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1 Introduction

This user manual contains the bootloader specifications for STM8S devices which contain a 
bootloader embedded in the system memory of the device (the ROM memory). Through this 
firmware, the device memory can be erased and programmed using one of the standard 
communication interfaces present on the particular device. For each device, please refer to 
the corresponding datasheets to know if the bootloader is present and which peripherals are 
supported. 

The document describes the features and operation of the STM8S integrated bootloader 
program. This code allows memories, including Flash program, data EEPROM, and RAM, to 
be written into the device using the standard serial interfaces UART1, UART2, UART3, 
CAN, and SPI (only available on STM8S105xx devices).

The bootloader code is the same for all STM8S versions, including STM8S20xxx and 
STM8S105xx devices. However, even though a peripheral may be present in a product, the 
product may not support it (for example, the SPI is not supported in STM8S20xxx devices). 
In addition, different cuts support different peripherals: The bootloader code can be 
accessed via the UART1, UART3 and CAN peripherals in STM8S20xxx devices and via 
UART2 and SPI in STM8S105xx devices.

For further information on the STM8S family features, pinout, electrical characteristics, 
mechanical data and ordering information, please refer to the STM8S datasheets.

www.st.com

http://www.st.com
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2 Bootloader introduction

The main task of the bootloader is to download the application program into the internal 
memories through the UART1, UART2, UART3, SPI or CAN peripherals without using the 
SWIM protocol and dedicated hardware. Data are provided by any device (host) capable of 
sending information through one of the above serial interfaces.

The bootloader permits downloading of application software into the device memories, 
including the program memory, using standard serial interfaces (UART1, UART2, UART3, 
SPI and CAN) without dedicated hardware. It is a complementary solution to programming 
via the SWIM debugging interface.

The bootloader code is stored in the internal boot ROM memory. After a reset, the 
bootloader code checks whether the program memory is virgin or whether a specific option 
byte is set allowing code modifications.

If these conditions are not fulfilled, the bootloader resumes and the user application is 
started.

In case of a successful check the bootloader is executed.

When the bootloader procedure starts, the main tasks are:

● Polling all supported serial interfaces to check which peripheral is used.

● Programming code, data, option bytes and/or vector tables at the address(es) received 
from the host.

2.1 Bootloader activation
The STM8S reset vector is located at the beginning of the boot ROM (6000h), while the 
other vectors are in the Flash program memory starting at address 8004h. 

The device executes the boot ROM, jumps inside the boot ROM area and after checking 
certain address locations (see Table 1: Initial checking on page 9), it starts to execute the 
user code via the reset vector (8000h) in the Flash program memory.

The bootloader activation flowchart is described in Figure 1 on page 7.
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Figure 1. Bootloader activation flow chart

1. See Flow chart description on page 8 for explanation of points 1 to 8.

2. Dotted routines are loaded in RAM by the host. They are removed by the go command before jumping to the Flash program 
memory to execute an application.
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Flow chart description

1. Disable all interrupt sources.

2. The host can reprogram the Flash program memory and the bootloader option byte 
values, as shown in Table 1 according to the content of the first Flash program memory 
location (8000h).

3. When read out protection (ROP) is equal to AAh (ROP active), the Flash program 
memory is read out protected. In this case, the bootloader stops and the user 
application starts. If ROP is not equal to AAh, the bootloader continues to be executed.

4. The CAN peripheral can only be used if an external clock (8 MHz, 16 MHz, or 24 MHz) 
is present. It is initialized at 125 kbps. The UART1, UART2, UART3 and SPI peripherals 
do not require an external clock. 

5. Set the high speed internal RC oscillator (HSI) to 16 MHz and initialize the UART1, 
UART2 and UART3 receiver pins in input pull-up mode in the GPIO registers. Initialize 
the SPI in slave mode.

6. Interface polling (point S): The bootloader polls the peripherals waiting for a 
synchronization byte/message (SYNCHR) within a timeout of 1 s. If a timeout occurs, 
either the Flash program memory is virgin in which case it waits for a synchronization 
byte/message in an infinite loop, or the Flash program memory is not virgin and the 
bootloader restores the registers’ reset status before going to the Flash program 
memory reset vector at 8000h.

Note: When synchronization fails and the bootloader receives a byte/message different 
to ‘SYNCHR’, two different situations can be distinguished according to the peripheral:

With UART1, UART2 or UART3, a device reset or power-down is necessary before 
synchronization can be tried again.

