

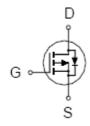
P- Channel Enhancement Mode MOSFET

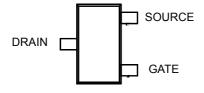
♦ DESCRIPTION

The MT2301 is the P-Channel logic enhancement mode power field effect transistor are produced using high cell density, DMOS trench technology.

This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other Battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.


♦ FEATURES


- \sim -20V/-2.8A, R_{DS(ON)} = 120mΩ @ V_{GS} = -4.5V
- \sim -20V/-2.5A, R_{DS(ON)} = 170mΩ @ V_{GS} = -2.5V
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current capability
- ➤ SOT-23-3L package design

♦ APPLICATIONS

- POWER Management in Note
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- > DSC

♦ PIN CONFIGURATION

P- Channel Enhancement Mode MOSFET

♦ ABSOLUTE MAXIMUM RATINGS

(T_A=25[°]C Unless Otherwise Noted)

Paramete	Symbol	Maximum	Unit		
Drain-Source Voltage		V_{DS}	-20	V	
Gate-Source Voltage		V_{GS}	±12	٧	
Continuous Drain Current	T _A = 25°C	1	-2.5	А	
	T _A = 70°C	l _D	-1.5		
Pulsed Drain Current	I _{DM}	-10	Α		
Continuous Source Current (Diode Conduction)		I _S	-1.6	Α	
Power Dissipation	T _A = 25°C	D	1.25	W	
	T _A = 70°C	P_D	0.8	VV	
Operating junction temperature range		TJ	150	°C	
Storage temperature range		T _{STG}	- 55 to 150	°C	

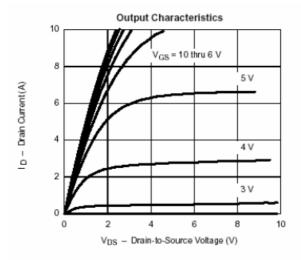
♦ THERMAL RESISTANCE RATINGS

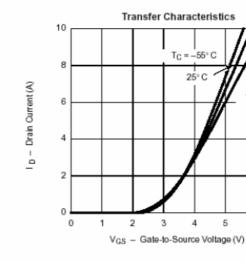
Thermal Resistance	Symbol	Maximum	Unit
Junction-to-Ambient	$R_{ heta JA}$	100	°C/W

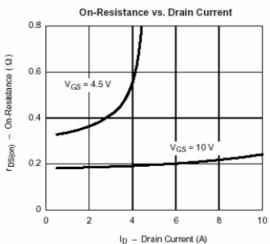
ELECTRICAL CHARACTERISTICS

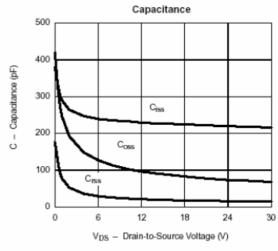
(T_A=25[°]C Unless Otherwise Noted)

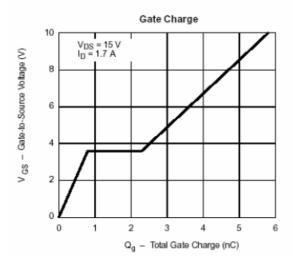
Parameter Symbol Test Cond		Test Conditions	Min.	Тур.	Max.	Unit	
Static Parameters						•	
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = -250\mu A$	-20	-	-	V	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.45	-	-1.5	V	
Gate Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 8 V$	-	_	±100	nA	
Zana Oata Valtana Basin Oamant		V _{DS} = -20V, V _{GS} = 0 V	-	_	-1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-20V, V_{GS} = 0V, T_{J} = 55 $^{\circ}$ C	-	-	-10		
Forward Trans conductance	g _{fs}	V _{DS} = -5V, ID = -2.8A	-	6.5	-	s	
On State Drain Current		$V_{DS} \leq -5V$, $V_{GS} = -4.5V$	-6	_	-	A	
On-State Drain Current	I _{D(ON)}	$V_{DS} \leq -5V$, $V_{GS} = -2.5V$	-3	-	-		
Drain Course On Decistance	В	$V_{GS} = -4.5V$, $I_D = -2.8A$	-	90	120	mΩ	
Drain-Source On Resistance	R _{DS(ON)}	V _{GS} = -2.5V, I _D = -2.0A	-	145	170		
Diode Forward Voltage	V_{SD}	I _S =-1.6A, V _{GS} = 0V	-	-0.8	-1.2	V	
Dynamic Parameters						•	
Input Cap.	C _{iss}		-	415	-	pF	
Output Cap.	C _{oss}	V_{DS} = -6V, V_{GS} = 0V, F = 1MH ₇	-	223	-		
Reverse Transfer Cap.	C _{rss}	2	-	23	-		
Total Gate Charge	Q_g		-	5.8	10		
Gate-Source Charge	Q_{gs}	$V_{DS} = -6V, V_{GS} = -4.5V,$ $I_{D} = -2.8A$	-	0.85	-	nC	
Gate-Drain Charge	Q_{gd}		-	1.7	-		
Turn-On Time	$T_{D(ON)}$		-	13	25	nS	
	t _r	$V_{DS} = -6V, R_L = 6\Omega, I_D = -1A,$	_	36	60		
Turn-Off Time	$T_{D(OFF)}$	$V_{GEN} = -4.5V, R_G = 6\Omega$	-	42	70		
Tuin-Oil Tille	t _f		-	34	60		

