTIONS

195

5-13 rand

srand Utility Functions

[Function]

• rand generates a pseudo-random number.

• srand seeds the generation status for the pseudo-random numbers.

[Header file]

• stdlib.h

[Function prototype]

• int rand (void);

• void srand (unsigned int seed);

Function Name Argument Return Value

rand None Pseudo-random number in the range from 0 to

RAND_MAX

srand seed - Initial value for the generation status for

pseudo-random numbers

None

[Description]

rand

• rand generates a pseudo-random number in the range from 0 to RAND_MAX.

srand

• srand seeds the generation status for pseudo-random numbers. The seed is used as the value that becomes

the base for the sequence of pseudo-random numbers that is returned when the rand function is called. For

the same seed values, the sequence of pseudo-random numbers does not change even if srand is called

again.

• If rand is called without calling srand, it is identical to calling rand after calling srand with seed=1.

CHAPTER 10 LIBRARY FUNCTIONS

196

5-14 bsearch Utility Functions

[Function]

• bsearch performs a binary search.

[Header file]

• stdlib.h

[Function prototype]

• void *bsearch (const void *key, const void *base, size_t nmemb, size_t size, int (*compare)(const void*, const

void*));

Function Name Argument Return Value

bsearch key - Pointer to the search value

base - Pointer to the search array

nmemb - Number of array objects

size - Size of one object in the array

compare - Function that compares the key to the array

objects and returns their relationship

If the array object matches

- Pointer to the first array object that matched

If no array object matches - Null pointer

[Description]

• A binary search is performed on the array pointed to by the base pointer for the object pointed to by key. The

array pointed to by the base pointer is the array whose nmemb objects having size for the size and sorted in

ascending order.

• The compare function compares the object pointed to by key and an array object. The relationship is returned

by one of the following values. The first argument of compare is key and the second is the array object.

Less than 0 - Object pointed to by key is smaller

0 - Both elements are equal

Greater than 0 - Object pointed to by key is larger

CHAPTER 10 LIBRARY FUNCTIONS

197

5-15 qsort Utility Functions

[Function]

• qsort performs a quick sort.

[Header file]

• stdlib.h.

[Function prototype]

• void qsort (void *base, size_t nmemb, size_t size, int (*compare)(const void*, const void*));

Function Name Argument Return Value

qsort base - Pointer to the array to be sorted

nmemb - Number of array objects

size - Size of one object in the array

compare - Function that compares two array objects

and returns their relationship

None

[Description]

• A quick sorts an array pointed to by the base pointer in ascending order. The array pointed to by the base

pointer is an array of nmemb objects having the size of size.

• The compare function compares two array elements (array elements 1 and 2), and their relationship is

returned by one of the following values.

• The first augument of the compare function is array element 1 and the second augument, array element 2.

Less than 0 - The first array element is smaller.

0 - The elements are equal.

Greater than 0 - The first array element is larger.

• If the array elements are equal, the one closest to the beginning of the array is first.

CHAPTER 10 LIBRARY FUNCTIONS

198

5-16 strbrk Utility Functions

[Function]

• Sets the break value.

[Header file]

• stdlib.h

[Function prototype]

• int strbrk (char *endds);

Function Name Argument Return Value

strbrk endds - Break value to be set If normal - 0

If the break value cannot be changed - ð1

[Description]

• The value given by endds is set to the break value (address following the last address in the allocated space)

• When endds is outside the allowable range, the break value is not changed, ENOMEM(3) is set in errno, and ð

1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

199

5-17 strsbrk Utility Functions

[Function]

• The break value is increased or decreased.

[Header file]

• stdlib.h

[Function prototype]

• char *strsbrk (int incr);

Function Name Argument Return Value

strsbrk incr - Increase or decrease in the break value If normal - Prior break value

If the break value cannot be increased or

decreased - ð1

[Description]

• The break value is increased or decreased by incr bytes (depending on the sign of incr).

• If the break value after the increase or decrease is outside the scope, ENOMEM(3) is set in errno without

changing the break value, and ð1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

200

5-18 stritoa

strltoa

strultoa Utility Functions

[Function]

• stritoa converts int to a string.

• strltoa converts long to a string.

• strultoa converts unsigned long to a string.

[Header file]

• stdlib.h

[Function prototype]

• char *stritoa (int value, char *string, int radix);

• char *strltoa (long value, char *string, int radix);

• char *strultoa (unsigned long value, char *string, int radix);

Function Name Argument Return Value

stritoa

strltoa

strultoa

value - String to be converted

string - Pointer to the conversion result

radix - Specified radix

If normal - Pointer to the converted string

Otherwise - Null pointer

[Description]

stritoa, strltoa, strultoa

• The specified number value is converted into a null-terminated string. The result is stored in the area pointed

to by string. The conversion is performed with the specified base radix and returns the pointer to the

converted string.

• radix must be in the range from 2 to 36. Otherwise, the null pointer is returned without any conversion.

CHAPTER 10 LIBRARY FUNCTIONS

201

6-1 memcpy

memmove String/Memory Functions

[Function]

• memcpy copies the specified number of characters in one buffer to another.

• memmove copies the specified number of characters in one buffer to another (even if the buffers overlap, the

operation is correct).

[Header file]

• string.h

[Function prototype]

• void *memcpy (void *s1, const void *s2, size_t n);

• void *memmove (void * s1, const void *s2, size_tn);

Function Name Argument Return Value

memcpy

memmove

s1 - Pointer to the first object in the copy destination

s2 - Pointer to the first object in the copy source

n - Specified number of characters

s1 value

[Description]

memcpy

• memcpy copies n characters in the object pointed to by s2 to the object pointed to by s1.

• If s2 < s1 < s2+n, the behavior is undefined (since copying is in order from the beginning).

memmove

• memmove copies n characters in the object pointed to by s2 to the object pointed to by s1.

• If the objects pointed to by s1 and s2 overlap, the behavior is correct.

CHAPTER 10 LIBRARY FUNCTIONS

202

6-2 strcpy

strncpy String/Memory Functions

[Function]

• strcpy copies a string.

• strncpy copies the specified number of characters from the beginning of the string.

[Header file]

• string.h

[Function prototype]

• char *strcpy (char *s1, const char *s2);

• char *stmcpy (char *s1, const char *s2, size_t n);

Function Name Argument Return Value

strcpy

strncpy

s1 - Pointer to the copy destination string

s2 - Pointer to the copy source string

n - Number of characters to be copied

s1 value

[Description]

strcpy

• strcpy copies the string pointed to by s2 (including the terminating null character) to the string pointed to by s1.

• If s2 < s1 d s2+ (length of the string to be copied), the behavior is undefined (because copying is in order from

the beginning).

strncpy

• strncpy copies n characters in the string pointed to s2 to the string pointed to by s1.

• If s2 < s1 d (minimum of s2 + length of the string to be copied, or s2 + n ð 1), the behavior is undefined

(because copying is in order from the beginning).

• If the string pointed to by s2 is less than n characters, copying stops at the terminating null character. If there

are n or more characters, the first n characters are copied and the terminating null character is not copied.

CHAPTER 10 LIBRARY FUNCTIONS

203

6-3 strcat

strncat Character String/Memory Functions

[Function]

• strcat appends a string to another string.

• strncat appends the specified number of characters of a string to another string.

[Header file]

• string.h

[Function prototype]

• char *strcat (char *s1, const char *s2);

• char *strncat (char *s1, const char *s2, size_t n);

Function Name Argument Return Value

strcat

strncat

s1 - Pointer to the destination array

s2 - Pointer to the source array

n - Number of appended characters

s1 value

[Description]

strcat

• strcat copies the string pointed to by s2 (including the terminating null character) to the end of the string

pointed to by s1. The first character in s2 overwrites the null character in s1.

• If overlapping objects are copied, the behavior is undefined.

strncat

• strncat appends n characters in the string pointed to by s2 (not including the terminating null character) to the

end of the string pointed to by s1. The first character in s2 overwrites the terminating character in s1.

• If the string pointed to by s2 is less than n characters, appending ends at the terminating null character. If n or

more characters, the first n characters are appended.

• A terminating null character is always appended.

• If overlapping objects are copied, the behavior is undefined.

CHAPTER 10 LIBRARY FUNCTIONS

204

6-4 memcmp Character String/Memory Functions

[Function]

• memcmp compares the specified characters in two buffers.

[Header file]

• string.h

[Function prototype]

• int memcmp (const void *s1, const void *s2, size_tn);

Function Name Argument Return Value

memcmp s1 - Pointer to a comparison object

s2 - Pointer to a comparison object

n - Number of characters to be compared

If s1 and s2 have n equal characters - 0

If some of the n characters in s1 and s2 differ -

- Difference between the first differing

 characters converted to int (s1 character ð s2

 character)

[Description]

• n characters in the object pointed to by s1 and the object pointed to by s2 are compared.

• If the n characters in s1 and s2 are equal, 0 is returned.

• If characters differ in the n characters in s1 and s2, the difference between the first differing characters

converted to int (s1 character ð s2 character) is returned.

CHAPTER 10 LIBRARY FUNCTIONS

205

6-5 strcmp

strncmp Character String/Memory Functions

[Function]

• strcmp compares two strings.

• strncmp compares the specified portions of two strings.

[Header file]

• string.h

[Function prototype]

• int strcmp (const char *s1, const char *s2);

• int stmcmp (const char *s1, const char *s2, size_t n);

Function Name Argument Return Value

strcmp s1 - Pointer to a comparison string

s2 - Pointer to a comparison string

If strings s1 and s2 are equal - 0

If strings s1 and s2 differ

- Difference between the first differing

 characters converted to int (s1 character ð s2

 character)

stmcmp s1 - Pointer to a comparison string

s2 - Pointer to a comparison string

n - Number of characters to be compared

If n characters in strings s1 and s2 are equal - 0

If there are differences in the n characters in strings

s1 and s2

- Difference between the first differing

 characters converted to int (s1 character ð s2

 character)

[Description]

strcmp

• strcmp compares a string pointed to by s1 to a string pointed to by s2.

• If strings s1 and s2 are equal, 0 is returned. If strings s1 and s2 differ, the difference between the first differing

characters (character in s1 ð character in s2), that has been converted to int, is returned.

strncmp

• strncmp compares n characters in strings s1 and s2.

• If n characters in strings s1 and s2 are equal, 0 is returned. If there are differences in the n characters in

strings s1 and s2, the difference between the first differing characters (character in s1 ð character in s2), that

has been converted to int, is returned.

CHAPTER 10 LIBRARY FUNCTIONS

206

6-7 memchr Character String/Memory Functions

[Function]

• memchr searches for the specified character in a buffer having the specified number of characters.

[Header file]

• string.h

[Function prototype]

• void *memchr (const void *s, int c, size_t n);

Function Name Argument Return Value

memchr s - Pointer to the object to be searched

c - Specified character

n - Number of characters in the object to be searched

If the character c is present

- Pointer to the first occurrence of the character

 c

If the character c is not present - Null pointer

[Description]

• Returns the pointer to the position of the first occurrence of c (converted to unsigned char) in first n characters

of the object pointed to by s.

• If not found, the null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

207

6-8 strchr

strrchr Character String/Memory Functions

[Function]

• strchr searches for the specified character in the string and returns the location of the first occurrence.

• strrchr searches for the specified character in the string and returns the location of the last occurrence.

[Header file]

• string.h

[Function prototype]

• char *strchr (const char *s, int c);

• char *strrchr (const char *s, int c);

Function Name Argument Return Value

strchr

strrchr

s - Pointer to the string to be searched

c - Specified character

If the character c is in the s string

- Pointer to the character c found first or last in

 the s string

If the character c is not in string s - Null pointer

[Description]

strchr

• strchr determines the location of the first occurrence of c (converted to char type) in the string pointed to by s

and returns its pointer.

• The terminating null character is regarded as a part of the string.

• If the character c is not in string s, the null pointer is returned.

strrchr

• strrchr determines the location of the last occurrence of c (converted to char type) in the string pointed to by s

and returns its pointer.

• The terminating null character is regarded as a part of the string.

• If the character c is not in the s string, the null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

208

6-9 strspn

strcspn Character String/Memory Functions

[Function]

• strspn determines the length from the beginning of a part that consists only of the characters in the specified

string in the string to be searched.

• strcspn determines the length from the beginning of a part that consists of the characters not in the specified

string in the string to be searched.

[Header file]

• string.h

[Function prototype]

• size_t strspn (const char *s1, const char *s2);

• size_t strcspn (const char *s1, const char *s2);

Function Name Argument Return Value

strspn s1 - Pointer to the string to be searched Length of the part consisting only of the characters

specified by s2 in string s1

strcspn s2 - Pointer to the string indicating the specified string Length of the part consisting of the characters not

specified by s2 in string s1

[Description]

strspn

• strspn returns the length of the part consisting only of the characters included in the string pointed to by s2 in

the string pointed to by s1.

• The terminating null character in s2 is not considered as a part of s2.

strcspn

• strcspn returns the length of the part not consisting of the characters included in the string pointed to by s2 in

the string pointed to by s1.

• The terminating null character in s2 is not considered as a part of s2.

CHAPTER 10 LIBRARY FUNCTIONS

209

6-10 strpbrk Character String/Memory Functions

[Function]

• strpbrk finds the location of the first occurrence of any character in the specified string in the string being

searched.

[Header file]

• string.h

[Function prototype]

• char *strpbrk (const char *s1, const char *s2);

Function Name Argument Return Value

strpbrk s1 - Pointer to the string to be searched

s2 - Pointer to the string indicating the specified

character

If any character in string s2 is in string s1

- Pointer to the first occurrence in string s1 of

 any character in string s2

If the character in string s2 is not in string s1

- Null pointer

[Description]

• Determines the location of the first occurrence in the string pointed to by s1 of any character in the string

pointed to by s2 and returns its pointer.

• If no character in string s2 is in string s1, the null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

210

6-11 strstr Character String/Memory Functions

[Function]

• strstr determines the location of the first occurrence of the specified string in the string to be searched.

[Header file]

• string.h

[Function prototype]

• char *strstr (const char *s1, const char *s2);

Function Name Argument Return Value

strstr s1 - Pointer to the string to be searched

s2 - Pointer to the specified string

If s2 string is in string s1

- Pointer to the first location where s2 string

 first occurs in string s1

If s2 string is not in string s1 - Null pointer

If s2 is an empty string - Value of s1

[Description]

• Returns the pointer to the first location where the string pointed to by s2 (except the terminating null character)

exactly matches the string pointed to by s1.

• If the s2 string is not in the s1 string, the null pointer is returned.

• If s2 points to an empty string, the value of s1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

211

6-12 strtok Character String/Memory Functions

[Function]

• A string is broken into strings composed of characters which are not delimiters.

[Header file]

• string.h

[Function prototype]

• char *strtok (char *s1, const char *s2);

Function Name Argument Return Value

strtok s1 - Pointer to the string to be separated or the null

pointer

s2 - Pointer to the string indicating the delimiting

characters of the tokens

If a token - Pointer to the first character in the token

If not a token - Null pointer

[Description]

• A token is a string composed of characters other than the delimiting characters in the specified string.

• If s1 is a null pointer, the string pointed to by the pointer saved in the previous strtok call becomes the string to

be separated. However, if the saved pointer is the null pointer, nothing is done and the null pointer is

returned.

• If s1 is not a null pointer, the string pointed to by s1 is the string to be separated.

• A character not included in the string pointed to by s2 is searched for in the string to be separated. If not

found, the saved pointer becomes the null pointer, and the null pointer is returned. If found, that character

becomes the first character in the token.

• If the first character of the token is found, the characters in the s2 string are searched for after the first

character in the token. If none is found, the saved pointer becomes the null pointer. If any is found, the null

pointer is written at that character position. The pointer to the next character becomes the saved pointer.

• The pointer to the first character of the token is returned.

CHAPTER 10 LIBRARY FUNCTIONS

212

6-13 memset Character String/Memory Functions

[Function]

• memset initializes the specified number of characters in the buffer to the specified characters.

[Header file]

• string.h

[Function prototype]

• void *memset (void *s, int c, size_t n);

Function Name Argument Return Value

memset s - Pointer to the object to be initialized

c - Specified character

n - Number of specified characters

Value of s

[Description]

• The value of c (converted to unsigned char) is copied into the first n characters in the object pointed to by s.

CHAPTER 10 LIBRARY FUNCTIONS

213

6-14 strerror Character String/Memory Functions

[Function]

• strerror returns a pointer to the space that saves the error message corresponding to the specified error

number.

[Header file]

• string.h

[Function prototype]

• char *strerror (int errnum);

Function Name Argument Return Value

strerror errnum - Error number If there is an error corresponding to the error

number - Pointer to the error message string

If there is no error corresponding to the error

number - Null pointer

[Description]

• A pointer to the next string corresponding to the errnum value is returned.

0 - “Error 0”

1 (EDOM) - “Argument too large”

2 (ERANGE) - “Result too large”

3 (ENOMEM) - “Not enough memory”

Otherwise, the null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

214

6-15 strlen Character String/Memory Functions

[Function]

• Determines the length of the string.

[Header file]

• string.h

[Function prototype]

• size_t strlen (const char *s);

Function Name Argument Return Value

strlen s - Pointer to the string Length of the s string

[Description]

• The number of characters in the string pointed to by s is returned. The number of characters is the number

from the character beginning the string to the character preceding the terminating null character.

CHAPTER 10 LIBRARY FUNCTIONS

215

6-16 strcoll Character String/Memory Functions

[Function]

• A string is copied.

[Header file]

• string.h

[Function prototype]

• int strcoll (const char *s1, const char *s2);

Function Name Argument Return Value

strcoll s1 - Pointer to a comparison string

s2 - Pointer to a comparison string

If strings s1 and s2 are equal - 0

If strings s1 and s2 differ

- Difference between the first differing

 characters converted to int

 (s1 character ð s2 character)

[Description]

• The operation is identical to strcmp.

CHAPTER 10 LIBRARY FUNCTIONS

216

6-17 strxfrm Character String/Memory Functions

[Function]

• The string is transformed based on unique area information.

[Header file]

• string.h

[Function prototype]

• size_t strxfrm (char *s1, const char *s2, size_t n);

Function Name Argument Return Value

strxfrm s1 - Pointer to a comparison string

s2 - Pointer to a comparison string

n - Maximum number of characters entered in s1

Returns the length of the transformed string (not

including the terminating null character)

If the return value is N or greater, the contents of

the array pointed to by s1 is undefined.

[Description]

• This operation is identical to the following.

strncpy (s1, s2, c);

return (strlen (s2));

CHAPTER 10 LIBRARY FUNCTIONS

217

7-1 matherr Mathematical Functions

[Function]

• Processes the exceptions of the library that handles floating-point numbers.

[Header file]

• math.h

[Function prototype]

• void matherr (struct exception *x);

Function Name Argument Return Value

matherr struct exception {

 int type;

 char *name;

}

type - Value indicating the exception type

name - Function name

None

[Description]

• This function is called when an exception occurs in the standard library and run-time library that handle

floating-point numbers.

• If called from the standard library, EDOM or ERANGE is set in errno. This table shows the relationship

between the exception type and errno.

type Exception Type Value Set in errno

1

2

3

4

5

Underflow

Loss of significance

Overflow

Division by zero

Cannot compute

ERANGE

ERANGE

ERANGE

EDOM

EDOM

Modifying or creating matherr enables a special error processing.

CHAPTER 10 LIBRARY FUNCTIONS

218

8-1 _ _assertfail Diagnostic Function

[Function]

• The _ _assertfail function receives information from the assert macro, calls the printf function, outputs

information, and calls up the abort funtion.

[Header file]

• assert.h

[Function prototype]

• int _ _assertfail (char* _ _msg, char* _ _cond, char* _ _file, int _ _line);

Function Name Argument Return Value

_ _assertfail _ _ msg - Pointer to the string designating the output

conversion specification to be passed to

the printf function

_ _cond - Argument of the assert macro

_ _file - Source file name

_ _line - source line number

Undefined

[Description]

• The assert macro adds a diagnostic function to the program. When the assert macro is executed, if p is false

(in other words, equal to 0), the assert macro passes information concerning a specific call that has produced

a false value to _ _assertfail (this information includes the text of the argument, the source file name and the

source line number. The last two items are the values of macro_ _FILE and _ _ LINE _ _, respectively).