With CAN or SPI, the user can continue to poll the interfaces until a synchronization or 
a timeout occurs.

7. If the synchronization message is received by the UART1, UART2 or UART3, the 
bootloader detects the baud rate and initializes the UART1, UART2 or UART3 
respectively and goes to step 8 below. If the synchronization message is received by 
the CAN or SPI, the bootloader goes directly to step 8 below.

Note: Once one of the available interfaces receives the synchronization message, all 
others are disabled.

8. Waiting for commands (point C): Commands are checked in an infinite loop and 
executed. To exit from the bootloader, the host has to send a ‘go’ command. When this 
is done, the bootloader removes the EM and WM routines from the RAM memory 
before jumping to the address selected by the host. 
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Table 1. Initial checking(1)

1. After interface initialization, a write protection test is performed to avoid non-authorised reading of the 
Flash program memory/data EEPROM, 
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Bootloader 
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already written 

-> jump to Flash program 
memory reset 
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3 Peripheral settings

This section describes the hardware settings of the STM8S communication peripherals:

● UART1

● UART2 

● UART3

● SPI

● CAN

Note: During bootloading only one peripheral is enabled; all others are disabled.

         

3.1 UART1 settings
All UART peripherals support asynchronous serial communication.

UART1 settings are:

● Data frame: 1 start bit, 8 data bit, 1 parity bit even, 1 stop bit

● Baud rate: The baud rate is autodetected by the bootloader. When the user sends the 
synchronization byte, 7Fh, the bootloader automatically detects the baud rate and sets 
the UART1 to the same baud rate. Maximum baud rate = 1 Mbps; minimum baud rate = 
4800 bps.

Mandatory: To perform the automatic speed detection, the RX line (PA4) has to be stable in 
the application board.

Note: The UART1 peripheral is accessible via pins PA4 (RX) and PA5 (TX).

3.2 UART2 and UART3 settings
All UART peripherals support asynchronous serial communication.

UART2 and UART3 settings are:

● Data frame: 1 start bit, 8 data bit, no parity bit, 1 stop bit

● Baud rate: The baud rate is autodetected by the bootloader. When the user sends the 
byte 7Fh, the bootloader automatically detects the baud rate and sets the UART2 or 
UART3 to the same baud rate. Maximum baud rate = 550 kbps; minimum baud rate = 
4800 bps.

Mandatory: To perform the automatic speed detection, the RX line (PD6 for UART3) has to 
be stable in the application board.

Note: UART2 and UART3 peripherals are accessible via pins PD5 (TX) and PD6 (RX).

Table 2. Serial interfaces associated with STM8S devices

Device Serial interface

STM8S20xxx UART1, UART3, CAN

STM8S105xx UART2, SPI
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3.3 SPI settings
The SPI settings are:

● 8 data bit, LSB first

● Bit rate: Set by the host which acts as a master

● Peripheral set in slave mode with NSS not used.

● Data polarity: CPOL = CPOH = 0

Note: 1 Before sending a ‘token’ byte, the host has to wait for a delay of a specified period of time. If 
this period is not quantified, it is equal to 6 µs.

2 The SPI peripheral is accessible via pins PC5 (SCK), PC6 (MOSI), and PD7 (MISO).

3.4 CAN settings
To address additional devices on the same bus, the CAN protocol provides a standard 
identifier field (11-bit) and an optional extended identifier field (18-bit) in the frame. 

Figure 2 shows the CAN frame that uses the standard identifier only.

Figure 2. CAN frame

The CAN settings are:

● Standard identifier (not extended)

● Bit rate: At the beginning is 125 kbps; run time can be changed via the speed 
command to achieve a maximum bit rate of 1 Mbps.

The transmit settings (from STM8S to the host) are: 
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● Tx mailbox1 and Tx mailbox2: Off
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● Outgoing messages contain 1 data byte.
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The receive settings (from the host to STM8S) are:

● Synchronization byte, 7Fh, is in the RX identifier and not in the data field.

● RX identifier depends on the command (00h, 03h, 11h, 21h, 31h, 43h).

● Error checking: If the error field (bit [6:4] in the CESR register) is different from 000b, 
the message is discarded and a NACK is sent to the host.

● In FIFO overrun condition, the message is discarded and a NACK is sent to the host.

● Incoming messages can contain from 1 to 8 data bytes.