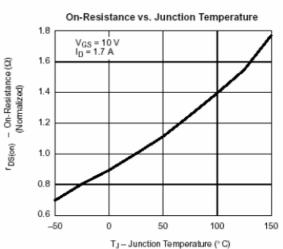


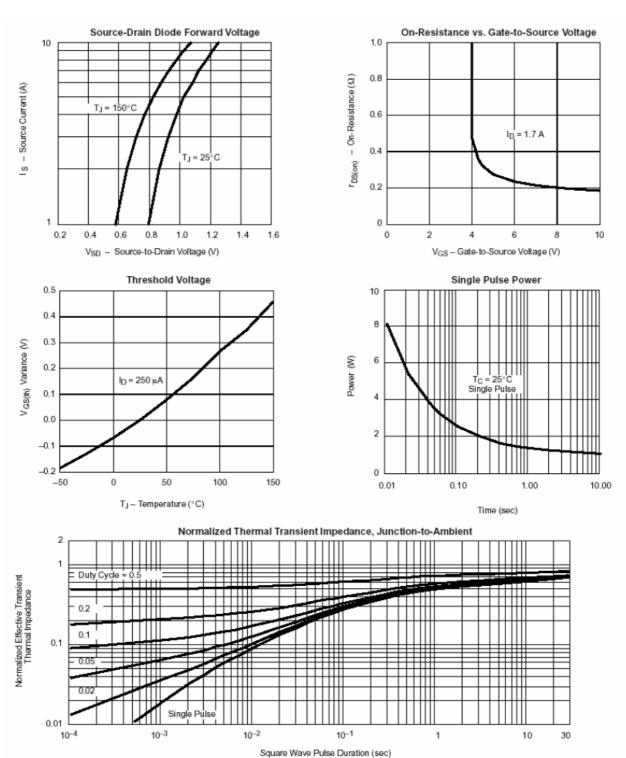

125°C


P- Channel Enhancement Mode MOSFET


♦ TYPICAL CHARACTERICTICS


(25°C Unless Noted)

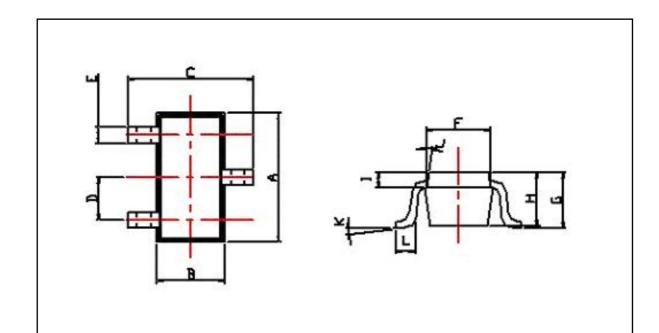




P- Channel Enhancement Mode MOSFET

♦ TYPICAL CHARACTERICTICS

(25°C Unless Noted)



P- Channel Enhancement Mode MOSFET

♦ PHYSICAL DIMENSIONS

3-Pin surface Mount SOT-23

REF	Millimeter		DEE	Millimeter		
	Min.	Max.	REF.	Min.	Max.	
Α	2.70	3.10	G	0.9	1.4	
В	1.20	1.66	Н	0.8	1.30	
С	2.37	2.90	T	0.25	0.7	
D	0.85	1.15	J	7 ± 2°.		
Е	0.350 + 0.15/-0.05		K	0 ~ 10°.		
F	1.07	1.53	L	0.2 (MIN)		