219

CHAPTER 11 EXTENDED FUNCTIONS

This chapter describes the extended functions unique to this C compiler that do not conform to the American

National Standards Institute (ANSI) standard.

The extended functions of this C compiler generate code to effectively use the 78K/0 Series, the target device.

A C source program that uses the extended functions of this C compiler will use functions that depend on the

microprocessor, but is compatible at the C language level for porting to other microprocessors. Therefore, programs

can be ported to other microprocessors by making simple revisions to the C source program that uses extended

functions.

11.1 Macro Names

This C compiler has the two types of macro names; one indicates the name of the device series for the target

device and the other indicates the device name. To output object code for the target device, these names are set by

the compilation options or the device type in the C source.

For details on macro names, see Section 9.9 “Compiler Definition Macro Names .”

11.2 Keywords

This C compiler utilizes the following tokens as keywords for extended functions. The entire keyword is described

in lowercase letters. If it contains uppercase letters, the word is no longer regarded as a keyword.

Table 11-1. Additional Keywords

Reserved Words Application

callt callt and _ _callt functions

_ _callt

callf callf and _ _callf functions

_ _callf

sreg sreg and _ _sreg variables

_ _sreg

noauto noauto Function

norec norec and _ _leaf functions

_ _leaf

bit bit, boolean, and _ _boolean type variables

boolean

_ _boolean

_ _interrupt Hardware interrupt

_ _interrupt_brk* Software interrupt

_ _banked1 to 15* Bank functions

_ _rtos_interrupt* RTOS handler

* To be compatible with CC78K0, these tokens are reserved words. However, they are not supported as

functions.

CHAPTER 11 EXTENDED FUNCTIONS

220

(1) Functions

callt, noauto, and norec are qualifier attributes. These are described at the beginning of the function declaration.

The syntax for a qualified declarator is

qualifier-attribute usual-declarator function-name

The settings for a qualifier attribute are limited to the following. (noauto and norec cannot be simultaneously

specified.) Also, these declarations cannot be made in other functions. Qualifier attributes prefixed by ‘_ _’ are

enabled even when the -ZA option is specified.

• callt/_ _callt

• noauto

• norec/_ _leaf

• callt noauto

• callt norec/_ _leaf

• noauto callt

• norec/_ _leaf callt

• _ _interrupt

(2) Variables

• sreg and _ _sreg are specified in the same way as register in the C language. (For details on sreg, see

Section 11.4 “(3) Using saddr space .”)

• bit, boolean, and _ _boolean types are specified in the same way as char or int type specifiers in the C

language.

11.3 Memory

The memory model is determined by the memory space of the target device.

(1) Memory models

The 64-Kbyte model combines the code segment and the data segment.

(2) Register banks

• No register banks

CHAPTER 11 EXTENDED FUNCTIONS

221

(3) Memory space

This C compiler uses the memory space in the following way.

Table 11-2. Memory Space Use (for Normal Model)

Address Application Size (bytes)

00 40 to 7FH CALLT table 64

FE 20 to D7H sreg variable, boolean type variable 184

FE D8 to E7H register variables
(Note 1)

16

FE E8 to EFH Arguments of norec function
(Note 2)

8

FE F0 to F7H Automatic variables of norec function
(Note 3)

8

FE F8 to FFH Arguments of runtime library
(Note 4)

8

FF 00 to FFH sfr variable 256

Table 11-3. Memory Space Use (for Static Model)

00 40 to 7FH CALLT table 64

FE 20 to EFH sreg variable, boolean type variable 208

FE F0 to FFH Common area
(Note 5)

16

FF 00 to FFH sfr variable 256

Notes 1 . The areas not used as register variable areas are used as sreg variable and Boolean type variable

areas.

2. If no register variables were used, areas not used as norec argument areas are used as sreg variable

and Boolean variable areas.

3. If no register variables and norec arguments were used, areas not used as norec automatic variable

areas are used as sreg variable and Boolean type variable areas.

4. If no register variable, norec arguments nor automatic variables were used, areas not used as run-time

library argument areas are used as sreg variable and Boolean variable areas.

5. The area used by the compiler via the -SM option parameter is modified.

Moreover, when the register variable optimize option (-QR) is not specified, areas described in notes 1 to 3 are

always used as sreg variable and Boolean variable areas.

CHAPTER 11 EXTENDED FUNCTIONS

222

11.4 Using Extended Functions

Each extended function is described in the following order.

Function : Describes the function implemented by the extended function.

Effect : Describes the effect obtained by the extended function.

Procedure : Describes how to use the extended function.

Limits : Describes the limits when an extended function is used.

Example : Illustrates an example using the extended function.

Description : Explains the example.

Compatibility : When a C source program developed using another C compiler is compiled by this C

compiler, the compatibility of the C source program is described.

CHAPTER 11 EXTENDED FUNCTIONS

223

(1) callt [Function]

callt function callt/_ _callt

[Function]

• The callt instruction stores the address of the called function in the area called the callt table. The function

can be called in more compact code than by directly calling the function.

• When calling a function declared with callt (or _ _callt) (calling the callt function), the name used is the

function name prefixed by a question mark (?). The callt instruction is used to call.

• The called function does not differ from an ordinary function.

[Effect]

• The object code can be reduced.

[Procedure]

• The callt or _ _callt attribute is added to the called function. (It is described at the beginning.)

callt extern type-name function-name

_ _callt extern type-name function-name

[Example]

_ _callt void func1 (void);

_ _callt void func1 (void){

 :

 /* Function Body */

 :

}

CHAPTER 11 EXTENDED FUNCTIONS

224

[Limits]

• The address of the function declared with callt or _ _callt is located in the callt table. However, since

positioning in the callt table is performed during linking, the routine created when the callt table is used in the

assembler source module uses symbols and is relocatable.

• The number of callt functions is checked during linking.

• callt table area: 40H to 7FH

• When the -ZA option is specified, _ _callt is enabled, and callt is disabled.

Table 11-4. Usage Limitations on the callt [Function]

Option Limit Description

Counts per load module No -QL Max. 30 To use two callt table in an execution of

multiplication or division prveessing.

Total counts in the linked module No -QL Max. 30 To use two callt table in an execution of

multiplication or division prveessing.

Counts per load module -QL/-QL specified Max. 27 To use five callt tables

Total counts in the linked module -QL/-QL specified Max. 27 To use five callt tables

Counts per load module -QL2 specified Max. 13 To use 19 callt tables

Total counts in the linked module -QL2 specified Max. 13 To use 19 callt tables

Counts per load module -QL3 specified Cannot use To use 32 callt tables

Total counts in the linked module -QL3 specified Cannot use To use 32 callt tables

For details on bank functions, see Section 11.4 “(24) Bank functions .”

CHAPTER 11 EXTENDED FUNCTIONS

225

callt function callt

[Example]

(C source)

============ cal.c ============ ============ ca2.c ============

_ _callt extern int tsub();

void main() _ _callt int tsub()

{ {

 int ret_val; int val;

 ret_val = tsub(); return val;

} }

(Output object)
ca1 module

 EXTRN ?tsub ; Declaration

 callt [?tsub] ; Call

ca2 module

 PUBLIC _tsub ; Declaration

 PUBLIC ?tsub ;

@@CODE CSEG

_tsub: ; Function definition

 :

 Function body

 :

@@CALT CSEG CALLT0 ; Allocate to segment

?tsub: DW _tsub

[Description]

• The tsub() function that is called adds the callt attribute to store the address in the callt table.

[Compatibility]

<From another C compiler to this C compiler>

• If the callt or _ _callt keyword is not used, modifications are not required.

• If changing to a callt function, modify by following the procedure described earlier.

<From this C compiler to another C compiler>

• #define is used. For details, see Section 11.5 “Modifying the C Source .”

CHAPTER 11 EXTENDED FUNCTIONS

226

(2) Register variables

Register variables register

[Function]

• Register variables are allocated to the registers or saddr areas below in the order in which they were

declared.

Normal model : HL, saddr area [0FED8 to 0FEE7H]

However, a register variable is allocated only if no stack frame exists in register HL.

Static model : DE

Allocation to the saddr area via register variable declaration is not performed.

• The registers or the saddr area are saved or restored in pre- and post-processing of a module with a register

declaration.

• However, allocation to the saddr area is performed only when the -qr optimization option is specified (normal

model only).

[Effect]

• Instructions for the registers and saddr area are designed to be shorter than memory instructions, to reduce

the size of the object code, and to improve the execution speed.

[Procedure]

• The register class is declared by the storage-class specifier.

register type-name variable-name

[Example]

void main (void){

 register unsigned char c;

 :

}

[Limits]

• If register variables are used infrequently, the object code also increases (this depends on the scale and

contents of the source).

• Register variable declarations can be used for char, int, short, long, float, double, long double, and pointers

(long, float, double, and long double are valid for only normal model).

CHAPTER 11 EXTENDED FUNCTIONS

227

(For normal model)

• char uses half the area compared to the other types. long, float, double, and long double use twice the area.

• A pair of char type has byte boundaries. The other cases have word boundaries.

• The long, float, double, and long double types are not allocated to the HL register, but other types are

allocated to it.

• Register variables of type int, short, or pointer in one function : A maximum of eight variables can be used.

(The ninth and later variables are allocated to ordinary memory.)

• Register variables of type int, short, or pointer in a function that does not have a stack frame : A maximum of

nine variables can be used. (The tenth and later variables are allocated to ordinary memory.)

(For static model)

• Char uses half the area campared to the other types.

• A maximum of 1 variable per function can be used for int, short, and pointers.

• The 2nd and later variables are allocated to ordinary memory.

• long, float, double, and long double are disabled.

CHAPTER 11 EXTENDED FUNCTIONS

228

Register variables register

[Example]

(C source)

============ rel.c ============

void main()

{

 register int i, j;

 i = 0;

 j = 1;

 i += j;

}

(Compiler output object: normal model)

@@CODE CSEG

_main:

push hl

movw ax, _@KREG14

push ax

movw hl, #00H ;0

movw ax, hl

incw ax

movw _@KREG14, ax ;j

xch a, x

add l, a

xch a, x

addc a, h

movw hl, ax

pop ax

movw _@KREG14, ax

pop hl

ret

END

CHAPTER 11 EXTENDED FUNCTIONS

229

Register variables register

(Compiler output object: static model)

@@CODE CSEG

_main:

push de

movw de, #00H;0

movw ax, #01H;1

mov !?L0003+1, a ;j

xch a, x

mov !?L0003,a ;j

add a, e

xch a, x

addc a, d

movw de, ax

pop de

ret

END

[Description]

• When using register variables, the storage class for variables becomes only the register class.

[Compatibility]

<From another C compiler to this C compiler>

• If the compiler supports register declarations, modifications are not needed.

• If you wish to use register variables, add the register declarations.

<From this C compiler to another C compiler>

• If the compiler supports register declarations, modifications are not needed.

• The number of register variables and which area to allocate them to depends on the compiler being used.

CHAPTER 11 EXTENDED FUNCTIONS

230

(3) Using saddr space

saddr area use sreg/_ _sreg

(a) Use with sreg declarations

[Function]

• An object called an sreg variable that is declared with sreg or __sreg is automatically allocated to the

saddr area (relocatable allocation).

• sreg variables in the C source are handled in the same way as ordinary variables.

• Each bit in an sreg variable of type char, short, int, or long automatically becomes a boolean type

variable.

• An sreg variable that was declared without initial value has the initial value of zero.

• A variable declared by sreg is relocatable and allocated to the saddr area.

Normal model : [0FE20 to 0FED7H]

Static model : [0FE20 to 0FEEFH]

• The area that can be referenced by the sreg variables declared in assembler source is the saddr area

[0FE20H to 0FEFFH].

However, care must be taken because the compiler uses [0FED8 to 0FEFFH] (normal model) and

[0FEF0 to 0FEFFH] (static model).

[Effect]

• Instructions for the saddr area are designed to be shorter than memory instructions, to reduce the size of

the object code, and to improve the execution speed.

[Procedure]

• sreg and _ _sreg are declared in a module that defines the variables. This cannot be described in

functions.

sreg type-name variable-name

_ _sreg type-name variable-name

• The following declaration is made in a module that references variables. This can be described in a

function.

extern sreg type-name variable-name

extern _ _sreg type-name variable-name

CHAPTER 11 EXTENDED FUNCTIONS

231

saddr area use sreg/__sreg

[Limits]

• If sreg or_ _sreg is specified in the const type or a function, a warning message is output and the sreg

and _ _sreg declaration is ignored.

• When -ZA is specified, only _ _sreg is enabled, and sreg is disabled.

• char uses half the area compared to other types. The long, float, double, and long double types use

twice the area.

• A pair of char type has byte boundaries. The other cases have word boundaries.

(Noraml model)

• sreg or _ _sreg can not be declared in arguments of the function and automatic variables. (Enables when

specifying the static model.)

• Variables that can be used in one load module for int, short, or pointer type: Maximum of 92 variables (when

using the saddr area [FE20H to FED7H]).

However, when a bit, boolean type variable, register variable, or norec/noauto function is used the maximum

number of usable variables decreases.

(Static model)

• Variables that can be used in one load module for int, short or pointer type: Maximum of 104 variables (when

using the saddr area [FE20H to FEEFH]).

However, when a bit or Boolean type variables, or a common area, is used the maximum number of usable

variables decreases.

[Example]

(C source)

============ sal.c ==============

extern sreg int hsmm0;

extern sreg int hsmm1;

extern sreg int *hsptr;

void main()

{

 hsmm0 -= hsmm1;

}

CHAPTER 11 EXTENDED FUNCTIONS

232

saddr area use sreg/__sreg

(Assembler source)

(In this case, the user creates the definition code for the sreg variable. However, if the extern declaration
is not included, this C compiler outputs the following code. This ORG pseudo-instruction is not output.)

PUBLIC _hsmm0 ; Declaration

PUBLIC _hsmm1 ;

PUBLIC _hsptr ;

@@DATS DSEG SADDRP ; Allocated to segments.

 ORG 0FE20H ;

_hsmm0: DS (2) ;

_hsmm1: DS (2) ;

_hsptr: DS (2) ;

(Compiler output object)

The following codes are output in the function.
 movw ax, _hsmm0

 xch a, x

 sub a, _hsmm1

 xch a, x

 subc a, _hsmm1+1

 movw _hsmm0, ax

[Description]

When using sreg variables, only the sreg or _ _sreg attribute is added to the variables.

[Compatibility]

<From another C compiler to this C compiler>

• If the sreg/_ _sreg keyword is not used, modifications are not needed.

• When modifying the sreg function, modifications must conform to Procedure above.

<From this C compiler to another C compiler>

• #define is used. For details, see Section 11.5 “Modifying the C source.” By making this change, the

sreg function is treated as an ordinary variable.)

CHAPTER 11 EXTENDED FUNCTIONS

233

saddr area use -QD

(b) Use with sreg automatic allocation options for external variables or external static variables

[Function]

• Regardless of the presence or absence of the sreg declaration, external variables or external static

variables (except for const type) are automatically allocated in the saddr area.

• The maximum width of the variables allocated by the n value has the following differences.

(a) When 1 - Variable of type char or unsigned char

(b) When 2 - Variables when 1 and variables of type short, unsigned short, int, unsigned int, enum, or

 pointer

(c) When 4 - Variables when 2 and variables of type long, unsigned long, float, double, or long double

(d) Default - All variables (including the structure, union, array in only this case)

• A variable declared with sreg is allocated to the saddr area regardless of the above specifications.

• The processing allocates the variables referenced by the extern declaration to the saddr area in

accordance with the above description.

• Variables allocated in the saddr area by this option are handled in the same way as sreg variables and

have the functions and limits described in (1).

[Specification]

The -qd[n] option, where n is 1, 2, or 4, is specified.

[Limits]

Modules for which a different n is specified cannot be linked with the -qd [n] option.

CHAPTER 11 EXTENDED FUNCTIONS

234

saddr area use -QS

(C) Use with sreg automatic allocation options for internal static variables

[Function]

• Regardless of the presence or absence of the sreg declaration, internal static variables (excluding const

type) are automatically allocated in the saddr area.

• The maximum width of the variables allocated by the n value differs as follows.

(a) When 1 - Variable of type char or unsigned char

(b) When 2 - Variables when 1 and variables of type short, unsigned short, int, unsigned int, enum, or

 pointer

(c) When 4 - Variables when 2 and variables of type long, unsigned long, float, double, or long double

(d) Default - All variables (including the structure, union, array)

• A variable declared with sreg is allocated to the saddr area regardless of the above specifications.

• Using this option, variables allocated to the saddr area are treated in the same way as sreg variables,

and have the functions and limits described in (1).

• Modules for which a different n is specified cannot be linked with the -qs[n] option.

[Specification]

The -qs[n] option, where n is 1, 2, or 4, is specified.

CHAPTER 11 EXTENDED FUNCTIONS

235

saddr area use -QK

(d) Use with sreg automatic allocation options for arguments or automatic variables

[Function]

Regardless of the presence or absence of the sreg declaration, arguments and automatic variables (except

cost type) are automatically allocated in the saddr area.

• The maximum width of the variables allocated by the n value differs as follows.

(a) When 1 - Variable of type char or unsigned char

(b) When 2 - Variables when 1 and variables of type short, unsigned short, int, unsigned int, enum, or

 pointer

(c) When 4 - Variables when 2 and variables of type long, unsigned long, float, double, or long double

(d) Default - All variables (including the structure, union, array)

• A variable declared with sreg is allocated to the saddr area regardless of the above specifications.

• Using this option, variables allocated to the saddr area are treated in the same way as sreg variables,

and have the functions and limits described in (1).

• Modules for which a different n is specified cannot be linked with the -qs[n] option.

[Specification]

The -qk[n] option, where n is 1, 2, or 4, is specified.

[Limits]

• Only the normal model is supported. When the -SM (Static model specification) option is not specified, a

warning message is output, and automatic allocation to the saddr is not performed.

• Arguments or variables declared with a register variable are not allocated to the saddr area.

• When the -qv option is specified, allocation using this option is prioritized, therefore 2-byte

argument/automatic variables are the only things that are allocated to register DE.

CHAPTER 11 EXTENDED FUNCTIONS

236

saddr area use -QK

[Example]

(C source)

sub (int hsmarg)

{

 int hsmauto;

 hsmauto = hsmarg;

}

(Compiler output object)

@@ DATS DSEG SADDRP

 ?L0003: DS (2)

 ?L0004: DS (2)

@@ CODE CSEG

 _sub:

 movw ?L0003, ax

 movw ax, ?L0003 ;hsmarg

 movw ?L0004, ax ;hsmauto

 ret

CHAPTER 11 EXTENDED FUNCTIONS

237

(4) Using the sfr area

sfr area use sfr

[Function]

• The sfr area is a register group area for the allocation of special functions for mode registers or control

registers in peripheral hardware for the 78K/0S Series.

• Declaring the use of the sfr name can describe the operations on the sfr area at the C source level.

• The sfr variable is an external variable that is not initialized (undefined).

• Writing of a read-only sfr variable is checked.

• Reading of a write-only sfr variable is checked.

• If incorrect data is assigned to an sfr variable, a compiler error results.

• sfr names that can be used are allocated to [0FF00H to 0FFFFH].

[Effect]

• Operations in the sfr area can be described at the C source level.

• Instructions for sfr are designed to be shorter than memory instructions, to reduce the size of the object code,

and to improve the execution speed.

[Procedure]

• #pragma instructions are used to declare the use of sfr names in C source. (The sfr keyword can be

described in lowercase or uppercase letters).

#pragma sfr

• The #pragma sfr is described at the beginning of the C source. However, if the #pragma PC(type) is

specified, later #pragma sfr is described.

The following items can be described before the #pragma sfr.

• Comments

• Preprocessing directives that do not generate variable or function definitions or references

• An sfr name for a device is described unchanged in the C source. At this time, the sfr name does not have to

be declared.

[Limits]

• An sfr name is described in uppercase letters. A name in lowercase letters is treated as an ordinary variable.

However, if the symbol name case specification option is described during compilation, uppercase and

lowercase letters are not distinguished, and all letters are regarded as uppercase letters. In this case, even

when the name is described in lowercase letters, it is treated as an sfr name. For details on the compilation

options, see the “CC78K0 Series C Compiler User’s Manual, Operation .”