Note: The CAN peripheral is accessible via pins PG0 (TX) and PG1 (RX).
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4 Bootloader command set

The supported commands are listed in Table 3 below.

         

When the bootloader receives a command via the UART1, UART2, UART3, CAN or SPI 
peripherals, the general protocol is as follows: The bootloader sends an ACK byte to the 
host and waits for an address and for a checksum byte, both of which are checked when 
received. If the address is valid and the checksum is correct, the bootloader transmits an 
ACK byte, otherwise it transmits a NACK byte and aborts the command. When the address 
is valid and the checksum is correct, the bootloader waits for the number of bytes to be 
transmitted (N bytes) and for its complemented byte (checksum). If the checksum is correct, 
it then carries out the command, starting from the received address. If the checksum is 
incorrect, it sends a NACK byte before aborting the command.

The bootloader protocol via UART1, UART2, UART3 and SPI are identical on the device 
side, but, differ regarding the host. A token byte is needed when sending each byte to the 
host via SPI (see Figure 5, Figure 11, Figure 17, Figure 23, and Figure 31). The bootloader 
protocol via CAN differs from all other peripherals. 

The following sections are organised as follows:

● Commands via UART1/ UART2/ UART3

● Commands via SPI

● Commands via CAN

Table 3. Bootloader commands

Command Command code Command description

Get 00h
Gets the version and the allowed commands supported by 
the current version of the bootloader

Read memory 11h
Reads up to 256 bytes of memory starting from an address 
specified by the host

Erase memory 43h
Erases from one to all of the Flash program memory/data 
EEPROM memory sectors

Write memory 31h
Writes up to 128 bytes to the RAM or the Flash program 
memory/data EEPROM memory starting from an address 
specified by the host

Speed 03h Allows the baud rate for CAN run-time to be changed

Go 21h
Jumps to an address specified by the host to execute a 
loaded code
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4.1 Get command
The get command allows the host to get the version of the bootloader and the supported 
commands. When the bootloader receives the get command, it transmits the bootloader 
version and the supported command codes to the host.

4.1.1 Get command via UART1/ UART2/UART3

Figure 3. Get command via UART1/UART2/UART3 Host side

The host sends the bytes as follows

Byte 1: 00h - Command ID

Byte 2: FFh - Complement

Send 00h + FFh
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End of get command

NACK
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Figure 4. Get command via UART1/UART2/UART3: Device side

The STM8S sends the bytes as follows

Byte 1: ACK (after the host has sent the command)

Byte 2: N = 5 = the number of bytes to be sent -1  (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 00h - Get command

Byte 5: 11h - Read memory command

Byte 6: 21h - Go command

Byte 7: 31h - Write memory command

Byte 8: 43h - Erase memory command

Byte 9: ACK

Send ACK byte

 

Start get command

Received
byte = 00h+FFh?

Send 1 byte: Number of bytes
(version+commands)

Send 1 byte: Bootloader version

Send 5 bytes: Supported commands

End of get command

No

Yes

Send NACK byte

Send ACK byte
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4.1.2 Get command via SPI

Figure 5. Get command via SPI: Host side

Send 00h + FFh
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The host sends the bytes as follows

Byte 1: 00h - Command ID

Byte 2: FFh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Byte 4 (token): XYh; host waits for 05h

...

Byte 4 (token): XYh; host waits for ACK or NACK.

Figure 6. Get command via SPI: Device side

The STM8S sends the bytes as follows

Byte 1: ACK

Byte 2: N = 5 = the number of bytes to be sent -1  (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 00h - Get command

Byte 5: 11h - Read memory command

Byte 6: 21h - Go command

Byte 7: 31h - Write memory command

Byte 8: 43h - Erase memory command

Byte 9: ACK

Send ACK byte

 

Start get command

Received
byte = 00h+FFh?