CHAPTER 11 EXTENDED FUNCTIONS

238

sfr area use sfr

[Example]

(C source)

#ifdef _ _K0S_ _

 #pragma sfr

#endif

void main()

{

 P0 -= RXB;

 :

}

(Compiler output object)
Code related to declarations is not output. The following code is output in the function.

_main:

 mov a, P0

 sub a, RXB

 mov P0, a

 ret

[Description]

• In this example, the use of sfr variables is indicated by “#pragma sfr.” In the program, sfr names are used to

use special function registers like P0 (port 0), the in-service priority register, and TXB.

[Compatibility]

<From another C compiler to this C compiler>

• If the part does not depend on the device or the compiler, modifications are not needed.

<From this C compiler to another C compiler>

• The “#pragma sfr” statements are deleted, or variable declarations are added for sfr variables separated by

“#ifdef”. This is illustrated in the example.

#ifdef _ _K0S_ _

 #pragma sfr

#endif

/* Variable declarations */

• For a device having sfr or a function replacing it, a special library must be created to access that area.

CHAPTER 11 EXTENDED FUNCTIONS

239

(5) noauto function

noauto function noauto

[Function]

• A function that does not use automatic variables can be a noauto function declared with noauto. When the

function is a noauto function, code for pre- and postprocessing (creating the stack frame) is not output.

• If passed arguments can be used, they are stored in the registers or saddr area [0FEEC to 0FEEFH] for

register variables.

• Inside the noauto function, arguments passed via a register or stack are copied to a register (because the

registers on the noauto function side call side and the definition side differ). Moreover, the register allocating

arguments is saved and restored on the function definition side.

• The first argument is stored to register HL. However, long/float/double/long double are not stored to HL but

allocated to other arguments.

• Arguments not allocated to registers are store to the saddr area for register variables.

These arguments are stored in ascending order in the description order. (See _@KREG12 to 15 in Appendix

A “SADDR SPACE LABEL SUMMARY”)

• Automatic variables can be used only when all automatic variables have been allocated to registers and

saddr areas for register variables left over after argument allocation.

Registers to which automatic variables are allocated are saved and restored on the function definition side.

• If the -SM (Static Model specification) option is specified, a warning message is output only at the line where

noauto is described for the first time, and all noauto functions are treated as ordinary functions.

• Arguments are passed to a noauto function in the same way as in the case of ordinary functions.

Table 11-5. noauto Function Passing List (noauto Function Calling Side)

Argument Type 1st Argument 2nd Argument

1-, 2-byte integer, pointer Passed on AX Passed on stack

4-byte integer Passed on AX and BC Passed on stack

Floating-point number Passed on AX and BC Passed on stack

Other Passed on stack Passed on stack

* 1- to 4-byte integers include structures and unions

CHAPTER 11 EXTENDED FUNCTIONS

240

Table 11-6. noauto Function Interface (noauto Function Definition Side)

Automatic Variable Argument Allocation Order Storage Method

Automatic variables Same as arguments Allocates arguments to the registers and

saddr area. The remainder is stored as follows

(only when the -QR option is specified,

arguments are allocated to the saddr area):

HL (only when the stack frame is none)

saddr area (_@KREG12 to 15[0FEE4 to

E7H])

char type arguments

int, short, and enum type arguments

In order of L and H

HL

HL (only when the stack frame is none)

char type arguments

int, short, and enum type arguments

long, float, and double types

Arguments

In ascending order of _@KREG12 to 15

_@KREG12, 13 o 14, 15

_@KREG12 to 13 (low-order)

14 to 15 (high-order)

saddr area(_@KREG12 to 15[0FEE4 to E7H])

(Allocated only when the -QR option is

specified.)

[Effect]

• The object code is reduced and the execution speed is improved.

[Procedure]

• The noauto attribute is declared during function declaration.

noauto type-name function-name

CHAPTER 11 EXTENDED FUNCTIONS

241

noauto function noauto

[Limits]

• When -ZA is specified, noauto is disabled.

• The types and number of the arguments passed to the noauto function are restricted.

The types of the arguments that can be used in the noauto function are

• Pointer

• char/signed char/unsigned char

• int/signed int/unsigned int

• short/signed short/unsigned short

• long/signed long/unsigned long

• float

• double

• long double

• However, long/signed long/unsigned long and float/double/long double are not allocated to the HL register

but to other arguments.

• The arguments and automatic variables that can be used have a maximum of six bytes.

• These limits are checked during compilation.

• If register is declared with an argument, the register declaration is ignored.

[Example]

(C source)

noauto short nfunc (short a, short b, short c);

short l, m;

void main()

{

 static short ii, jj, kk;

 l = nfunc (ii, jj, kk);

}

noauto short nfunc (short a, short b, short c)

{

 m = a + b + c;

 return (m);

}

CHAPTER 11 EXTENDED FUNCTIONS

242

noauto function noauto

(Compiler output object)

 @@CODE CSEG

_main:

 mov a,!?L0005 ; kk

 xch a,x

 mov a,!?L0005+1 ; kk

 push ax

 mov a,!?L0004 ; jj

 xch a,x

 mov a,!?L0004+1 ; jj

 push ax

 mov a,!?L0003 ; ii

 xch !a,x

 mov a,!?L0003+1 ; ii

 call !_nfunc ; Call nfunc function.

 pop ax

 pop ax

 movw ax,bc

 mov !_l+1,a ; Assign the return value to the extgernal variable 1.

 xch a,x

 mov !_l,a

 ret

_nfunc:

 push hl ;Save HL.

 xch a,x

 xch a,_@KREG12 ;Set the argument a to _@KREG12.

 xch a,x

 xch a,_@KREG13

 push ax ;Save _@KREG12.

 movw ax,_@KREG14

 push ax ;Save _@KREG14.

 movw ax,sp

 movw hl,ax

 mov a,[hl+10]

 xch a,x

 mov a,[hl+11]

 movw _@KREG14,ax ;Set the argument c to _@KREG14.

 mov a,[hl+8]

 xch a,x

 mov a,[hl+9]

 movw hl,ax ;Set the argument b to HL.

 movw ax,hl

 xch a,x

 add a,_@KREG12 ;a

 xch a,x

 addc a,_@KREG13 ;a

 xch a,x

 add a,_@KREG14 ;c

CHAPTER 11 EXTENDED FUNCTIONS

243

noauto function noauto

(Compiler output object) - continued

 xch a,x

 addc a,_@KREG15 ;c Add b(HL) and c(_@KREG14) to a(_@KREG 12).

 Assign the computation result to the external

 variable m.

 mov !_m+1,a ;

 xch a,x

 mov !_m,a

 xch a,x

 movw bc,ax ;Retrun the contents of external variable m.

 pop ax

 movw _@KREG14,ax ;Restore _@KREG 14.

 pop ax

 movw _@KREG12,ax ;Restore _@KREG12.

 pop hl ;Restore HL.

 ret

 END

[Description]

• In this example, the noauto attribute is added to the header.

noauto is declared so that the stack frame is not generated.

[Compatibility]

<From another C compiler to this C compiler>

• If the noauto keyword is not used, modifications are not needed.

• When modifying the noauto function, modifications must conform to Procedure above.

<From this C compiler to another C compiler>

• #define is used. For details, see Section 11.5 “Modifying the C Source .”

CHAPTER 11 EXTENDED FUNCTIONS

244

(6) norec [Function]

norec function norec

[Function]

• A function that does not call another function can be a norec function.

• In a norec function, code for pre- and postprocessing of the function (creating the stack frame) is not output.

• The arguments are stored in the registers or the saddr area (-@NRARG0 to 3 [0FEE8 to 0FEEFH]), and the

norec function is called.

• Automatic variables are allocated to the saddr area (-@NRAT00 to 07 [0FEF0 to 0FEF7H]), and are similar to

register variables.

• Allocation is to the saddr area only when the -QO option is not specified during compilation.

• If the arguments do not have type long, float, double, or long double, the first argument is stored in the ax

register, the second argument in the de register, and the third and later arguments in ascending order in the

saddr area.

If the arguments are long, float, double, or long double type, the first and subsequent arguments are stored in

ascending order in the saddr area. However, the ax and de registers only store one argument regardless of

the type of the argument.

• If the argument stored in ax is at the beginning of a norec function and no argument is stored in de, it is

copied to de. If an argument is stored in de, it is copied to _@RTATG6 and 7.

• If the automatic variables do not have type long, float, double, or long double, any ones remaining after

argument allocation are declared in order and stored in de, _@RTARG6, _@RTARG7, _@NRARG0,

_@NRARG1,....

If the automatic variables have type long, float, double, or long double, any ones remaining after argument

allocation are declared in order and stored in _@NRARG0, _@NRARG1,....

The remaining variables are declared in order and stored in the saddr area.

(For details on _@RTARG6, _@RTARG7, _@NRARG0, _@NRARG1,..., see Appendix A “SADDR SPACE

LABEL SUMMARY .”)

Table 11-7. norec Function Arguments Pass List (norec function calling side)

Argument type 1st argument 2nd argument or more

1-byte, 2-byte integer

pointer

Passed on AX (DE on receive side) Passed on DE (_@RTARG6 to 7 on receive side)

Passed on _@NRARG0 to 3[0FEE8 to EFH]

4-byte integer Passed on AX and DE (DE and

_@RTARG6 to 7 on receive side)

Passed on _@NRARG0 to 3 [0FEE8 to EFH]

Floating-point number Passed on AX and DE. Passed on _@NRARG0 to 3 [0FEE8 to EFH]

CHAPTER 11 EXTENDED FUNCTIONS

245

norec function norec

Table 11-8. norec Function Interface

Automatic Variables and Functions Storage Method

Automatic Variables Arguments are allocated to the registers and saddr. If any

remain, they are stored as follows.

[If not long, float, double, or long double]

 DE

 saddr area

 (_@RTARG6, 7 [0FEFE to FFH], _@NRARG0 to 3

[0FEE8H to F7H])

[If long, float, double, or long double]

saddr area

 (_@NRARG0,1, } [0FEE8H to F7H])

First argument AX (allocation of only one argument if not long, float, double, or

long double)

Second argument DE (allocation of only one argument if not long, float, double, or

long double)

Third argument saddr area (_@NRARG0 to 3 [0FEE8H to 0FEEFH])

[Effect]

• The object code can be reduced, and the execution speed of program improved.

[Procedure]

• The norec attribute is specified when the function is declared.

norec type-name function-name

• _ _leaf can be described instead of norec.

[Limits]

• Other functions cannot be called from a norec function.

• The size and number of arguments and automatic variables in a norec function are restricted.

When -ZA is specified, norec is disabled, and only _ _leaf is enabled.

• When the-SM option is specified, the worning message appears first for only lines which norec is described.

All norec functions are processed as a normal function.

• The usable automatic variables are:

[When -QR option is specified]

• Maximum of 4 bytes (long, float, double, or long double cannot be used.)

[When -QR option is not specified]

• Maximum of 20 bytes

(Maximum of 16 bytes for long, float, double,or long double)

CHAPTER 11 EXTENDED FUNCTIONS

246

norec function norec

• The usable arguments are

[When -QR option is specified]

Maximum of two variables (long, float, double, or long double cannot be used)

[When -QR option is not specified]

Maximum of six variables

(long, float, double, or long double contains up to two variables.)

• These argument types can be used in the norec Function

• Pointer

• char/signed char/unsigned char

• int/signed int/unsigned int

• short/signed short/unsigned short

• long/signed long/unsigned long

• float

• double

• long double

• If a pair has type char, signed char, or unsigned char, they are consecutively allocated to the saddr area. If

other types are contiguous, the arguments are allocated with two byte alignment.

[Example]

(C source)

norec char rout (int a, int b, int c);

int i, j;

void main()

{

 int k, l, m;

 i = l + rout (k, l, m) + ++k ;

}

norec char rout (int a, int b, int c)

{

 int x, y;

 return (x + a<<2));

}

CHAPTER 11 EXTENDED FUNCTIONS

247

norec function norec

(Compiler output object) (When the -QR option is specified)

:

 EXTRN _@NRARG0 ; Reference the saddr area being used

 EXTRN _@NRARG6 ;

 EXTRN _@NRARG1 ;

:

@@CODE CSEG

_main:

:

 movw ax,sp

 movw hl,ax

 mov a,[hl] ;m

 xch a,x

 mov a,[hl+1] ;m

 movw _@NRARG0,ax :Save the argument in the saddr area.

 mov a,[hl+2] ;l

 xch a,x

 mov a,[hl+3] ;l

 movw de,ax :Save the argument in the saddr area.

 mov a,[hl+4] ;k

 xch a,x

 mov a,[hl+5] ;k :Save the argument in the ax register.

 call !_rout ;Call the norec function.

 :

 ret

_rout:

 movw _@RTARG6,ax ;Receive an argument in the saddr area.

 mov c,#02H ;2

 xch a,x

 add a,a

 xch a,x

 rolc a,1

 dbnz c,$$-5

 xch a,x

 add a,_@NRARG1 ;x Use the automatic variable in the saddr area.

 xch a,x

 addc a,_@NRARG1+1 ;x

 movw bc,ax

?L0005:

 ret

 END

CHAPTER 11 EXTENDED FUNCTIONS

248

norec function norec

[Description]

The norec attribute is added to indicate that the function is a norec function in the rout function definition.

[Compatibility]

<From another C compiler to this C compiler>

• If the norec keyword is not used, modifications are not needed.

• If changing to a norec function, modifications must conform to Procedure above.

<From this C compiler to another C compiler>

• #define is used. For details, see Section 11.5 “Modifying the C Source .”

CHAPTER 11 EXTENDED FUNCTIONS

249

(7) bit type variables

bit type variables bit

boolean type variable boolean

_ _boolean

[Function]

• bit and boolean type variables define one bit data.

• bit and boolean type variables are handled in the same way as uninitialized external variables (undefined).

• The compiler for these bit variables can output the following bit-manipulation instructions.

SET1, CLR1, NOT1, BT, and BF instructions are output.

[Effect]

• Bit accessing the saddr and sfr areas is possible in programming in the assembler source level in C

descriptions.

[Procedure]

• bit and boolean type declarations are made in modules that use bit or boolean type variables.

• A _ _boolean description can be used instead of bit.

bit variable-name

boolean variable-name

_ _boolean variable-name

• extern bit (boolean) declarations are made in modules that reference bit or boolean type variables.

extern bit variable-name

extern boolean variable-name

extern _ _boolean variable-name

• sreg variables of type char, int, short, and long (except elements in arrays, and members in structures) and

8-bit sfr variables can be automatically used as bit type variables.

variable-name.n (where n is 0 to 31)

[Limits]

• Computations on pairs of bit or boolean type variables use the carrier flag. Therefore, the contents of the

carrier flag cannot be guaranteed between statements.

• Arrays cannot be defined or referenced.

• These variables cannot be used as members in structures or unions.

• These types cannot be used as the types of the function arguments.

• They cannot be declared with initial values.

• If written with the const declaration, the const declaration is ignored.

• For normal model, bit type variables cannot be used as a type of automatic variable. (Enable for normal

model).

• Computations with constants based on the following operators can only be on 0’s or 1’s.

CHAPTER 11 EXTENDED FUNCTIONS

250

bit type variables bit

boolean type variable boolean

_ _boolean

Table 11-9. Operators That Act Only on the Constants 0 or 1 (When using bit type variables)

Class Operator Class Operator

Assignment

Bitwise AND

Bitwise XOR

Logical AND

Equal

=

.&, &=

^, ^=

&&

==

Bitwise OR

Logical OR

Not equal

|, |=

| |

!=

• A maximum of 1,720 variables can be used in one load module for bit type variables (when using the saddr

area [0FE20 to D7H]

However, if sreg variables are used and -QD (sreg allocation option for external variables or static variables),

-QS (sreg allocation option for internal static variables), and -QK (sreg allocation option for arguments or

automatic variables) are specified, the number of variables that can be used decreases.

• *, & (pointer reference, address reference), and the sizeof operations cannot be performed.

• When the -ZA option is specified, only _ _boolean is valid.

[Example]

(C source)

#define ON 1

#define OFF 0

void testb (void);

void chgb (void);

bit data1;

boolean data2;

void main()

{

 data1=ON;

 data2=OFF;

 while (data1){

 data1 = data2;

 testb();

 }

 if (data1 && data2){

 chgb();

 }

}

CHAPTER 11 EXTENDED FUNCTIONS

251

bit type variables bit

boolean type variable boolean

_ _boolean

(Assembler source)

(The definition code for bit type variables written by the user is illustrated. However, if the extern declaration is

not added, the compiler outputs the following code. At this time, the ORG pseudo-instruction is not output.)

PUBLIC _data1 ; Declaration

PUBLIC _data2

@@BITS BSEG ; Allocate to segment.

 ORG 0FE20H

_data1 DBIT

_data2 DBIT

(Compiler output object)

The following codes are output in the function.

set1 _data1 (Initialization)

clr1 _data2 (Initialization)

?L0003:

bf _data1, $?L0004 (Decision)

set1 CY (Assignment)

bt _data2,$?L0005

clr1 CY (Assignment)

?L0005:

bnc $?L0006

set1 _data1

br $?L0007

?L0006:

clr1 _data1

?L0007:

call !_testb

br $?L0003

?L0004:

bf _data1,$?L0008 (Logical AND expression)

bf _data2,$?L0008 (Logical AND expression)

call !_chgb

?L0008:

?L0009:

ret

END

CHAPTER 11 EXTENDED FUNCTIONS

252

bit type variables bit

boolean type variable boolean

_ _boolean

[Description]

The bit type is specified for data1 and data2 to indicate that they are bit type variables.

[Compatibility]

<From another C compiler to this C compiler>

• If the bit and boolean keywords are not used, modifications are not needed.

• If changing to bit and boolean variables, the modifications must conform to Procedure above.

<From this C compiler to another C compiler>

• #define is used. For details, see Section 11.5 “Modifying the C Source .” (By making this change, bit and

boolean type variables are treated as ordinary variables.)

CHAPTER 11 EXTENDED FUNCTIONS

253

(8) ASM statement

ASM statements #asm #endasm

_ _asm

[Function]

(1) #asm - #endasm

• Assembler source described by the user is embedded in the assembler source file output by this C

compiler.

• The #asm and #endasm lines are not output.

(2) _ _asm

• Assembly code is described in string literals.

Assembly instructions are output and inserted in the assembler source.

[Effect]

• Global variables in the C source can be manipulated in the assembler source.

• Functions that cannot be described in the C source can be implemented.

• By optimizing the assembler source output by the C compiler by hand and embedding it in the C source, a

highly efficient object is obtained.

[Procedure]

(1) #asm - #endasm

• #asm indicates the beginning and #endasm indicates the end of the assembler source. The assembler

source is described between #asm and #endasm.

*asm

 : /* Assembler source */

#endasm

(2) _ _asm

• The use of _ _asm is declared by specifying #pragma asm at the beginning of the module that describes

the ASM statement. (The keyword following #pragma can be in lowercase or uppercase letters.)

• The following items can be described before #pragma asm.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate the definitions or references to variables or functions

• The format in the C source is

_ _asm(string-literal);

• The description of the string literals conforms to ANSI and can describe escape sequences (\n: new line,

\t: tab, etc.) or \ for line continuation and concatenating strings.

CHAPTER 11 EXTENDED FUNCTIONS

254

ASM statements #asm #endasm

_ _asm

[Limits]

• “#asm - #endasm” and _ _asm can only be described in a C source function. Consequently, the assembler

source is output to CSEG in the @@CODE segment.

• #asm cannot be nested.

• When the ASM statement is used, the object module file is not generated, but the assembler source file is

generated.

• _ _asm can only be described in lowercase letters (when the -ca option is specified). If lowercase and

lowercase letters are mixed in the description, the function is regarded as a user function.

• When the -ZA option is specified, only _ _asm is valid.

[Example]

(1) #asm - #endasm

(C source)

void main()

{

 #asm

 callt[init]

 #endasm

}

(Compiler output object)

The assembler source described by the user is output to the assembler source file.

@@CODE CSEG

_main:

 callt [init]

 ret

 END

[Description]

• Assembler source is described between #asm and #endasm and output to the assembler source file.

CHAPTER 11 EXTENDED FUNCTIONS

255

ASM statements #asm #endasm

_ _asm

(2) _ _asm

(C source)

#pragma asm

int a, b;

void main()

{

 _ _asm ("\tmovw ax, !_a\t;ax <- a");

 _ _asm ("\tmovw!_b, ax\t;b <- ax");

}

(Assembler source)

@@CODE CSEG

_main:

 movw ax, !_a ;ax <- a

 movw !_b, ax ;b <- ax

 ret

 END

[Compatibility]

• In C compilers that support #asm, modifications conform to the format specified for that C compiler.

• If the target device is different, the assembler source is modified.

CHAPTER 11 EXTENDED FUNCTIONS

256

(9) Kanji

Kanji /* Kanji */

[Function]

• Kanji can be described in comments in the C source.

• The kanji in comments is treated as a comment and is not a compilation target.

• The kanji code used in the comments can be selected by options or environment variables. If no options are

specified, the setting in the LANG78K environment variable is used. (Setting the LANG78K variable to NONE

is interpreted as no kanji code is present.) The defaults are given below.

• If both options and the LANG78K environment variable are set, the option settings are enabled.

<When MS-DOS based>

• If the LANG78K environment variable is not set, SJIS is set.

<When PC DOS based>

• If the LANG78K environment variable is not set, NONE is set.

<When HP or NEWS based>

• If the LANG78K environment variable is not set, SJIS is set.

<When SUN4 based>

• If the LANG78K environment variable is not set, EUC is set.

[Effect]

• Comments can be written to ease understanding and simplify C source management.

[Procedure]

• Either the -ZS, -ZE, and -ZN option is specified.

Table 11-10. Kanji Options

Option Description

-ZS SJIS (shift JIS code)

-ZE EUC (EUC code)

-ZN NONE (no kanji code)

• The LANG78K environment variable is set to EUC, SJIS, or NONE.

• EUC, SJIS, or NONE can be described in lowercase or uppercase letters.

• Kanji is described in the comments of the C source (EUC code when the LANG78K environment variable is

set to EUC and shift JIS code when set to SJIS).

[Limits]

• If kanji is not supported by the operating system, kanji cannot be used.

• Kanji can only be described in comments.

CHAPTER 11 EXTENDED FUNCTIONS

257

Kanji /* Kanji */

[Example]

(C source)

void main () /* main function */

 {

 /* Comment */

 }

(Compiler output object)

If C source is output to the assembler source, the kanji in the comments and kanji-related information are output.

$KANJICODE SJIS

 :

; line 1 void main() /* main function */

; line 2 {

; line 3 /* Comment */

[Description]

• Kanji can only be used in comments in the C source.

[Compatibility]

<From another C compiler to this C compiler>

• The source must be modified if kanji is located outside of comments (outside of /*...*/).

• If the kanji code is different, the kanji code must be converted.

<From this C compiler to another C compiler>

• The C source is not modified for kanji in comments for a C compiler that allows kanji to be written in the

comments.

• The kanji in the C source must be deleted for a C compiler that does not allow kanji to be written in the

comments.

CHAPTER 11 EXTENDED FUNCTIONS

258

(10) Interrupt functions

Interrupt functions #pragma vect/interrupt

[Function]

• The address of the described function name is registered in the interrupt vector table for the specified

interrupt request name.

• In an interrupt function, the code for saving and restoring the following items (unless used in an ASM

statement) is output at the beginning and the end of the interrupt function (after the code for a register bank

specification).

(1) Register

(2) saddr area for the run-time library

(3) saddr area for register variables

(4) saddr area for auto variables or arguments of norec functions (whether used or not)

However, the areas for saving and restoring differ with the specification and status of the interrupt function.

• When the specification is not changed, code is not output to change the register banks, to save or restore

registers, and to save or restore the saddr area.

• However, when the specification is not changed, if there is a function call in an interrupt function, the entire

area is saved and restored regardless of whether is used or not.

<Normal model>

• f the -QR option is not specified during compiling, the saddr area for register variables and the saddr area for

norec function arguments/auto variables are not used, and therefore save and restore code is not output.

• If the size of the entire save code is smaller, the entire save code is output.

• The above save/restore area information is summarized in the table below.

CHAPTER 11 EXTENDED FUNCTIONS

259

Interrupt functions #pragma vect/interrupt

Table 11-11. Save or Restore Area When Using Interrupt Functions (Normal Model)

Function Call No Function Call

No -QR -QR No -QR -QR

Register used � � � � �

All registers � � � � �

saddr area for the run-time libraries being

used

� � � � �

saddr area for all run-time libraries � � � � �

saddr area for the register variables being

used

� � � � �

Entire saddr area for norec function

arguments or auto variables

� � � � �

Stack : Stack use specification � : Save

RBn : Register bank specification ð : Do not save

* When there are ASM statements in the interrupt function and the reserved area for the compiler and registers

are used (areas in the above table), the user is responsible for saving the areas.

<Static model>

• If the -SM option is specified during compiling, the saddr area for register variables and the saddr area for

norec function arguments/auto variables, as well as saddr area for time libraries are not saved, and therefore

only the registers’ save and restore code is output, and the saddr area’s save and restore code is not output.

However, if leafwork1 to 16 were specified, the code that saves and restores the specified number of bytes

from the upper address of the common area is output at the start and end of the interrupt function. (For

details, see “Static model” in this chapter.)

[Effect]

• Interrupt functions can be described in the C source level.

• Since the interrupt request name is identified, the address of the vector table does not have to be required.

Save/Restore Area NO BANK

CHAPTER 11 EXTENDED FUNCTIONS

260

Interrupt functions #pragma vect/interrupt

[Procedure]

• Saving or restoring of interrupt request name, function name, register, as well as the saddr area that is used

and the common area are specified by #pragma directives.

(For the interrupt request name, see the user’s manual for the target device to be used.)

• Of the keywords described after #pragma, the interrupt request name must be entered as uppercase

characters. Other keywords can be entered using both upper and lowercase characters.

• When the #pragma PC(type) is described, this #pragma directive is described later. The following items can

be described before a #pragma directive.

• Comments

• Preprocessing directives that do not generate variable or function definitions or references

 vect

#pragma ' { } ' interrupt-request-name ' function-name '
 interrupt

 stack-usage-specification

 [{ no-change-specification }]

 register-bank-specification

stack-usage-specification : STACK (default)

no-change-specification : NOBANK

register-bank-specification : leafwork 1 to 16

CHAPTER 11 EXTENDED FUNCTIONS

261

Interrupt functions #pragma vect/interrupt

[Limits]

• The interrupt request name must be entered in upper-case letters.

• Saving/storing of the common area can be specified only during specification of the static model (-SM), and

cannot be specified in the normal model. If leafwork1 to 16 is specified when the -SM option is not specified,

a warning is output and specification of the common area save/restore is ignored.

• Redundant checking is performed on the interrupt request names only in one module unit.

• The register contents are rewritten when multiple interrupts (same or different interrupt) are generated during

vectored interrupt servicing by the contents of a priority specification flag register or an interrupt mask

register, or due to the register bank specification or no-change specification. Sometimes they become

incompatible, but the compiler cannot check this.

• An interrupt function cannot specify callt, noauto, norec, _ _callt, _ _leaf.

• Even when an ASM statement is in an interrupt function, all of the save code is not output. Consequently,

when compiler reserved area in the ASM statement is used in an interrupt function, or when calling a function

in the ASM statement, the user must perform the save.

• If the function which executes the no-change specification with the #pragma vect or #pragma interrupt

specification, or specifies the common area saving/restoring is not defined in the same module, a warning is

output and the save destination specification is ignored.

• If the common area is saved with the leafwork specification, the number of bytes to be specified must be set

to the maximum bytes of the common areaallocated with the -SM option specification in all modules.

CHAPTER 11 EXTENDED FUNCTIONS

262

Interrupt functions #pragma vect/interrupt

[Example]

(C source : with common area saving/restoring specification)

#pragma interrupt INTP0 inter leafwork4

void inter()

{

func(); /* Interrput processing for the port0 input*/

}

(Compiler output object)

EXTRN _@KREG12

EXTRN _@KREG14

EXTRN _func

PUBLIC _inter

:

@@CODE CSEG

_inter:

push ax

push bc

push de

push hl

movw ax,_@KREG12

push ax

movw ax,_@KREG14

push ax

call !_func

pop ax

movw _@KREG14,ax

pop ax

movw _@KREG12,ax

pop hl

pop de

pop bc

pop ax

reti

@@VECT06 CSEG AT 0006H

DW _inter

END

Stack pointer returns to the begining

Restoring of the saddr area compiler uses

Saving of common area

Saving of register

CHAPTER 11 EXTENDED FUNCTIONS

263

Interrupt functions #pragma vect/interrupt

[Compatibility]

<From another C compiler to this C compiler>

• If interrupt functions are not used, modifications are not needed.

• If changing to interrupt functions, the modifications must conform to the Procedure above.

<From this C compiler to another C compiler>

• If the #pragma vect or #pragma interrupt specification is deleted, the function is treated as an ordinary

function.

• If using as an interrupt function, the modification must follow the specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

264

(11) Interrupt function qualifiers (_ _interrupt)

Interrupt function qualifiers Interrupt function qualifiers

[Function]

• By declaring a function with the _ _interrupt qualifier, that function is regarded as a hardware interrupt

function and is returned by the RETI return instruction for hardware interrupt functions.

• A function declared with this qualifier is regarded as a hardware or software interrupt function. The area used

as the operating area of the compiler in (1) to (3) below is saved and restored on the stack.

However, when a function call is described in this function, the entire area is saved on the stack.

(1) Register

(2) saddr area for run-time libraries

(3) saddr area for register variables

(4) saddr area for norec function arguments or auto variables (whether used or not)

If the -QR option is specified when compiling, since areas (3) and (4) are not used, save and restore codes

are not output.

When the -SM option is specified, since areas (2), (3) and (4) are not used, save and restore codes are not

output.

[Effect]

• By declaring with this qualifier, the vector table settings and interrupt function definitions can be described in

separate files.

[Procedure]

• _ _interrupt is added to the qualifier for an interrupt function.

_ _interrupt void func(){ processing }

[Limits]

_ _ interrupt_brk is not supported in CC78K0 because of no software interruptions.

For a position where the _ _ interrupt_brk keyword appears first, a warning message is output and the

keyword is ignored and processed as a normal function.

• An interrupt function cannot specify callt, noauto, norec, _ _callt, _ _leaf.

CHAPTER 11 EXTENDED FUNCTIONS

265

Interrupt function qualifiers Interrupt function qualifiers

[Warnings]

• The vector address is not set only when this qualifier is declared. The vector address setting must be

separately performed by a #pragma directive or assembler description.

• The save destination of the saddr space and the registers becomes the stack.

• Even when the vector address is set or the save destination is changed by #pragma vect (or interrupt), the

change in the save destination is ignored if there is no function definition in the same file. The default is the

stack.

• When the interrupt function is defined in the same file as the #pragma vect (or interrupt) specification, the

function name specified by the #pragma vect (or interrupt) is determined to be an interrupt function even

when no qualifier is described. (For details on the #pragma vect, see Procedure in Section (10) “Interrupt

functions .”)

[Example]

The declarations and definitions of a function have the following formats.

_ _interrupt void func(); /* Prototype declaration */

_ _interrupt_brk void func(); /* Prototype declaration */

_ _interrupt void func(){ Processing }; /* Function body */

_ _interrupt_brk void func(){ Processing }; /* Function body */

[Compatibility]

<From another C compiler to this C compiler>

• If interrupt functions are not supported, no modifications are needed.

• If you wish to change to interrupt functions, changes must conform to the Procedure described above.

<From this C compiler to another C compiler>

• #define is used. It can be handled as an ordinary function.

• If using as an interrupt function, the changes must conform to the compiler specifications.

CHAPTER 11 EXTENDED FUNCTIONS

266

(12) Interrupt functions

Interrupt function qualifiers Interrupt function qualifiers

[Function]

• DI and EI code is output to the object and the object file is created.

• If there are no #pragma directives, DI() and EI() are regarded as ordinary functions.

• If “DI();” is described at the beginning of the function (except for automatic variable declarations, comments,

or preprocessing directives), DI code is output before the function’s preprocessing (immediately after the

function name label).

• If DI code is output after the function’s preprocessing, a new block is opened, delimited by ‘{’, before

describing “DI();”.

• If “EI();” is described last in the function (excluding comments or preprocessing directives), EI code is output

after the function’s postprocessing (immediately before RET code).

• If EI code is output before the function’s postprocessing, the new block is closed, delimited by ‘}’, after

describing “EI();”

[Effect]

• A disable interrupt function can be created.

[Procedure]

• The #pragma DI and #pragma EI directives are described at the beginning of the C source.

The following items can be described before #pragma DI and #pragma EI.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• “DI();” and “EI();” are written in the source with the same format as a function call.

• DI and EI described after #pragma can be in lowercase or uppercase letters.

[Limits]

• When using this function, DI and EI cannot be used as function names.

DI and EI are written in uppercase letters. Lowercase letters are treated as ordinary functions. However, if

the symbol name case specification option (-CA) is specified during compilation, uppercase and lowercase

letters are not distinguished and all are regarded as uppercase letters. Therefore, they are treated as

interrupt functions even when described in lowercase letters. For details, see “CC78K0S Series C Compiler

User’s Manual Operation .”

CHAPTER 11 EXTENDED FUNCTIONS

267

Interrupt function qualifiers Interrupt function qualifiers

[Example]

(C source)

#pragma DI

#pragma EI

void main()

{

 DI();

 Function body

 EI();

}

(Compiler output object)

_main:

 di

 Preprocessing

 Function body

 Postprocessing

 ei

 ret

<When DI and EI are output after and before pre- and postprocessing>

(C source)

#pragma DI

#pragma EI

void main()

{

 {

 DI();

 Function body

 EI();

 }

}

CHAPTER 11 EXTENDED FUNCTIONS

268

Interrupt function qualifiers Interrupt function qualifiers

(Compiler output object)

_main:

 Preprocessing

 di

 Function body

 ei

 Postprocessing

 ret

[Description]

• The main function disables interrupts in the above example.

[Compatibility]

<From another C compiler to this C compiler>

• If interrupt functions are not used, modifications are not needed.

• If interrupt functions are used, the modifications must comform to Procedure described above.

<From this C compiler to another C compiler>

• The #pragma DI and #pragma EI directives are deleted or separated by #ifdef. DI and EI can be used as

function names. (For example, #ifdef _ _K0S_ _ to #endif)

• If using as an interrupt function, the changes must conform to the compiler specifications.

CHAPTER 11 EXTENDED FUNCTIONS

269

(13) CPU control instructions

CPU control instructions CPU control instructions

[Function]

• The following code is output to the object to create the object file.

(1) Output the HALT instruction.

(2) Output the STOP instruction.

(3) Output the NOP instruction.

[Effect]

• The microprocessor’s standby function can be used in C programs.

• The clock continues without the CPU operating.

[Procedure]

• The #pragma HALT, #pragma STOP, and #pragma NOP directives are described at the beginning of the C

source.

• The following items can be described before the #pragma directives.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• Keywords after #pragma can be described in lowercase and uppercase letters.

• The instructions are described in uppercase letters as shown below in the C source in the same format as a

function call.

(1) HALT();

(2) STOP();

(3) NOP();

[Limits]

• When these functions are used, HALT(), STOP(), and NOP() cannot be used as function names.

• HALT, STOP, BRK, and NOP are described in uppercase letters. Functions in lowercase letters are treated

as ordinary functions. (However, if the symbol name case specification option (-CA) is specified during

compilation, lowercase and uppercase letters are not distinguished and are regarded as uppercase letters.

Therefore, even when described in lowercase letters, they are treated as CPU control instructions.)

CHAPTER 11 EXTENDED FUNCTIONS

270

CPU control instructions CPU control instructions

[Example]

(C source)

#pragma HALT

#pragma STOP

#pragma NOP

main()

{

 HALT();

 STOP();

 NOP();

}

(Compiler output object)

@@CODE CSEG

_main

 halt

 stop

 nop

[Compatibility]

<From another C compiler to this C compiler>

• If CPU control instructions are not used, modifications are not needed.

• To use CPU control instructions, the changes must conform to the Procedure described above.

<From this C compiler to another C compiler>

• When the #pragma HALT, #pragma STOP, or #pragma NOP statements are deleted or separated by #ifdef,

HALT, STOP, and NOP can be used as function names.

• If using as a CPU control instruction, changes must conform to the compiler specifications.

CHAPTER 11 EXTENDED FUNCTIONS

271

(14) Absolute address access functions

Absolute address access functions Absolute address access functions

[Function]

• The code for accessing ordinary RAM space in the object does not call functions. It is expanded inline and

output to create the object file.

• If there are no #pragma directives, an absolute address access function is regarded as an ordinary function.

[Effect]

• By using C descriptions, accessing a special address in the ordinary memory space can be simplified.

[Procedure]

• The #pragma access directive is described at the beginning of the C source.

• The format is identical to a function call and is described in the source.

The four function names for absolute address access are

peekb, peekw, pokeb, pokew

• The following items can be described before #pragma access.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• The keywords after #pragma can be described in either lowercase or uppercase letters.

[Limits]

• The function name for absolute address access cannot be used as the function name.

• The function for absolute address access is described in lowercase letters. Functions in uppercase letters

are treated as ordinary functions. (However, when the symbol name case specification option (-CA) is

specified during compilation, lowercase and uppercase letters are not distinguished and are regarded as

uppercase letters. Therefore, even when described in uppercase letters, a function is treated as an absolute

address access function. For details, see “CC78K0S Series C Compiler User’s Manual, Operation .”

CHAPTER 11 EXTENDED FUNCTIONS

272

Absolute address access functions Absolute address access functions

[Example]

(C source)

#pragma access

 char a;

 int b;

 void main()

{

 a = peekb (0x1234);

 a = peekb (0xfe23);

 b = peekw (0x1256);

 b = peekw (0xfe68);

 pokeb (0x1234, 5);

 pokeb (0xfe23, 5);

 pokeb (0x1256, 7);

 pokeb (0xfe68, 7);

}

(Output assembler source)

 :

mov a,!01234H

mov !_a,a

mov a,0FE23H

mov !_a,a

mov a,!01256H

xch a,x

mov a,!01257H

movw de,#_b

callt [@@deist]

movw ax,0FE68H

callt [@@deist]

mov a,#05H ;5

mov !01234H,a

mov 0FE23H,#05H ;5

mov a,#07H;7

mov !01256H,a

mov 0FE68H,#07H ;7

CHAPTER 11 EXTENDED FUNCTIONS

273

Absolute address access functions Absolute address access functions

[Absolute address access functions]

(1) unsigned char peekb (addr);

unsigned int addr;

Returns one byte of the addr address.

(2) unsigned int peekw (addr);

unsigned int addr;

Returns two bytes of the addr address.

(3) void pokeb (addr, data);

unsigned int addr;

unsigned char data;

Writes one byte of data in the position pointed to by the addr address.

(4) void pokew (addr, data);

unsigned int addr;

unsigned int data;

Writes two bytes of data in the position pointed to by the addr address.

Note The above function declarations are not affected by the -ZI option.

[Compatibility]

<From another C compiler to this C compiler>

• If absolute address access functions are not used, modifications are not needed.

• To change to absolute address access functions, modifications must conform to Procedure described above.

<From this C compiler to another C compiler>

• The #pragma access statements are deleted or separated by #ifdef. The function names for absolute

address access can be used as function names.

• If using as an absolute address access function, the changes must conform to the compiler specifications.

(#asm, #endasm, or asm(), etc.)

CHAPTER 11 EXTENDED FUNCTIONS

274

(15) Bit field declarations

Bit field declarations Bit field declarations

(1) Type specifier extension

[Function]

• A bit field of type unsigned char is not allocated over byte boundaries.

• A bit field of type unsigned int is not allocated over word boundaries. An allocation can cross byte

boundaries.

• Bit fields having the same type are allocated in identical byte units (or word units). If their types differ,

they are allocated in different word units (or byte units).

[Effect]

• Memory savings, compact object code, and the execution speed is improved.