Send 1 byte: Number of bytes
(version+commands)

Send 1 byte: Bootloader version

Send 5 bytes: Supported commands

End of get command

No

Yes

Send NACK byte

Send ACK byte
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4.1.3 Get command via CAN

Figure 7. Get command via CAN: Host side

The host sends the messages as follows

Command message: Std ID = 00h, data length code (DLC) = ‘not important’.
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Figure 8. Get command via CAN: Device side

The STM8S sends the messages as follows

Message 1: Std ID = 02h, DLC = 1, data = ACK

Message 2: Std ID = 02h, DLC = 1 data = N = 6 = the number of bytes to be sent -1  
(1 <= N +1 <= 256)

Message 3: Std ID = 02h, DLC = 1, data = bootloader version (0 < version <= 255)

Message 4: Std ID = 02h, DLC = 1, data = 00h - Get command

Message 5: Std ID = 02h, DLC = 1, data = 03h - Speed command

Message 6: Std ID = 02h, DLC = 1, data = 11h - Read memory command

Message 7: Std ID= 02h, DLC = 1, data = 21h - Go command

Message 8: Std ID = 02h, DLC = 1, data = 31h - Write memory command

Message 9: Std ID= 02h, DLC = 1, data = 43h - Erase memory command

Message 10: Std ID = 02h, DLC = 1, data = ACK

 

Send 1 message: Number of bytes 
(version + commands)

End of get command

No

Yes

Start get command
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Send 1 message: Bootloader version
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Received message
with ID = 00h?
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4.2 Read memory command
The read memory command is used to read the memory (RAM, Flash program 
memory/data EEPROM or registers). When the bootloader receives the read memory 
command, it transmits the needed data ((N + 1) bytes) to the host, starting from the received 
address.

4.2.1 Read memory command via UART1/UART2/UART3

Figure 9. Read memory command via UART1/UART2/UART3: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product 
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on 
page 55).
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The host sends the bytes to the STM8S as follows

Bytes 1-2: 11h+EEh

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6) 

Byte 8: The number of bytes to be read (0 < N <= 255)

Byte 9: Checksum ≠ byte 8.

Figure 10. Read memory command via UART1/UART2/UART3: Device side

Start read memory

Received byte =
11h+EEh

No

Yes
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4.2.2 Read memory command via SPI

Figure 11. Read memory command via SPI: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product 
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on 
page 55).
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The host sends the bytes to the STM8S as follows

Byte 1: 11h - Command ID

Byte 2: EEh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 4, byte 5, byte 6, byte 7) 

Byte 9 (token): XYh; host waits for ACK or NACK

Byte 10: The number of bytes to be read (0 < N <= 255)

Byte 11: Checksum = Complement of byte 10

Byte 12 (token): XYh; host waits for the 1st data byte

Byte 12+N (token): XYh; host waits for the N+1th data byte
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Figure 12. Read memory command via SPI: Device side
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4.2.3 Read memory command via CAN

The CAN message sent by the host is as follows:

● The ID contains the command type (11h)

● The data field contains a destination address (4 bytes, byte 1 is the MSB and byte 4 is 
LSB of the address) and the ‘number of bytes’ (N) to be read.

Figure 13. Read memory command via CAN: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product 
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on 
page 55).

The host sends the messages as follows

Command message: Std ID = 11h, DLC = 05h, data = MSB, XXh, YYh, LSB, N 
(where 0 < N <= 255).

Figure 14. Read memory command via CAN: Device side
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The STM8S sends the messages as follows

ACK message: Std ID = 02h, DLC = 1, data = ACK

Data message 1: Std ID = 02h, DLC = 1, data = XXh

Data message 2: Std ID = 02h, DLC = 1, data = XXh

…

Data message (N+1): Std ID = 02h, DLC = 1, data = XXh

Note: The bootloader sends as many data messages as bytes which can be read.

4.3 Erase memory command 
The erase memory command allows the host to erase sectors of the Flash program 
memory/data EEPROM memory. 

The bootloader receives the erase command message, when the ID contains the command 
type (43h) and the data field contains the sectors to be erased (see Table 5: STM8S sector 
codes on page 50). A sector is 1 Kbyte, therefore, the granularity with the erase command is 
8 blocks. If the host wants to erase one byte, the write command (write 00h) can be used.

Erase memory command specifications:

1. The bootloader receives one byte which contains the number (N) of sectors to be 
erased. N is device dependent. 

2. The bootloader receives (N + 1) bytes, where each byte contains a sector code (see ).
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4.3.1 Erase memory command via UART1/UART2/UART3

Figure 15. Erase memory command via UART1/UART2/UART3: Host side

1. Memory erased =130 Kbytes for devices with 128 Kbytes of Flash program memory and 2 Kbytes of Data 
EEPROM and 33 Kbytes for devices with 32 Kbytes of Flash program memory and 1 Kbyte of Data 
EEPROM.