[Procedure]

• In addition to the unsigned int type, the unsigned char type can be specified as the type specifier for a bit

field.

[Compatibility]

<From another C compiler to this C compiler>

• The source does not have to be modified.

• If you wish to use unsigned char in the type specifier, the type specifier is changed.

<From this C compiler to another C compiler>

• If unsigned char is not used in the type specifier, modifications are not needed.

• If unsigned char is used in the type specifier, change it to unsigned int.

CHAPTER 11 EXTENDED FUNCTIONS

275

Bit field declarations Bit field declarations

(2) Allocation direction for bit fields

[Function]

• The allocation direction of a bit field is set by the -QB option and changes from the most-significant bit

(MSB).

• If the -QB option is not specified, allocation is from the least-significant bit (LSB).

[Procedure]

• If the bit field is allocated from the MSB, the -QB option is set during compilation.

• If the bit field is allocated from the LSB, no options are specified.

[Example 1]

(Bit field declaration)

struct t{

 unsigned char a:1;

 unsigned char b:1;

 unsigned char c:1;

 unsigned char d:1;

 unsigned char e:1;

 unsigned char f:1;

 unsigned char g:1;

 unsigned char h:1;

};

CHAPTER 11 EXTENDED FUNCTIONS

276

Bit field declarations Bit field declarations

Figure 11-1. Bit Position Based on Bit Field Declaration (Example 1)

Bit position allocated from the MSB when
the -QB option is specified

Bit position allocated from the LSB when
the -QB option is not specified

MSB LSB

a b c d e f g h

MSB LSB

h g f e d c b a

[Description]

Since a to h are 8 or less bits, they are allocated in a one byte unit.

[Example 2]

(Bit field declaration)

struct t{

 char a;

 unsigned char b:2;

 unsigned char c:3;

 unsigned char d:4;

 int e;

 unsigned int f:5;

 unsigned int g:6;

 unsigned char h:2;

 unsigned int i:2;

};

CHAPTER 11 EXTENDED FUNCTIONS

277

Figure 11-2. Bit Position Based on Bit Field Declaration (Example 2)

Bit position allocated from the MSB when
the -QB option is specified

Bit position allocated from the LSB when
the -QB option is not specified

MSB LSB

c aEmptyb

MSB LSB

c aEmpty b

1 0 1 0

Member a of type char is allocated at the first byte position. b and c are allocated in the next byte unit. If there is

not enough room, the allocation is in the next byte position. Since there are three empty bits and d is four bits, d

is allocated to the next byte position.

d EmptyEmpty EmptyEmpty d

3 2 3 2

ee ee

5 4 5 4

g Emptyf g gEmpty g f

7 6 7 6

Since g is a bit field of type unsigned int, byte boundaries can be crossed. Since h is a bit field of type unsigned

char, it is not allocated in the same byte unit as the g bit field of type unsigned int, but is allocated in the next byte

unit.

h EmptyEmpty EmptyEmpty h

9 8 9 8

EmptyEmptyi Empty iEmpty

11 10 11 10

Since i is a bit field of type unsigned int, it is allocated in the next word unit.

* The numbers below the bit position diagrams indicate the byte offset values from the beginning of the

structure.

[Compatibility]

<From another C compiler to this C compiler>

• Modifications are not needed.

<From this C compiler to another C compiler>

• If -QB option is specified and coding considers the order in which bit fields are allocated, changes are

necessary.

CHAPTER 11 EXTENDED FUNCTIONS

278

(16) Changing the compiler output section name

#pragma section... #pragma section...

[Function]

• The compiler output section name is changed, and the starting address is set. If the starting address is

omitted, the default repositioning attribute is enabled.

• If the @@CALT section name is changed with the AT starting address setting, the callt function must be

described before or after other functions in the source file.

[Effect]

• By changing the compiler output section name, that section can be independently positioned.

[Procedure]

• The section name changed by the following #pragma directive, the section name after the change, and the

starting address of the section are set.

This #pragma directive is described at the beginning of the C source file.

If the #pragma PC(type) is described, #pragma directives are described later. The following items can be

described before this #pragma directive.

• Comments

• Preprocessing directives that do not generate variable or function definitions or references

This declaration is placed at the beginning of the file.

#pragma section compiler-output-section-name changed-section-name [AT-starting-address]

• Always describe the compiler-output-section-name in uppercase letters in the keywords after #pragma. The

section and AT can be described in lowercase or uppercase letters.

• The format for the changed-section-name conforms to the assembler specifications.

• Only hexadecimal C language integer constants and assembler numerical constants can be described in the

starting address.

CHAPTER 11 EXTENDED FUNCTIONS

279

#pragma section... #pragma section...

[C language integer constants]

<integer-constant> ::= <hexadecimal-number>

<hexadecimal-number> ::= 0xn

 | 0xn ... n

 | 0Xn

 | 0Xn ... n

 (n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

[Assembler numerical constants]

<integer-constant> ::= <hexadecimal-number>

<hexadecimal-number> ::= nH

 | n ... nH

 | nh

 | n ... nh

 (n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,F)

• The first hexadecimal character must be a number.

(Example) When the value of 255 is expressed in hexadecimal, zero must be specified before F to become

0FFH.

[Example]

(C source)

#pragma section @@CODE CC1 AT 2400H

void main()

{

 Function body

}

(Output object)

CC1 CSEG AT 2400H

_main:

 Preprocessing

 Function body

 Postprocessing

 ret

CHAPTER 11 EXTENDED FUNCTIONS

280

#pragma section... #pragma section...

[Description]

The @@CODE section name is changed to CC1. The starting address is set to address 2400H.

[Compatibility]

<From another C compiler to this C compiler>

• If the change section name function is not supported, modifications are not needed.

• To change the section name, the modifications must conform to Procedure described above.

<From this C compiler to another C compiler>

• #pragma section... is deleted or separated by #ifdef.

• To change the section name, the change must conform to the specifications of each compiler.

[Limits]

• A section name indicating the vector table segment (for example, @@VECT02) cannot be changed.

A section name indicating the bank function segment

(for example, @@BANK1) cannot be changed.

• Multiple versions of the same section name as the AT starting address specification (for example, in other

files) generate link errors.

• The compiler restricts the address range to the starting address specification for the @@DATS, @@BITS,

and @@INIS changed section names.

(Address range)

0xfe20 - 0xfeB7

(Warnings)

• The section corresponds to the segment in the assembler.

• The compiler does not check for duplications of the changed section names and other symbols.

Consequently, the user assembles the output assembler list and should verify that there are no duplicates.

• If the ROM-related section name (*) is changed by using #pragma section when programming the ROM, the

user is responsible for changing the start-up routine.

CHAPTER 11 EXTENDED FUNCTIONS

281

#pragma section... #pragma section...

(*) ROM-related section names

@@R_INIT, @@R_INIS, @@INIT, @@INIS

• If there is no setting in the ROM because of the -nr option, @@R_INIT and @@R_INIS are not generated.

• Examples of changing the start-up routine and termination module by changing the ROM-related section are

explained next.

[Example of Changing the Start-Up Routine When Changing the ROM-related Section Name]

Examples of changing the start-up routine (cstartr.asm or cstartrn.asm) and the termination module (rom.asm)

when changing ROM-related section names are illustrated.

(C source)

#pragma section @@ R_INIT RTT1

#pragma section @@ INIT TT1

When the above #pragma section description changes the section name where the external variables are

initialized and stored, the user must add the initialization for the external variables stored in the changed section

to the start-up routine.

The start-up routine includes a section for copying the declarations for the starting label of the changed section

and the initial values, and a section for declaring the ending label in the termination module. The following shows

its procedure

RTT1_S and RTT1_E are the starting and ending labels of the RTT1 section. TT1_S and TT1_E are the starting

and ending labels of the TT1 section.

CHAPTER 11 EXTENDED FUNCTIONS

282

#pragma section... #pragma section...

(Changing point of the cstartx.asm start-up routine)

(1) The declaration of the ending label of the section with the changed name is added.

:

EXTRN _main, _@STBEG, _hdwinit

$_IF (EXITSW)

 EXTRN _exit

$ENDIF

:

 EXTRN _?R_INIT, _?R_INIS, _?DATA, _?DATS

 EXTRN RTT1 E, TT1 E m Add the EXTRN declurations for RTT1_E and TT1_E.

:

(2) A section is added to copy the initial values from the RTT1 section with the changed name to the TT1

section.

LDATS1:

 CMPW HL, DE

 BE $LDATS2

 MOV [DE+], A

 BR $LDATS1

LDATS2:

 MOVW DE, #TT1_S

 MOVW HL, #RTT1_S

LTT1: Added section to copy the initial values from the RTT1 section to the
 CMPW HL, #RTT1_E TT1 section.
 BE $LTT2

 MOV A, [HL+]

 MOV [DE+], A

 BR $LTT1

LTT2:

 CALL !_main ;main();

 :

CHAPTER 11 EXTENDED FUNCTIONS

283

#pragma section... #pragma section...

(3) Sets the starting label of the section with the changed name.

 .

 .

 .

@@R_INIT CSEG

_@R_INIT:

@@R_INIS CSEG UNITP

_@R_INIS:

@@INIT DSEG

_@INIT:

@@DATA DSEG

_@DATA:

@@INIS DSEG SADDRP

_@INIS:

@@DATS DSEG SADDRP

_@DATS:

RTT1 CSEG

RTT1_S: Add the label setting indicating the beginning of the RTT1 section.

TT1 DSEG

TT1_S: Add the label setting indicating the beginning of the TT1 section.

@@CODE CSEG

@@CALT CSEG CALLT0

@@CNST CSEG

@@BITS BSEG

;

END

CHAPTER 11 EXTENDED FUNCTIONS

284

#pragma section... #pragma section...

(Changing point of the rom.asm termination module)

(1) Declaration of the label indicating the end of the section with the changed name

NAME @rom

;

PUBLIC _?R_INIT, _?R_INIS

PUBLIC _?INIT, _?DATA, _?INIS, _?DATS

PUBLIC RTT1_E, TT1_E m Add RTT1_E and TT1_E.

;

@@R_INIT CSEG

-?R_INIT:

@@R_INIS CSEG UNITP

_?R_INIS:

@@INIT DSEG

_?INIT:

@@DATA DSEG

_?DATA:

@@INIS DSEG SADDRP

_?INIS:

@@DATS DSEG SADDRP

_?DATS:

 :

(2) Setting the label indicating the end

 :

RTT1 CSEG

RTT1_E: Adds the label setting indicating the end of the RTT1 section.

TT1 DSEG

TT1_E: Adds the label setting indicating the end of the TT1 section.

 ;

 END

Next, all sections output by the compiler are illustrated.

CHAPTER 11 EXTENDED FUNCTIONS

285

#pragma section... #pragma section...

Table 11-12. Compiler Output Section Names

Section name Segment type Repositioning

attributes
Description

@@CODE CSEG Code segment

@@CNST CSEG const variable segment

@@R_INIT CSEG Initialization data segment (initial values)

@@R_INIS CSEG UNITP Initialization data segment (initial values, sreg variables)

@@CALT CSEG CALLT0 Segment for callf function table

@@VECT06 CSEG AT 0006H Vector table segment

@@INIT DSEG Temporary data segment (initial values)

@@DATA DSEG Temporary data segment (no initial values)

@@INIS DSEG SADDRP Temporary data area segment (initial values, sreg variables)

@@DATS DSEG SADDRP Temporary data area segment (no initial values, sreg variables)

@@BITS BSEG boolean type variable and bit type variable segments

* When specified in a ROM, @@R_INIT and @@R_INIS are output.

* @@VECT06 is an example of specifying the interrupt caused by a NMI due to #pragma vect(interrupt).

Each segment type is allocated as shown below if there is no repositioning attribute.

Table 11-13. Segment Placement Destination

Segment Type Placement Destination

CSEG

BSEG

DSEG

ROM

RAM saddr area

RAM

CHAPTER 11 EXTENDED FUNCTIONS

286

(17) Binary constants

Binary constants Binary constants 0bxxx

[Function]

• A binary representation is added to the syntax for integer constants.

• A binary number can be described in any position where an integer constant can be described.

[Effect]

• If you wish to describe constants in a bit array, the readability improves when direct descriptions are possible

without converting to octal or hexadecimal numbers.

[Procedure]

• Binary numbers are described in the C source. Binary constants are described as follows:

0b [binary-number]

0B [binary-number]

* Binary number: Either 0 or 1

• A binary constant is 0b or 0B followed by the numbers 0 or 1.

• The value of a binary constant is computed basing on 2.

• The type of the binary constant is the first type in the following list that can represent the value.

• Binary number without subscript : int, unsigned int, long int, unsigned long int

• u or U subscript : unsigned int, unsigned long int

• l or L subscript : long int, unsigned long int

• u or U subscript and l or L subscript : unsigned long int

[Example]

(C source)

 unsigned i;

 i = 0b11100101;

The compiler output object is the same as below.
 unsigned i;

 i = 0xE5;

CHAPTER 11 EXTENDED FUNCTIONS

287

Binary constants Binary constants 0bxxx

[Compatibility]

<From another C compiler to this C compiler>

• Modifications are not needed.

<From this C compiler to another C compiler>

• If the compiler supports binary constants, the changes must conform to the compiler specifications.

• If the compiler does not support binary constants, modifications must conform to the other integral formats of

octal, decimal, and hexadecimal.

CHAPTER 11 EXTENDED FUNCTIONS

288

(18) Change module name [Function]

Change module name function #pragma name

[Function]

• The first eight characters of the module name specified in the symbol information table of the object module

file is output to the symbol table entry.

• When -g is specified in the assembler list file, the first eight characters of the specified module name are

output as the symbol information (MOD_NAM). When -ng is specified, they are output as the NAME pseudo-

instruction.

• If a module name that is nine characters or longer, a warning message is output.

• If illegal characters are described, an error occurs and processing aborts.

• If this #pragma directive occurs more than once in one source file, a warning message is output and the last

description becomes valid.

[Effect]

• The module name of the object can be changed to any name.

[Procedure]

• The description is

#pragma name module-name

The module name consists of the characters that are allowed for file names in the operating system,

excluding the parentheses () and kanji. Lowercase and uppercase letters are not distinguished, but all letters

are regarded as uppercase letters when the -CA option is specified.

[Example]

#pragma name module1

 :

[Limits]

• If kanji is included in the first eight characters of the input file name, an error occurs and processing aborts

unless the module name is changed by this #pragma directive.

[Compatibility]

<From another C compiler to this C compiler>

• If the change module name function is not supported, modifications are not needed.

• To change the module name, the modification must conform to Procedure described above.

<From this C compiler to another C compiler>

• #pragma name... is deleted or separated by #ifdef.

• If the module name is changed, the changes must conform to the compiler specifications.

CHAPTER 11 EXTENDED FUNCTIONS

289

(19) Rotate functions

Rotate functions #pragma rot

[Function]

• Code that rotates the value of an expression in an object is not a function call, but is directly expanded inline

and output to create the object file.

• If there are no #pragma directives, the rotate function is considered to be an ordinary function.

[Effect]

• Even if processing for rotating is not specified by C source or ASM descriptions, the rotate function can be

implemented.

[Procedure]

• The function is described in the source in the same format as a function call. The four rotate function names

are

rorb, rolb, rorw, rolw

(Details about rotate functions are described later.)

• The use of a rotate function is declared by the #pragma rot directive in the module. However, the following

items can be described before #pragma rot.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• The keywords after #pragma can be either lowercase or uppercase letters.

[Example]

(C source)

#pragma rot

unsigned char a = 0x11;

unsigned char b = 2;

unsigned char c;

vold main()

{

 c = rorb (a, b);

}

(Output assembler source)

mov a, !_b

mov c, a

mov a, !_a

ror a, 1

dbnz c, $$-1

mov !_c, a

CHAPTER 11 EXTENDED FUNCTIONS

290

Rotate functions #pragma rot

[Rotate functions]

(1) unsigned char rorb (x, y);

unsigned char x;

unsigned char y;

x is rotated to the right y times.

(2) unsigned char rolb (x, y);

unsigned char x;

unsigned char y;

x is rotated to the left y times.

(3) unsigned int rorw (x, y);

unsigned int x;

unsigned char y;

x is rotated to the right y times.

(4) unsigned int rolw (x, y);

unsigned int x;

unsigned char y;

x is rotated to the left y times.

Note The above function declarations are not affected by the -ZI option.

[Limits]

• The rotate function name cannot be used as a function name.

• The rotate function is described in lowercase letters. Functions in uppercase letters are treated as ordinary

functions. (However, if the symbol name case specification option (-CA) is specified during compilation,

lowercase and uppercase letters are not distinguished and are regarded as uppercase letters. Therefore,

functions in uppercase letters are treated as rotate functions.)

CHAPTER 11 EXTENDED FUNCTIONS

291

Rotate functions #pragma rot

[Compatibility]

<From another C compiler to this C compiler>

• If the rotate functions are not used, modifications are not needed.

• To change to the rotate functions, the modifications must conform to Procedure described above.

<From this C compiler to another C compiler>

• The #pragma rot statements are deleted or separated by #ifdef. A rotate function name can be used as a

function name.

• If using as a rotate function, the modifications must conform to the compiler specifications. (#asm, #endasm,

or asm(), etc.)

CHAPTER 11 EXTENDED FUNCTIONS

292

(20) Multiplication Function

Multiplication function #pragma mul

[Function]

• Outputs a code calling a library which multiplies the value of an expression in an object.

• If there are no #pragma directives, the multiplication function is regarded as an ordinary function.

[Effect]

• Since code that produces the data size of I/O for the multiplication directive is generated, the execution

speed can be improved and compact code can be generated than with an ordinary multiplication expression.

[Procedure]

• The same format as in a function call is described in the source. The multiplication function name is mulu.

unsigned int mulu (x, y);

unsigned char x;

unsigned char y;

x and y are multiplied without signs.

• The use of the multiplication function is declared by the #pragma mul directive in the module. However, the

following items can be described before #pragma mul.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• The keywords described after #pragma can be lowercase or uppercase letters.

[Limits]

• CC78K0 expands a multiplication code in inline. However, this compiler does not perform an inline

expansion, but call a library. The description is as same as CC78K0.

• Multiplication function names cannot be used as function names (when #pragma mul is declared).

• A multiplication function is described in lowercase letters. Functions in uppercase letters are treated as

ordinary functions. (However, if the symbol name case specification option (-CA) is specified during

compilation, lowercase and uppercase letters are not distinguished and are regarded as uppercase letters.

Therefore, functions in uppercase letters are treated as multiplication functions.)

CHAPTER 11 EXTENDED FUNCTIONS

293

Multiplication functions #pragma mul

[Example]

(C source)

#pragma mul

unsigned char a = 0x11;

unsigned char b = 2;

unsigned int i;

void main()

{

 i = mulu (a, b);

}

(Output assembler source)

mov a, !_b

xch a, x

mov a, !_a

callt [@@ mulu]

movw hl, #_i

callt [@@ hlist]

[Compatibility]

<From another C compiler to this C compiler>

• If multiplication functions are not used, modifications are not needed.

• To change to the multiplication function, the changes must follow the description method described above.

<From this C compiler to another C compiler>

• The #pragma mul statements are deleted or separated by #ifdef. A multiplication function name can be used

as a function name.

• If using as a multiplication function, the modifications must conform to the compiler specifications. (#asm,

#endasm, or asm(), etc.)

CHAPTER 11 EXTENDED FUNCTIONS

294

(21) Division Function

Division function #pragma div

[Function]

• Outputs a code calling a library which devides the value of an expression in an object.

• If there are no #pragma directives, the division function is regarded as an ordinary function.

[Effect]

• Since code that produces the data size of the I/O for the division directive is generated, the execution speed

can be improved and compact code can be generated than in an ordinary division expression.

[Procedure]

• The same format as a function call is described in the source. The two division function names are divuw

and moduw.

[Division Functions]

(1) unsigned int divuw (x, y);

 unsigned int x;

 unsigned char y;

 x and y are divided without signs and the quotient is returned.

(2) unsigned char moduw (x, y);

 unsigned int x;

 unsigned char y;

 x and y are divided without signs and the modulus is returned.

• The use of the division function is declared by the #pragma div directive in the module. However, the

following items can be described before #pragma div.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• The keywords described after #pragma can be lowercase or uppercase letters.

CHAPTER 11 EXTENDED FUNCTIONS

295

Division function #pragma div

[Limits]

• CC78K0 expands a division code in inline. However, this compiler does not perform an inline expansion, but

call a library. The description is as same as CC78K0.

• Division function names cannot be used as function names.

• The division function is described in lowercase letters. Functions in uppercase letters are treated as ordinary

functions. (However, if the symbol name case specification option is specified during compilation, lowercase

and uppercase letters are not distinguished and are regarded as uppercase letters. Therefore, uppercase

letters are treated as division functions. See the “CC78K0 User’s Manual, Operation .”)

[Example]

(C source)
 #pragma div

 unsigned int a = 0x1234;

 unsigned char b = 0x12;

 unsigned char c;

 unsigned int i;

 void main(){

 i = divuw (a, b);

 c = moduw (a, b);

 }

(Output assembler source)
 mov a, !_b

 mov c, a

 movw hl, #_a

 callt [@@ hlilo]

 callt [@@ divuw]

 movw hl, #_i

 callt [@@ hlist]

 mov a, !_b

 movw hl, #_a

 callt [@@ hlilo]

 callt [@@ divuw]

 mov a, c

 mov !_c, a

CHAPTER 11 EXTENDED FUNCTIONS

296

Division function #pragma div

[Compatibility]

<From another C compiler to this C compiler>

• If division functions are not used, modifications are not needed.

• To change to division functions, the modifications must conform to the description method described above.

<From this C compiler to another C compiler>

• The #pragma div statements are deleted or separated by #ifdef. A division function name can be used as a

function name.

• If using as a division function, the modifications must conform to the specifications of each compiler (#asm,

#endasm, or asm(), etc.).

CHAPTER 11 EXTENDED FUNCTIONS

297

(22) Data insertion [Function]

Data insertion function #pragma opc

[Function]

• Constant data is inserted at the current address.

• If there are no #pragma directives, data insertion functions are regarded as ordinary functions.

[Effect]

• Even when asm descriptions are not used, special data or instructions can be inserted in the code area. If

the asm description is used, the object cannot be obtained without passing through the assembler. However,

when the data insertion function is used, the object can be obtained even without passing through the

assembler.

[Procedure]

• The same format as a function call is described in the source. The data insertion function name is __OPC.

(For details on data insertion functions, see “Data Insertion Functions” to be described later.)

• The use of data insertion functions is declared by the #pragma opc directive. However, the following items

can be described before #pragma opc.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable or function definitions or references

• The keywords after #pragma can be lowercase or uppercase letters.

[Limits]

• A data insertion function name cannot be used as a function name (when #pragma opc is specified).

• _ _OPC is described in uppercase letters. Functions in lowercase letters are treated as ordinary functions.

(However, if the symbol name case specification option (-CA) is specified during compilation, lowercase and

uppercase letters are not distinguished and are regarded as uppercase letters. Therefore, functions in

lowercase letters are treated as data insertion functions.)

CHAPTER 11 EXTENDED FUNCTIONS

298

Data insertion function #pragma opc

[Example]

(C source)

#pragma opc

void main()

{

 _ _OPC (0xBF);

 _ _OPC (0xA1, 0x12);

 _ _OPC (0x10, 0x34, 0x12);

}

(Output assembler source)

_main:

; line 4 : _ _OPC (0xBF);

 DB 0BFH

; line 5 : _ _OPC (0xA1, 0x12);

 DB 0A1H

 DB 012H

; line 6 : _ _OPC (0x10, 0x34, 0x12);

 DB 010H

 DB 034H

 DB 012H

; line 7 : }

 ret

[Data Insertion Functions]

(1) void_ _OPC (unsigned char x, ...);

 The constant value described in the argument is inserted at the current address.
 Arguments can only be specified as constants.

[Compatibility]

<From another C compiler to this C compiler>

• If data insertion functions are not used, modifications are not needed.

• To change to data insertion functions, the modifications must conform to Procedure described above.

<From this C compiler to another C compiler>

• The #pragma opc statements are deleted or separated by #ifdef. A data insertion function name can be used

as a function name.

• If using as a data insertion function, the modifications must conform to the specifications of each compiler

(#asm, #endasm, or asm(), etc.).

CHAPTER 11 EXTENDED FUNCTIONS

299

(23) Static Model

Static Model Static Model

[Function]

• All arguments are passed to registers. (See Appendix C “FUNCTION CALL INTERFACE”)

• Function arguments passed via registers are allocated to function-specific static areas.

• Automatic variables are allocated to function-specific static areas.

• In the case of a leaf functionNote 1, arguments and automatic variables are allocated from the high-order

address to the saddr area below and including 0FEFFH.

This saddr area is shared by the leaf function of all modules, and therefore it is called a common area.

The maximum size of a common area can be specified with a parameter when specifying the -SM option.

-SM[nn] (nn:0 to 16)

nn bytes are allocated as the common area, and the remaining bytes are allocated to function-specific static

areas. If nn = 0 or is omitted, there is no common area.

The sreg/_ _sreg keyword can be added to function arguments and automatic variables. Function arguments

and automatic variables to which the sreg/_ _sreg keyword has been added are allocated to the an saddr

area and can be bit-manipulated.

• Function arguments and automatic variables (excluding static variables inside functions) can be allocated to

saddr and bit manipulated.

• The following macro definitions are automatically performed by the compiler.

#define _ _STATIC_MODEL_ _ 1

Note 1. Function that does not call a function. The compiler performs judgment automatically, therefore it is not

necessary to describe norec/_ _leaf keywords. (When static model is specified).

[Effect]

• Normally, instructions to access static areas are shorter and faster than instructions to access stack frames,

and therefore enable the reduction of object code as well as faster execution.

• Saving and restoring of argument and variables (interrupt function register variables, norec function

arguments/automatic variables, run-time library arguments) done in the normal model is not performed in the

static model, which allows faster interrupt processing.

• Plural leaf functions share the same data area, thereby saving memory space.

CHAPTER 11 EXTENDED FUNCTIONS

300

Static Model Static Model

[Procedure]

• During compiling, specify the -SM option. Objects at this time are called static model objects, whereas objects

when the -SM is not specified during compiling are called normal model objects.

[Limits]

• Static model modules cannot be linked to normal model modules. However, static model modules can be

linked to each other even if their common areas are of different sizes.

• Floating-point numbers are not supported. If the float and double keywords are described, a fatal error

results.

• Up to 3 arguments, or a total of 6 bytes, can be passed.

• Arguments are not passed via stacks, therefore the variable length argument “...” cannot be used. Variable

length arguments result in errors.

• Structure and union arguments and return values cannot be used. Describing them results in errors.

• The noauto, norec and _ _leaf functions cannot be used. Their description causes a warning to be output,

and they are ignored.

• The recursive function cannot be used. Function arguments and automatic variable areas are reserved

statically, therefore the recursive function cannot be used.

• Prototype declarations cannot be omitted. Regardless of the presence of a function call, an error results in

the absence of a definition of the function and a prototype declaration.

• Functions that are recursive functions, and limits on arguments and return values, cannot be used, and

therefore one part of the standard library cannot be used.

CHAPTER 11 EXTENDED FUNCTIONS

301

Static Model Static Model

[Example]

(C source)

[when specifying the -SM option]

void sub (char, char, char);

void main (){

char I = 1;

char j,k;

j = 2;

k = i+j;

sub (i,j,k);

}

void sub (char p1, char p2, char p3){

char a1,a2;

a1=p1;

a2=p2+p3;

}

(Compiler output object)

@@DATA DSEG

?L0003: DS (1) ; Automatic variable i of main function

?L0004: DS (1) ; Automatic variable j of main function

?L0005: DS (1) ; Automatic variable k of main function

?L0008: DS (1) ; Automatic variable a2 of sub function

 :

; line 1: void sub (char, char, char);

; line 2: void main(){

@@CODE CSEG

_main:

; line 3: char i=1;

 mov a,#01H ;1

 mov !?L0003,a ;i ; Automatic variable I

; line 4: char j,k;

CHAPTER 11 EXTENDED FUNCTIONS

302

Static Model Static Model

(Compiler output object)

; line 5: j=2;

inc a

mov !?L0004,a ;j ; Automatic variable j

; line 6: k=i+j;

add a,!?L0003 ;l ; Add i and j

mov !?L0005,a ;k ; Assign to k

; line 7: sub(i,j,k);

movw hl,ax ; Pass k by register h

mov a,!?L0004 ;j

movw bc,ax ; Pass j by register b

mov a,!?L0003 ;l ; Pass I by register a

call !_sub

; line 8: }

ret

; line 9:

; line 10: void sub (char p1, char p2, char p3){

_sub:

mov _@KREG15,a ; Allocate 1st argument to common area

movw ax,bc

mov _@KREG14,a ; Allocate 2nd argument to common area

movw ax,hl

mov _@KREG13,a ; Allocate 3rd argument to common area

; line 11: char a1,a2;

; line 12: a1=p1;

mov a,_@KREG15 ;p1 ; 1st argument _@KREG15

mov _@KREG12,a ;a1 ; Automatic variable a1

; line 13: a2=p2+p3;

mov a,_@KREG14 ;p2 ; Automatic variable p2

add a,_@KREG13 ;p3 ; Add automatic variable p3

mov !?L0008,a ;a2 ; Automatic variable a2 is a function-

 specific area

; line 14: }

ret

CHAPTER 11 EXTENDED FUNCTIONS

303

Static Model Static Model

[Compatibility]

<From another C compiler to this C compiler>

• If creating normal model objects, modifications of the source are not required if the -SM option is not

specified.

• If creating static model objects, follow the Procedure above.

<From this C compiler to another C compiler>

• If simply compiling on another compiler, modifications of the source are not required.

(Warnings)

<1> Arguments and automatic variables are reserved statically, therefore the recursive function may cause the

contents of arguments and automatic variables to be destroyed. It should be kept in mind that a function

directly calling itself causes an error, but that in the case of a function calling itself from another function it

called, the compiler cannot detect this and thus no error is caused.

<2> Cautions on case when function call from interrupt function occurs

If a function call from an interrupt function occurs, attention must be paid to the following.

• If functions that are being processed when an interrupt is issued are called by interrupt processing

(interrupt function and function called by interrupt function), the argument and automatic variable may be

destroyed.

• Even when functions that are being processed when an interrupt is issued use a common area, saving

and restoring of the common area is not performed, therefore care is required when using a common

area in interrupt processing (function called by interrupt function).

If possible, describing by performing only flag setting without performing function call from the interrupt

function, and referencing that flag in the main function, is recommended.

CHAPTER 11 EXTENDED FUNCTIONS

304

(24) Changing type

Static Model Static Model

(1) Changing int and short type to char type

[Function]

• int/short types are treated as char type.

• Details on type changes are shown below. (Some type changes are influenced by the -QU option)

Table 11-14. Type Changes Using -ZI and -QU Options

Type described in C source Option Type after change

short, short int, int -QU present unsigned char

short, short int, int -QU absent signed char

unsigned short, unsigned short int, unsigned, unsigned int unsigned char

signed short, signed short int signed, signed int signed char

• A warning is output the first time an int or short keyword appears in the C source.

• The -QC option is enabled regardless of whether it is specified or not. If the -QC option is not specified, a

warning is output and the -QC option becomes enabled.

• If -ZAI, etc., is specified at the same time as the -ZA option, a warning is output. (only when -W2 is specified)

• The elements listed below, which have a syntax that can be described by a type specifier and be omitted, are

treated as char type.

Function arguments and return values

Variables and function declarators with type specifier omitted

• The following macro definitions are automatically performed by the compiler.

#define _ _FROM_INT_TO_CHAR_ _ 1

• One part of the standard library cannot be used.

CHAPTER 11 EXTENDED FUNCTIONS

305

Static Model Static Model

[Procedure]

• Specify the -ZI option.

[Limits]

• Modules for which the -ZI option is specified and modules for which the -ZI is not specified cannot be linked.

CHAPTER 11 EXTENDED FUNCTIONS

306

Static Model Static Model

(2) Changing long type to int type

[Function]

• long type is treated as int type.

• Details on type changes are shown below.

Table 11-15. Type Changes Using -ZL Option

Type described in C source Type after change

unsigned long, unsigned long int unsigned int

long, long int

signed long, signed long int

signed int

• A warning is output the first time a long keyword appears in the C source.

• A warning is output if -ZAL, etc., is specified at the same time as the -ZA option.

• The following macro definitions are automatically performed by the compiler.

#define _ _FROM_LONG_TO_INT_ _ 1

• One part of the standard library cannot be used.

[Procedure]

• Specify the -ZL option.

[Limits]

• Modules for which the -ZL option is specified and modules for which the -ZL option is not specified cannot be

linked.

CHAPTER 11 EXTENDED FUNCTIONS

307

11.5 Modifying the C Source

By using extended functions, efficient object code can be created. However, since extended functions are

adapted to the 78K/0S Series, other uses necessitate modifications. Porting from another C compiler to this C

compiler, or from this C compiler to another C compiler is described.

<From another C compiler to this C compiler>

• #pragma

If another C compiler supports #pragma, the C source must be modified. The modification is examined

based on the specifications of the C compiler.

• Extended specifications

If the specifications are extended, such as the addition of keywords by the other C compiler, modifications

are required. The modification is examined based on the specifications of the C compiler.

<From this C compiler to another C compiler>

Since this C compiler adds keywords as extended functions to port to another C compiler, the keywords are

deleted or are separated by #ifdef.

[Examples]

(1) Disable keywords (same for callf, sreg, noauto, norec, etc.)

#ifndef _ _K0S_ _

 #define callt /* Make callt function an ordinary function. */

#endif

(2) Change to another type.

#ifndef _ _K0S_ _

 #define bit char /* Change bit type variable to char type variable. */

#endif

308

[MEMO]

309

CHAPTER 12 REFERENCING THE ASSEMBLER

This chapter describes how to link a program written in assembly language.

If a function called from a C source program is written in another language, both object modules are linked by the

linker. This chapter describes the procedure for calling a program written in another language from a program written

in the C language and the procedure for calling a program written in the C language from a program written in

another language.

How to interface with another language by using the RA78K0S Series Assembler Package and this C compiler is

described in this order:

(1) Calling assembly language routines from the C language

(2) Calling C language functions from assembly language

(3) Referencing variables defined in the C language

(4) Referencing variables defined in assembly language on the C language side

(5) Warnings

CHAPTER 12 REFERENCING THE ASSEMBLER

310

12.1 Accessing Arguments/Automatic Variables

The procedure to access arguments and automatic variables of this C compiler is described below.

12.1.1 Normal model

• On the function call side, register arguments are passed together with regular arguments in the same way.

The first argument uses the following registers and stacks, and subsequent arguments are passed via stacks.

Table 12-1. Passing Variables (Function Call Side)

Type Passing Location (First Argument) Passing Location (Second and Later Arguments)

1-byte, 2-byte data AX Stack passing

4-byte data AX, BC Stack passing

Floating-point number AX, BC Stack passing

Others Stack passing Stack passing

* 1- to 4-byte data includes structures and unions.

• On the function definition side, arguments passed via a register or stack are stored to the argument allocation

location.

Register arguments are copied to a register or saddr area (_@KREGxx). Even when passing is done via a

register, the registers on the function call side (passing side) and the function definition side (receiving side)

differ, and therefore register copying is performed.

Arguments passed via a regular register are pushed to a stack. If passing is done via a stack, the passing

location simply becomes the argument allocation location.

Saving and restoring of registers that allocate arguments is performed on the function definition side.

• The arguments of functions and the values of automatic variables declared inside functions are stored to the

following registers, saddr areas, or stack frames using an option. The base pointer used when storing to a

stack frame uses the HL register.

If the function argument is register declared and specified by the -QR option, it is allocated to the saddr area.

CHAPTER 12 REFERENCING THE ASSEMBLER

311

Table 12-2. Storing of Arguments/Automatic Variables (Inside Called Function)

Option Argument/Auto variable Storage location Priority level

-QV

(register allocation option)

Declared argument or

automatic variable

HL register

(only when base pointer is not

required)

char type: L, H, in this order

int, short, enum type: HL

-QR

(saddr allocation option)

Declared argument or

automatic variable (including

register variables)

Argument:

_@KREG12 to 15

[0FEE4H to 0FEE7H]

auto variable:

_@KREG00 to 11

[0FED8H to 0FEE3H],

_@KREG12 to 15 not allocated to

argument

Only number of bytes of

variable or argument is

allocated, in order of

appearance

-QRV Declared argument or

automatic variable (including

register variables)

HL register,

Argument:

_@KREG12 to 15

[0FEE4H to 0FEE7H]

auto variable:

_@KREG00 to 11

[0FED8H to 0FEE3H]

_@KREG12 to 15 not allocated to

argument

In order of appearance.

Allocated to register as char

type: L, H, in this order

int, short, enum type: HL

Default Declared argument,

automatic variable

Stack frame Order of appearance

The following example shows the function call.

(C source: Normal model at the -QRV specification)

void func0 (register int, int);

void main(){

 func0 (0x1234, 0x5678);

}

void func0 (register int p1, int p2){

register int r;

int a;

r=p2;

a=p1;

}

CHAPTER 12 REFERENCING THE ASSEMBLER

312

(Output assembler source)

EXTRN _@KREG12

EXTRN _@KREG13

EXTRN _@KREG10

EXTRN _@KREG14

PUBLIC _func0

PUBLIC _main

@@CODE CSEG

_main:

movw ax,#05678H ;22136

push ax ; Argument passed on stack

movw ax,#01234H ;4660 ; 1st argument passed on register

call !_func0 ; Function calling

pop ax ; Argument passed on stack

ret

_func0:

push hl

xch a,x

xch a,_@KREG12

xch a,x

xch a,_@KREG13 ; Allocate register argument to _@KREG12.

push ax ; Save the saddr area for register

 arguments.

movw ax,_@KREG10

push ax ; Save the saddr area for automatic

 variables.

movw ax,_@KREG14

push ax ; Save the saddr area for register

 variables.

movw ax,sp

movw hl,ax

mov a,[hl+10] ; Argument p2 passec on stack

xch a,x

mov a,[hl+11]

movw hl,ax

movw ax,hl

movw _@KREG14,ax ;r ; Assigned to register variables.

movw ax,_@KREG12 ;p1 ; Register argument p1

movw _@KREG10,ax ;a ; Assigned to automatic variable a.

pop ax

movw _@KREG14,ax ; Restore the saddr area for register

 variables.

pop ax

movw _@KREG10,ax ; Restore the saddr area fo automatic

 variables.

pop ax

movw _@KREG12,ax ; Restore the saddr area for register

 arguments.

pop hl

ret

END

CHAPTER 12 REFERENCING THE ASSEMBLER

313

12.1.2 Static model

• On the function call side, register arguments are passed together with regular arguments in the same way.

• Up to 3 arguments, or a total of 6 bytes, can be passed, all via a register.

Table 12-3. Passing Arguments (Function Call Side)

Type Passing location (first argument) Passing location (second argument) Passing location (third argument)

1-byte data A B H

2-byte data AX BC HL

4-byte data Allocated to AX and BC, remainder allocated to HL

* 1- to 4-byte data does not include structures and unions.

• On the function definition side, arguments passed via a register are stored to the argument allocation

location.

Arguments (register arguments) declared with register are allocated to registers whenever possible, and

regular arguments are allocated to areas reserved for specific functions.

• All register arguments are passed via registers, but the registers on the function call side (passing side) and

the function definition side (receiving side) differ, and therefore register copying is performed.

• Saving and restoring of registers allocated an argument/automatic variable is performed on the function

definition side.

• Function arguments and the values of automatic variables declared inside functions are stored to the

function-specific areas listed below using an option. Function-specific areas are static areas in RAM reserved

for each function

Table 12-4. Storing of Arguments/Automatic Variables (Inside Called Function)

Option Argument/auto variable Storage location Priority level

-QV,

(register allocation option)

Declared argument or

automatic variable

DE register char type: E, D, in this order

int, short, enum type: DE

Default Declared argument,

automatic variable

Function-specific area Arguments are allocated starting from

the last one, automatic variables are

allocated by order of appearance

Default Argument, register variable

declared with register

DE register Only number of bytes of variable or

argument is allocated, in order of

appearance

CHAPTER 12 REFERENCING THE ASSEMBLER

314

The following example shows the function call.

(C source: Static Model at -SM and -QV specifications)

void func (register int, char);

void main(){

 func (0x1234, 0x56);

}

void func (register int p1, char p2){

register char r;

int a;

r=p2;

a=p1;

}

(Output assember source)

PUBLIC _func

PUBLIC _main

:

@@DATA DSEG

?L0005: DS (1) ; Argument p2

?L0006: DS (1) ; Automatic variable r

?L0007: DS (2) ; Automatic variable a

:

@@CODE CSEG

_main:

mov b,#056H;86 ; Pass the 2nd argument by register b.

movw ax,#01234H ;4660 ; Pass the 1st argument by register ax.

call !_func ; Function call

ret

_func:

push de ; Save registers for register arguments.

movw de,ax ; Allocate register arguments to de.

movw ax,bc

mov !?L0005,a ; Copy argument p2 to ?L0005.

mov a,!?L0005 ;p2 ; Assigned to automatci variable a

mov !?L0006,a ;r ; Restore register for register arguments.

movw ax,de ;

mov !?L0007+1,a ;a

xch a,x

mov !?L0007,a ;a ;

pop de ;

ret

END

CHAPTER 12 REFERENCING THE ASSEMBLER

315

12.2 Storing Return Values

Return values during function calls are stored to registers and carry flags.

The storage locations of return values are shown in the table below.

Table 12-5. Storage Location of Return Values

Type Normal model Static model

1-byte, 2-byte integer BC AX

4-byte integer BC (low-order), DE (high-order) AX (low-order), BC (high-order)Note 1

Pointer BC AX

Structure, union BC (start address of structure or union copied to

function-specific area)

Not supported

1 bit CY (carry flag) CY (carry flag)

Floating-point number BC (low-order), DE (high-order) Not supported

Note 1. Not supported in V1.00.

CHAPTER 12 REFERENCING THE ASSEMBLER

316

12.3 Calling Assembly Language Routines from the C Language

This section shows examples when the normal model (default) is used. It should be remembered that, if the -QV

option, -QR option, and -QRV option are specified, arguments are stored as indicated in Table 12-1. However, the HL

register is allocated only when no base pointer is required (when base pointer is not used).

Calling an assembly language routine from the C language is described as follows.

• C language function calling Procedure

• Saving data from the assembly language routine and returning

(1) C language function calling Procedure

This is a C language program example that calls an assembly language routine.

extern int FUNC(int, long); /* Function prototype */

void main()

{

 int i, j;

 long l;

 i = 1;

 l = 0x54321;

 j = FUNC(i, l); /* Function call */
}

In this program example, the interface and control flow with the program that is executing are as follows.

(1) Placing the arguments passed from the main function to the FUNC function on the stack.

(2) Passing control to the FUNC function by using the CALL instruction.

The next figure shows the stack immediately after control moves to the FUNC function in the above program

example.

CHAPTER 12 REFERENCING THE ASSEMBLER

317

Figure 12-1. Stack Area After a Call

Return address to main

 l (high-order word)

l (low-order word)

i

Stack pointer

Arguments passed to
the FUNC function
AX register

Stack area

 low address

high address

(2) Saving data from the assembly language routine and returning

The following processing are performed in the FUNC function called from the main function.

(1) Save the base pointer.

(2) Save the work register.

(3) Copy the stack pointer (SP) to the base pointer (HL).

(4) Perform the processing in the FUNC function.

(5) Set the return value.

(6) Restore the saved register.

(7) Return to the main function.

Next, an example of an assembly language program is explained.

CHAPTER 12 REFERENCING THE ASSEMBLER

318

$PROCESSOR(9024)

PUBLIC _FUNC

PUBLIC _DT1

PUBLIC _DT2

@@DATA DSEG

?DT1: DS (2)

?DT2: DS (4)

@@CODE CSEG

_FUNC:

PUSH HL ;Save base pointer --------------- (1)

PUSH AX

MOVW AX,SP ;copy stack pointer -------------- (2)

MOVW HL,AX

MOV A,[HL] ;arg1

MOV !_DT1,A ;move 1st argument(i)

XCH A,X

MOV A,[HL+1] ;arg1

MOV !_DT1+1,A

MOV A,[HL+8] ;arg2

XCH A,X

MOV A,[HL+9] ;arg2

MOVW BC,AX

MOV A,[HL+6] ;arg2

XCH A,X

MOV A,[HL+7] ;arg2

MOVW DE,#_DT2

XCH A,X

MOV [DE],A ;move 2nd argument(l)

XCH A,X

INCW DE

MOV [DE],A

XCHW AX,BC

INCW DE

XCH A,X

MOV [DE],A

XCH A,X

INCW DE

MOV [DE],A

XCHW AX,BC

MOVW BC,#0AH ;set return value ---------------- (4)

POP AX

POP HL ;restore base pointer ------------ (5)

RET--- (6)

END

CHAPTER 12 REFERENCING THE ASSEMBLER

319

(1) Saving base pointer, work register

A label with ‘_’ prefixed to the function name described in the C source is described. During assembling, if an

option (-nca) distinguishing between uppercase and lowercase characters is specified, descriptions do not

need to be made with uppercase characters. Base pointers and work registers are saved with the same

name as function names described inside the C source.

After the label is described, the HL register (base pointer) is saved.

In the case of programs generated by the C compiler, other functions are called without saving the register

for register variables. Therefore, if changing the values of these registers for functions that are called, be

sure to save the values beforehand. However, if register variables are not used on the call side, saving the

work register is not required.

(2) Copying to base pointer (HL) of stack pointer (SP)

The stack pointer (SP) changes due to pushing and popping inside functions. Therefore, the stack pointer is

copied to register HL and used as the base pointer of arguments.

(3) Basic processing of FUNC function

After processings <1> and <2> are performed, the basic processing of called functions is performed.

(4) Setting the return value

If there is a return value, it is set in the BC and DE registers. If there is no return value, setting is

unnecessary.

BC register

Return value of 16 or fewer bits :

DE register BC register

Return value of 17 or more bits :

(5) Restoring the registers

Restore the saved base pointer and work register.

(6) Returning to the main [Function]

word

high-order word low-order word

CHAPTER 12 REFERENCING THE ASSEMBLER

320

Figure 12-2. Stack Area After Returning

l (low-order word)

l (high-order word)

Return address to main Return value
BC register

Stack pointer

AX register

 low address

high address High-order word

Word

i

Low-order word

Or
DE register
BC register

Stack area

CHAPTER 12 REFERENCING THE ASSEMBLER

321

12.4 Calling C Language Routines from Assembly Language

(1) Calling the C language function from an assembly language program

The procedure for calling a function written in the C language from an assembly language routine is:

(1) Place the arguments on the stack.

(2) Save the C work registers (AX, BC, and DE).

(3) Call the C language function.

(4) Increment the value of the stack pointer (sp) by the number of bytes of arguments.

(5) Reference the return value of the C language function (in BC or DE and BC).

This is an example of an assembly language program.

$PROCESSOR (9024)

 NAME FUNC2

 EXTRN _CSUB

 PUBLIC _FUNC2

@@CODE CSEG

_FUNC2:

 movw ax, #20H ; seg 2nd argument (j)

 push ax ;

 movw ax, #21H ; set 1st argument (i)

 call !_CSUB ; call "CSUB (i, j)"

 pop ax ;

 ret

 END

CHAPTER 12 REFERENCING THE ASSEMBLER

322

(1) Stacking arguments

Any arguments are placed on the stack. Figure 12-3 shows argument passing.

Figure 12-3. Placing Arguments on the Stack

Stack area

low address

high address

2nd arg

CSUB (i, j)

1st arg

AX register

(2) Saving the work registers (AX, BC, and DE)

The four register pairs of AX, BC, and DE are used in the C language. Their values are not restored when

returning. Therefore, if the values in registers are needed, they are saved on the calling side.

Save or restore the registers before or after an argument pass code. The HL register is always saved on the

side of the C language when it is used in the C language.

(3) Calling a C language Function

A CALL instruction calls a C language function. If the C language function is a callt function, the callt

instruction performs the call.

(4) Restoring the stack pointer (SP)

The stack pointer is restored by the number of bytes that hold the arguments.

(5) Referencing the return value (BC and DE)

The return value from the C language is returned as follows.

BC register

Return value of 16 or fewer bits :

DE register BC register

Return value of 17 or more bits :

word

high-order word low-order word

CHAPTER 12 REFERENCING THE ASSEMBLER

323

(2) Referencing arguments in a C language Function

To correctly pass the i and j arguments to the C language program shown below, they are placed on the stack as

shown in Figure 12-4, “Passing Arguments to the C Language.”

void CSUB (i. j)

int i, j ;

{

 i += j;

}

Figure 12-4. Passing Arguments to the C Language

j

Stack area

low address

Stack pointer

high address

Return address to the calling side

CSUB (i, j)

AX register

i

CHAPTER 12 REFERENCING THE ASSEMBLER

324

12.5 Referencing Variables Defined in Other Languages

(1) Referencing variables defined in the C language

If external variables defined in a C language program are referenced in an assembly language routine, the extrn

declaration is used. Underscores (_) are added to the beginning of the variables defined in the assembly

language routine.

C language program Example

extern void subf();

char c = 0;

int i = 0;

void main()

{

 subf();

}

The following occurs in the RA78K0S assembler. (In this example, the -nca option that differentiates lowercase

and uppercase letters must be specified during assembly. -nca is the default.)

$PROCESSOR (9024)

 PUBLIC _subf

 EXTRN _c

 EXTRN _i

@@CODE CSEG

_subf:

 MOV a, #04H

 MOV !_c, a

 MOVW ax, #07H ;7

 MOVW de, #_i

 INCW DE

 MOV [DE],A

 DECW DE

 XCH A,X

 MOV [DE],A

 RET

 END

CHAPTER 12 REFERENCING THE ASSEMBLER

325

(2) Referencing variables defined in the assembly language from the C language

Variables defined in assembly language are referenced from the C language in this way.

C language program Example

extern char c;

extern int i;

void subf()

{

 c = 'A' ;

 i = 4 ;

}

The following occurs in the RA78K0S assembler. (In this example, the -nca option that differentiates lowercase

and uppercase letters must be specified during assembly. -nca is the default.)

 NAME ASMSUB

 PUBLIC _c

 PUBLIC _i

ABC DSEG

_c DB 0

_i DW 0

 END

CHAPTER 12 REFERENCING THE ASSEMBLER

326

12.6 Warnings

(1) ‘_’ (underscore)

This C compiler adds an underscore (_ (underscore), ASCII code 5FH) to external definitions and reference

names of the object modules to be output. In the next C program example, “j = FUNC(i, l);” is taken as a

reference to the external name _FUNC.

extern int FUNC(int, long); /* Function prototype */

void main()

{

 int i, j;

 long l;

 i = 1;

 l = 0x54321;

 j = FUNC(i, l); /* Function call */

}

The routine name is written as _FUNC in RA78K0S.

(2) Argument positions on the stack

The arguments placed on the stack are placed from the postfix argument to the prefix argument in the direction

from the high address to the low address.

Figure 12-5. Stack Positions of the Arguments

l (high-order word)

Stack area

low address

Stack pointer

high address

Return address to main

l (low-order word)

j = FUNC (i, l);
i

AX register

(3) Run-time library summary

The operation instructions below are called by attaching @@, etc., to the beginning of the function name.

Items for which ' is indicated in the Support column are supported only in the normal model. If nothing is

indicated in the Support column, the item is supported in both the normal and static model.

CHAPTER 12 REFERENCING THE ASSEMBLER

327

Table 12-6. Run-Time Library (1/2)

Type Function Name Function Support

Increment lsinc Increment signed long. '

luinc Increment unsigned long. '

finc Increment float. '

Decrement lsdec Decrement signed long. '

ludec Decrement unsigned long '

fdec Decrement float. '

Sign reversal lsrev Reverse the sign of signed long. '

lurev Reverse the sign of unsigned long. '

frev Reverse the sign of float. '

One’s complement lscom Determine the one’s complement of signed long. '

lucom Determine the one’s complement of unsigned long. '

Logical negation lsnot Determine the negative of signed long. '

lunot Determine the negative of unsigned long. '

fnot Determine the negative of float '

Multiplication csmul signed char multiplication

cumul unsigned char multiplication

ismul signed int multiplication

iumul unsigned int multiplication

lsmul signed long multiplication '

lumul unsigned long multiplication '

fmul float multiplication '

Division csdiv signed char division

cudiv unsigned char division

isdiv signed int division

iudiv unsigned int division

lsdiv signed long division '

ludiv unsigned long division '

fdiv float division '

Remainder csrem signed char remainder

curem unsigned char remainder

isrem signed int remainder

iurem unsigned int remainder

lsrem signed long remainder '

lurem unsigned long remainder '

Addition lsadd signed long addition '

luadd unsigned long addition '

fadd float addition '

CHAPTER 12 REFERENCING THE ASSEMBLER

328

Table 12-6. Run-Time Library (2/2)

Type Function Name Function Support

Subtraction lssub signed long subtraction '

lusub unsigned long subtraction '

fsub float subtraction '

Left shift lslsh Left shift of signed long

lulsh Left shift of unsigned long

Right shift lsrsh Right shift of signed long

lursh Right shift of unsigned long

Comparison cscmp signed char comparison

iscmp signed int comparison

lscmp signed long comparison '

lucmp unsigned long comparison '

fcmp float comparison '

Bit AND lsband Bit AND of signed long '

luband Bit AND of unsigned long '

Bit OR lsbor Bit OR of signed long '

lubor Bit OR of unsigned long '

Bit XOR lsbxor Bit XOR of signed long '

lubxor Bit XOR of unsigned long '

Logical AND fand Logical AND of float '

Logical OR for Logical OR of float '

ftols Converts from float to signed long '

ftolu Converts from float to unsigned long '

Conversion to

floating point

lstof Converts from signed long to float '

lutof Converts from unsigned long to float '

Conversion from bit btol Converts bit to long '

Start-up routine cstart Required preparation for system execution

cprep Function preprocessing '

cdisp Function postprocessing '

hdwinit Initialization of peripheral equipment (sfr) after CPU reset

Error check chkstk Check for stack overflow

Error processing errstk Error processing routine for stack overflow

Bank Function fcall Call a bank Function

BCD type conversion bcdtob Convert from 1-byte bcd to 1-byte binary

btobcd Convert from 1-byte binary to 2-byte bcd

bcdtow Convert from 2-byte bcd to 2-byte binary

wtobcd Convert from 2-byte binary to 2-byte bcd

Conversion from

floating point

Function pre-and

postprocessing

CHAPTER 12 REFERENCING THE ASSEMBLER

329

The run-time library does not check for errors even when the -L option is specified during compilation.

The library does not support computations not shown above. The compiler performs inline expansion.

The long addition and subtraction; and, or, and xor; and shifting are sometime expanded inline.

330

[MEMO]

331

CHAPTER 13 EFFICIENT COMPILER USE

This chapter explains how to efficiently use this C compiler.

13.1 Command Input When Compiling

In this C compiler, the type of the target device is specified when compiling the source file. This specification of

the device type can be described in the C source.

• Macro name indicating the device series name

‘_ _K0S_ _’

• Macro name indicating the device name

Two underscores ‘_ _’ are added to the beginning of the device type name and one ‘_’ to the end.

Specify uppercase letters.

(Example) _ _054_ _ _054Y_

The device type is specified during compilation as follows.

The following specification is added to the command line when compiling.

-c device-type-name

* Refer to the product data sheet for the device file being used for information about the device type names.

(Example) cc78K0S -c9024 prime.c

By specifying the device type in the C source, this specification becomes unnecessary during compilation.

This statement is specified at the beginning of the C source program.

#pragma PC(type)

(Example) #pragma PC(9024)

The following can be described before “#pragma PC(type)”.

• Comments

• Preprocessing directives that do not generate variable or function definitions or references

CHAPTER 13 EFFICIENT COMPILER USE

332

13.2 Efficient Coding

When developing a 78K/0S Series application product, efficient objects can be created by using the saddr area or

callt area of the device in the C compiler.

• Using external variables

if (saddr area can be used) sreg / _ _sreg variables are used /

Compiler option (-qd) is used.

• Using one-bit data

if (saddr area can be used) bit / boolean / _ _boolean type variables are used.

• Defining functions

if (functions with many call locations)

if (callt area can be used)

Make it a _ _callt or callt function (effective in reducing the code size)

if (frequently called functions)

if (not used recursively)

Make it a _ _leaf or norec function (effective in improving the

execution speed and in reducing the code size)

if (automatic variables are not used)

Make it a noauto Function (effective in improving the execution speed

and in reducing the code size)

if (automatic variables are used && saddr area can be used)

Declare with register (effective in improving the execution speed and

in reducing the code size)

CHAPTER 13 EFFICIENT COMPILER USE

333

(1) Defining external variables

If the saddr area can be used when defining external variables, the external variables to be defined become sreg

or _ _sreg variables. sreg or _ _sreg variables reduce the instruction code, can reduce the object code, and

improve the execution speed compared to instructions for memory. (The same effect occurs when using the -qd

option instead of sreg variables.)

sreg/_ _sreg variable definition : extern sreg int variable-name;
extern _ _sreg int variable-name;

* See Section 11.4 “(3) Using saddr area.”

(2) 1-bit data

Objects that use only 1-bit data become bit type variables (or boolean or __boolean type variables). Bit

manipulation instructions are generated in operations on bit or boolean, or __boolean type variables.

bit/boolean type variable declarations : bit variable-name;
boolean variable-name;
_ _boolean variable-name;

* See Section 11.4 “(7) bit type variable.”

(3) Function definition

• Functions with many call locations

Functions that have many call locations and can use the callt area are callt functions. Callt functions are

called using the callt table area of the device, therefore their object code is shorter than that of regularly

called functions. (* Definition of callt function: callt int tsub*() “11.4 (1) callt function”)

• Frequently called functions

A function that is called frequently must reduce the object code or make a structure which can be called at

thigh speed. Consequently, frequently called function which is not used recursively becomes a norec funtion.

A norec funtion becomes are without pre- or post-processing (stack frame). Due to this definition the object

code can be reduced and the execution speed can be improved in comparision with a normal function.

(*norec function definition: norec int rout() in the section 11.4 norec funtion)

• Functions that do not use automatic variables

Functions that do not use automatic variables become noauto functions. A noauto function does not have a

stack frame. Arguments can be passed by register when possible. The object code can be reduced and the

execution speed improved.

Even in a function where noauto is not declared, by using register declarations of the arguments without

using automatic variables, the same function is obtained as a noauto function.

* noauto function definition : noauto int sub1(int i) “11.4 (5) noauto function”

register variable definition : int sub1(register int i) “11.4 (2) Register variables”

CHAPTER 13 EFFICIENT COMPILER USE

334

• Functions that use automatic variables

If the saddr area can be used in a function that uses automatic variables, register is declared. A register

declaration allocates the declared object to the microprocessor’s registers. A program that used registers

operates faster than a program that uses memory and can also have compact object code.

* register variable definition : register int i; “11.4 (2) Register variables”

335

APPENDIX A saddr AREA LABEL SUMMARY

In the CC78K0S, the saddr area is referenced by the following labels. Therefore, the same names as the labels

cannot be used in the C source program or assembler source program. (Refer to Table 11-2, “Memory Space Use”.)

[Normal Model]

(1) Register variables

Label Address

_@KREG00 0FED8H

_@KREG01 0FED9H

_@KREG02 0FEDAH

_@KREG03 0FEDBH

_@KREG04 0FEDCH

_@KREG05 0FEDDH

_@KREG06 0FEDEH

_@KREG07 0FEDFH

_@KREG08 0FEE0H

_@KREG09 0FEE1H

_@KREG10 0FEE2H

_@KREG11 0FEE3H

_@KREG12 0FEE4H*

_@KREG13 0FEE5H*

_@KREG14 0FEE6H*

_@KREG15 0FEE7H*

* When the function argument undergoes the register declaration and the -QR option is specified, an argument

is allocated in the saddr area.

(2) norec function arguments

Label Address

_@NRARG0 0FEE8H

_@NRARG1 0FEEAH

_@NRARG2 0FEECH

_@NRARG3 0FEEEH

APPENDIX A saddr AREA LABEL SUMMARY

336

(3) norec function automatic variables

Label Address

_@NRAT00 0FEF0H

_@NRAT01 0FEF1H

_@NRAT02 0FEF2H

_@NRAT03 0FEF3H

_@NRAT04 0FEF4H

_@NRAT05 0FEF5H

_@NRAT06 0FEF6H

_@NRAT07 0FEF7H

(4) Run-time library arguments

Label Address

_@RTARG0 0FEF8H

_@RTARG1 0FEF9H

_@RTARG2 0FEFAH

_@RTARG3 0FEFBH

_@RTARG4 0FEFCH

_@RTARG5 0FEFDH

_@RTARG6 0FEFEH

_@RTARG7 0FEFFH

APPENDIX A SADDR SPACE LABEL SUMMARY

337

[Static Model]

(1) Common area

Label Address

_@KREG00 0FEF0H

_@KREG01 0FEF1H

_@KREG02 0FEF2H

_@KREG03 0FEF3H

_@KREG04 0FEF4H

_@KREG05 0FEF5H

_@KREG06 0FEF6H

_@KREG07 0FEF7H

_@KREG08 0FEF8H

_@KREG09 0FEF9H

_@KREG10 0FEFAH

_@KREG11 0FEFBH

_@KREG12 0FEFCH

_@KREG13 0FEFDH

_@KREG14 0FEFEH

_@KREG15 0FEFFH

338

[MEMO]

339

APPENDIX B SEGMENT NAMES

All of the segments output by the compiler are described.

(1) C source module example (SAMPLE.C)

#pragma INTERRUPT INTP0 inter /* Interrupt function */

void main(void) /* Function prototype */

const int i_cnst = 1; /* const variable */

callt int f_clt(void); /* callt function prototype */

boolean b_bit; /* boolean type variables */

long l_init = 2; /* Initialized external variable */

int i_data; /* Uninitialized external variable */

sreg int sr_inis = 3; /* Initialized sreg variable */

sreg int sr_dats; /* Uninitialized sreg variable */

void main() /* Function definition */

{

 int i;

 i = 100;

}

void inter() /* Interrupt function definition */

{

 b_bit = 1;

}

callt int f_clt() /* callt function definition */

{

}

APPENDIX B SEGMENT NAMES

340

(2) Assembler source module Example

(1) When ROM is specified

;78K/0S Series C Compiler Vx.xx Assembler Source

; Date:xx xxx xxxx Time:xx:xx:xx

;Command : -c9024 sample.c -a -ng

;In-file : SAMPLE.C

;Asm-file : SAMPLE.ASM

;Para-file:

$PROCESSOR (9024)

$NODEBUG

$NODEBUGA

$SYMLEN

$NOCAP

$KANJICODE SJIS

$TOL_INF 03FH, 0100H, 02H, 00H

EXTRN _@cprep

PUBLIC _inter

PUBLIC _main

PUBLIC _i_cnst

PUBLIC ?f_clt

PUBLIC _b_bit

PUBLIC _l_init

PUBLIC _i_data

PUBLIC _sr_inis

PUBLIC _sr_dats

PUBLIC _f_clt

@@BITS BSEG /* bit type variable segment */

_b_bit DBIT

@@CNST CSEG /* const variable segment */

_i_cnst: DW 01H ;1

@@R_INIT CSEG /* Initialized data segment (initial value) */

 DW 00002H,00000H ;2

@@INIT DSEG /* Data area segment (initial value) */

_l_init: DS (4)

@@DATA DSEG /* Data area segment (no initial value) */

_i_data: DS (2)

APPENDIX B SEGMENT NAMES

341

@@R_INIS CSEG UNITP /* Initialized data segment (initialized sreg variable) */

 DW 03H ;3

@@INIS DSEG SADDRP /* Data area segment (initialized sreg variable) */

_sr_inis:DS (2)

@@DATS DSEG SADDRP /* Data area segment (uninitialized sreg variables */

_sr_dats: DS (2)

@@CALT CSEG CALLT0 /* callt function segment */

?f_clt: DW _f_clt

@@CODE CSEG /* Code segment */

_main:

push hl

movw ax, #02H

callt [_@cprep]

movw ax, #064H ;100

mov [hl+1],a ;i

xch a, x

mov [hl],a ;i

pop ax

pop hl

ret

_inter:

set1 _b_bit

reti

_f_clt:

ret

@@VECT06 CSEG AT 0006H /* interrupt vectored table */

DW _inter

END

; Target chip : PPD789024

; Device file : Vx.xx

APPENDIX B SEGMENT NAMES

342

(2) When not programmed in the ROM

;78K/0S Series C Compiler Vx.xx Assembler Source

; Date:xx xxx xxxx Time:xx:xx:xx

;Command : -c9024 sample.c -a -ng -nr

;In-file : SAMPLE.C

;Asm-file : SAMPLE.ASM

;Para-file:

$PROCESSOR (9024)

$NODEBUG

$NODEBUGA

$SYMLEN

$NOCAP

$KANJICODE SJIS

$TOL_INF 03FH,0100H,02H,00H

EXTRN _@cprep

PUBLIC _inter

PUBLIC _main

PUBLIC _i_cnst

PUBLIC ?f_clt

PUBLIC _b_bit

PUBLIC _l_init

PUBLIC _i_data

PUBLIC _sr_inis

PUBLIC _sr_dats

PUBLIC _f_clt

@@BITS BSEG /* bit type variable segment */

_b_bit DBIT

@@CNST CSEG /* const variable segment */

_i_cnst: DW 01H ;1

@@INIT DSEG /* Data area segment (initial value) */

_l_init: DW 00002H,00000H ;2

@@DATA DSEG /* Data area segment (no initial value) */

_i_data: DB (2)

@@INIS DSEG SADDRP /* Data area segment (initialized sreg variable) */

_sr_inis:DW 03H ;3

@@DATS DSEG SADDRP /* Data area segment (uninitialized sreg variable) */

_sr_dats: DB (2)

APPENDIX B SEGMENT NAMES

343

@@CALT CSEG CALLT0 /* callt function segment */

?f_clt: DW _f_clt

@@CODE CSEG /* Code segment */

_main:

push hl

movw ax, #02H

callt [_@cprep]

movw ax, #064H ;100

mov [hl+1], a ;i

xch a, x

mov [hl], a ;i

pop ax

pop hl

ret

_inter:

set1 _b_bit

reti

_f_clt:

ret

@@VECT06 CSEG AT 0006H /* interrupt vectored table*/

 DW _inter

 END

;Target chip : PPD789024

;Device file : Vx.xx

344

[MEMO]

345

APPENDIX C FUNCTION INTERFACE LIST

C.1 Storage Locations of Return Values

Type Normal model Static model

1-byte, 2-byte integer BC AX

4-byte integer BC (low-order), DE (high-order) AX (low-order), BC (high-order)Note 1

Pointer BC AX

Structure, union BC (Start address of structure, union

copied to function-specific area)

Not supported

1 bit CY (carry flag) CY (carry flag)

Floating-point number BC (Low-order), DE (High-order) Not supported

Note 1 . Not supported in V1.00.

APPENDIX C FUNCTION INTERFACE LIST

346

C.2 Passed on Argument (Function Call Side)

C.2.1 Normal Model

Type Location to be passed (1st argument) Location to be passed (2nd argument or later)

1-byte, 2-byte data AX Passed on stack

4-byte data AX, BC Passed on stack

Floating-point number AX, BC Passed on stack

Other Passed on stack Passed on stack

* 1- to 4-bye data includes structure and union.

C.2.2 Static Model

Type Location to be passed (1st argument) Location to be passed (2nd argument) Location to be passed (3rd argument)

1-byte data A B H

2-byte data AX BC HL

4-byte data Allocate this data to AX and BC, and the remains to H or HL.

* 1- to 4-bye data includes structure and union.

APPENDIX C FUNCTION INTERFACE LIST

347

C.3 Argument/Automatic Variables Storage List (Called Function)

C.3.1 Normal Model

Option Argument/auto variable Storage location Priority level

-QV

(register allocation option)

Declared argument or

automatic variable

HL register (only if base

pointer is not required)

char type: L, H, in this order

int, short, enum type: HL

-QR

(saddr allocation option)

Declared argument or

automatic variable (including

register variable)

Argument:

_@KREG12 to 15

[0FEE4H to 0FEE7H]

auto variable:

_@KREG00 to 11

[0FED8H to 0FEE3H]

_@KREG12 to 15 is not

allocated to argument

Only number of bytes of

variable or argument is

allocated, in order of

appearance

-QRV Declared argument or

automatic variable (including

register variable)

HL register,

Argument:

_@KREG12 to 15

[0FEE4H to 0FEE7H]

auto variable:

_@KREG00 to 11

[0FED8H to 0FEE3H],

_@KREG12 to 15 if not

allocated to argument

In order of appearance.

Allocated to register as char

type: L, H, in this order

int, short, enum type: HL.

Default Declared argument, automatic

variable

Stack Frame In order of appearance

APPENDIX C FUNCTION INTERFACE LIST

348

C.3.2 Static Model

Option Argument/auto variable Storage location Priority level

-QV

(register allocation option)

Declared argument or

automatic variable

DE register char type: L, H, in this order

int, short, enum type: HL

Default Declared argument or

automatic variable

Function-specific area Arguments are allocated in

reverse order of appearance.

Automatic variables are

allocated in order of

appearance.

Default Arguments with register

declaration

Register variables

DE regisger Only number of bytes of

variable or argument is

allocated in order of

appearance. Number of

bytes or more are allocated in

the function-specific area.

349

INDEX

_
_asm.. 283

_boolean.. 280

_interrupt.. 294

_interrupt_brk... 294

_rtos_interrupt qualifier .. 349

#

#asm a #endasm ... 283

A
Absolute address access Function............................ 303

ANSI .. 259

ASM directive... 142

B
Bank Function.. 333

Base pointer... 355

BCD operation Function .. 329

Binary constant .. 320

Bit field declaration .. 306

bit type variable ... 280

boolean type variable .. 280

BRK ... 299

C
callf Function ... 301

callt Function ... 263

Change compiler output section name 312

Change module name function.................................. 322

CPU control instructions .. 300

D
Data insertion Function.. 341

Device type.. 371

DI ... 296

Division Function ... 327

E
EI ... 296

H
HALT.. 299

Header file ... 145

I
Interrupt Function ...288

Interrupt function qualifier ...294

K
Kanji..286

Keywords..259

L
LANG78K ...286

M
Macro replacement...137

Memory space ..261

Module name change ...322

Multiplication Function..325

N
noauto Function..273

NOP..299

norec Function..277

P
peekb..303

peekw ...303

pokeb..303

pokew ...303

Preprocessing directive ..125

R
Register bank ...260

Register variable...266

ROM-related section name...315

Rotate Function ..323

RTOS interrupt handler ..343

RTOS interrupt handler qualifier.................................349

RTOS task function ..351

Run-time library ..367

350

S
saddr area use ... 268

Segment... 319

sfr area use .. 271

sreg declaration ... 271

Start-up routine .. 316

STOP ... 299

T
Table jump Function .. 337

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 96.4

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 The C Language and Assembly Language
	1.2 Development Procedure Using the C Compiler
	1.3 Basic Structure of a C Program
	1.3.1 Program structure

	1.4 Before Starting Program Development
	1.5 C Compiler Features
	(1) callt/_ _callt functions
	(2) Register variables
	(3) sreg/_ _sreg variables
	(4) sfr area
	(5) noauto Function
	(6) norec/_ _leaf functions
	(7) bit, boolean, and _ _boolean type variables
	(8) ASM statement
	(9) Kanji
	(10) Interrupt functions
	(11) Interrupt function qualifiers
	(12) Interrupt operation
	(13) CPU control instructions
	(14) Absolute address access functions
	(15) Bit-field declarations
	(16) Change compiler output section name Function
	(17) Binary number description Function
	(18) Change module name Function
	(19) Rotate functions
	(20) Multiplication Function
	(21) Division Function
	(22) Data insertion Function

	CHAPTER 2 BASIC STRUCTURE OF THE C LANGUAGE
	(1) Character set
	(2) Multibyte characters
	(3) Escape sequences
	2.1 Keywords
	2.2 Identifiers
	2.2.1 Identifier scope
	(1) Function scope
	(2) File scope
	(3) Block scope
	(4) Function prototype scope

	2.2.2 Identifier linkage
	(1) External linkage
	(2) Internal linkage
	(3) No linkage

	2.2.3 Name spaces of identifiers
	2.2.4 Storage durations of objects
	(1) Static storage duration
	(2) Automatic storage duration

	2.2.5 Types
	(1) Basic types
	(2) Character types
	(3) Incomplete types
	(4) Derived types
	(5) Scalar types

	2.2.6 Compatible types and composite types
	(1) Compatible types
	(2) Composite types

	2.3 Constants
	2.3.1 Floating constants
	2.3.2 Integer constants
	(1) Decimal constants
	(2) Octal constants
	(3) Hexadecimal constants

	2.3.3 Enumeration constants
	2.3.4 Character constants

	2.4 Strings
	2.5 Operators
	2.6 Punctuators
	2.7 Header Names
	2.8 Preprocessing Numbers
	2.9 Comments

	CHAPTER 3 TYPE AND STORAGE CLASS DECLARATIONS
	3.1 Storage-Class Specifiers
	(1) typedef
	(2) extern
	(3) static
	(4) auto
	(5) register

	3.2 Type Specifiers
	3.2.1 Structure specifiers and union specifiers
	3.2.2 Enumeration specifiers
	3.2.3 Tags

	3.3 Type Qualifiers
	3.4 Declarators
	3.4.1 Pointer declarators
	3.4.2 Array declarators
	3.4.3 Function declarators (including prototype declarations)

	3.5 Type Names
	3.6 typedef
	3.7 Initialization
	(1) Objects having static storage duration
	(2) Objects having automatic storage duration
	(3) Character array
	(4) Initializing aggregate and union objects

	CHAPTER 4 TYPE CONVERSION
	4.1 Arithmetic operands
	(1) Characters and integers (integral promotion)
	(2) Signed and unsigned integers
	(3) Usual arithmetic conversions

	4.2 Other operands
	(1) lvalues and function designators
	(2) void
	(3) Pointers

	CHAPTER 5 OPERATORS AND EXPRESSIONS
	5.1 Primary Expressions
	5.2 Postfix Operators
	(1) Array subscripting
	(2) Function call
	(3) Structure and union members
	(4) Postfix increment and decrement operators

	5.3 Unary Operators
	(1) Prefix increment and decrement operators
	(2) Address and indirection operators
	(3) Unary arithmetic operators
	(4) sizeof operator

	5.4 Cast Operators
	5.5 Arithmetic Operators
	(1) Multiplicative operators
	(2) Additive operators

	5.6 Shift Operators
	5.7 Relational Operators
	(1) Relational operators
	(2) Equality operators

	5.8 Bitwise Logical Operators
	(1) Bitwise AND operator
	(2) Bitwise exclusive OR operator
	(3) Bitwise OR operator

	5.9 Logical Operators
	(1) Logical AND operator
	(2) Logical OR operator

	5.10 Conditional Operator
	5.11 Assignment Operators
	(1) Simple assignment
	(2) Compound assignment

	5.12 Comma Operator
	5.13 Constant Expressions
	(1) Integral constant expressions
	(2) Arithmetic constant expressions
	(3) Address constants
	(4) Constant expressions in initializers

	CHAPTER 6 C LANGUAGE CONTROL STRUCTURES
	(1) Sequential processing
	(2) Selective processing
	(3) Iterative processing
	(4) Jump processing
	6.1 Labeled Statements
	(1) case
	(2) default

	6.2 Compound Statement (Block)
	6.3 Expression and Null Statements
	6.4 Selection Statements
	(1) if statement, if-else statement
	(2) switch statement

	6.5 Iteration Statements
	(1) while statement
	(2) do statement
	(3) for statement

	6.6 Jump Statements
	(1) goto statement
	(2) continue statement
	(3) break statement
	(4) return statement

	CHAPTER 7 STRUCTURES AND UNIONS
	7.1 Structures
	(1) Structure and structure variable declarations
	(2) Structure declaration list
	(3) Arrays and pointers
	(4) Referencing structure members

	7.2 Unions
	(1) Union and union variable declarations
	(2) Union declaration list
	(3) Arrays and pointers
	(4) Referencing union members

	CHAPTER 8 EXTERNAL DEFINITIONS
	8.1 Function Definitions
	8.2 External Object Definitions

	CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)
	9.1 Conditional Compilation
	(1) #if directive
	(2) #elif directive
	(3) #ifdef directive
	(4) #ifndef directive
	(5) #else directive
	(6) #endif directive

	9.2 Source File Inclusion
	(1) #include < > directive
	(2) #include " " directive
	(3) #include preprocessing token array directive

	9.3 Macro Replacement
	(1) Argument substitution
	(2) # operator
	(3) ## operator
	(4) Rescanning and further replacement
	(5) Scope of macro definitions
	(i) #define directive
	(ii) #define() directive
	(iii) #undef directive

	9.4 Line Control
	9.5 Error Directive
	9.6 Pragma Directive
	9.7 Null Directive
	9.8 ASM Directive
	9.9 Compiler Definition Macro Names

	CHAPTER 10 LIBRARY FUNCTIONS
	10.1 Interface
	10.1.1 Arguments
	10.1.2 Return value
	10.1.3 Saving the registers used by each library

	10.2 Header Files
	(1) ctype.h
	(2) setjmp.h
	(3) stdarg.h
	(4) stdio.h
	(5) stdlib.h
	(6) string.h
	(7) error.h
	(8) errno.h
	(9) limits.h
	(10) stddef.h
	(11) math.h
	(12) float.h
	(13) assert.h

	10.3 Error Checking
	10.4 Standard Library Functions

	CHAPTER 11 EXTENDED FUNCTIONS
	11.1 Macro Names
	11.2 Keywords
	(1) Functions
	(2) Variables

	11.3 Memory
	(1) Memory models
	(2) Register banks
	(3) Memory space

	11.4 Using Extended Functions
	(1) callt [Function]
	(2) Register variables
	(3) Using saddr space
	(4) Using the sfr area
	(5) noauto function
	(6) norec [Function]
	(7) bit type variables
	(8) ASM statement
	(9) Kanji
	(10) Interrupt functions
	(11) Interrupt function qualifiers (_ _interrupt)
	(12) Interrupt functions
	(13) CPU control instructions
	(14) Absolute address access functions
	(15) Bit field declarations
	(16) Changing the compiler output section name
	(17) Binary constants
	(18) Change module name [Function]
	(19) Rotate functions
	(20) Multiplication Function
	(21) Division Function
	(22) Data insertion [Function]
	(23) Static Model
	(24) Changing type

	11.5 Modifying the C Source

	CHAPTER 12 REFERENCING THE ASSEMBLER
	12.1 Accessing Arguments/Automatic Variables
	12.1.1 Normal model
	12.1.2 Static model

	12.2 Storing Return Values
	12.3 Calling Assembly Language Routines from the C Language
	(1) C language function calling Procedure
	(2) Saving data from the assembly language routine and returning

	12.4 Calling C Language Routines from Assembly Language
	(1) Calling the C language function from an assembly language program
	(2) Referencing arguments in a C language Function

	12.5 Referencing Variables Defined in Other Languages
	(1) Referencing variables defined in the C language
	(2) Referencing variables defined in the assembly language from the C language

	12.6 Warnings
	(1) '_' (underscore)
	(2) Argument positions on the stack
	(3) Run-time library summary

	CHAPTER 13 EFFICIENT COMPILER USE
	13.1 Command Input When Compiling
	13.2 Efficient Coding

	APPENDIX A saddr AREA LABEL SUMMARY
	APPENDIX B SEGMENT NAMES
	APPENDIX C FUNCTION INTERFACE LIST
	C.1 Storage Locations of Return Values
	C.2 Passed on Argument (Function Call Side)
	C.2.1 Normal Model
	C.2.2 Static Model

	C.3 Argument/Automatic Variables Storage List (Called Function)
	C.3.1 Normal Model
	C.3.2 Static Model

	INDEX