2. A sector is 8 blocks i.e. 1 Kbyte for any device. Therefore, the granularity of the erase command is 
1 Kbyte. 

Warning: If the host sends an erase command that includes some 
correct sector code and one or more forbidden sector codes, 
the command fails.
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The host sends the bytes as follows

Byte 1: 43h - Command ID

Byte 2: BCh - Complement

Byte 3: FFh or number of sectors to be erased (0 <= N <= M); 
if N > M, a cmd_error occurs in the bootloader, afterwhich the
bootloader receives N + 1 data bytes and the checksum (i.e. the host
completes the command).

Note: N is product dependent.
M = (size of the Flash program memory in Kbyte) + (size of Data EEPROM in Kbyte) -1. 
For instance : 
For STM8S20xxB, M = 129 as Flash program memory is 128 Kbytes and Data EEPROM 
memory is 2 Kbytes (128 + 2 -1). 
For STM8S105x6, M = 32 as Flash program memory is 32Kbytes and Data EEPROM is 
1Kbyte (32 + 1 - 1). 
Byte 4 or N+1 bytes: 00h or (N+1 bytes and then checksum: XOR(N, N+1 bytes)).
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Figure 16. Erase memory command via UART1/UART2/UART3: Device side

1. For safety reasons no erase routine is placed into ROM. The ‘erase the corresponding sectors’ routine (see 
Figure 16) is performed in RAM. The user, therefore has to download the erase routine in RAM before 
sending an erase command.
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4.3.2 Erase memory command via SPI

Figure 17. Erase memory command via SPI: Host side

1. When using the erase command via SPI, it is necessary to wait for a brief time interval (see ‘delay’ in 
Figure 17 above) before sending the last token byte. This delay interval depends on the SPI baud rate and 
on the number of sectors to be erased. Delay = 13 * (N + 1)[ms], where 0 <= N <= 32. N = 32 in the case of 
tatal erase.

The host sends the bytes as follows

Byte 1: 43h - Command ID

Byte 2: BCh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Byte 4: FFh or number of sectors to be erased (0 <= N <= 32); 
If N >32 a ‘cmd_error’ occurs.

Byte 5 or N+1 bytes: 00h or (N+1 bytes and then checksum: XOR (N, N+1 bytes))

Last byte (token): XYh; host waits for ACK or NACK.
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Figure 18. Erase memory command via SPI: Device side
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4.3.3 Erase memory command via CAN

Figure 19. Erase memory command via CAN: Host side

1. Memory erased =130 Kbytes for devices with 128 Kbytes of Flash program memory and 2 Kbytes of Data 
EEPROM and 33 Kbytes for devices with 32 Kbytes of Flash program memory and 1 Kbyte of Data 
EEPROM.

2. A sector is 8 blocks i.e. 1 Kbyte for any devices. Therefore, the granularity of the erase command is 
1 Kbyte. 

Warning: If the host sends an erase command that includes some 
correct sector code and one or more forbidden sector codes, 
the command fails.

The host sends the message as follows

Total erase message: Std ID = 43h, DLC = 01h, data = FFh.

Erase sector by sector message: Std ID = 43h, DLC = 01h to 08h, data = see product 
datasheet.
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Figure 20. Erase memory command via CAN: Device side

1. For safety reasons no erase routine is placed into ROM. The ‘erase memory sector by sector according to 
data contained in the messages data field’ (see Figure 20) is performed in RAM. The user, therefore has to 
download the erase routine in RAM before sending an erase command.
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4.4 Write memory command
The write memory command allows the host to write data to any memory address (RAM, 
Flash program memory/data EEPROM or registers) starting from the received address. 
Incoming data are always written in RAM before being loaded in the memory locations 
decided by the host. The bootloader then checks whether the host wants to write in RAM or 
in the Flash program memory/data EEPROM.

The maximum length of the block to be written for the STM8S is 128 data bytes. To write the 
data in the Flash program memory/data EEPROM memory locations, the bootloader 
performs two different write operations:

1. WordWrite/FastWordWrite: Writes a byte in the Flash program memory/data EEPROM. 
It is used when the number of bytes (N) sent from the host is less than 128. In this case 
the bootloader performs the operation N times.

2. BlockWrite: Writes a block in the Flash program memory/data EEPROM.  It is used 
when the number of bytes (N) sent from the host is 128 and the destination address is 
an integer module of 128. In other words, to use this operation, the block sent from the 
host has to be aligned with a memory block.

4.4.1 Write memory command via UART1/UART2/UART3

Figure 21. Write memory command via UART1/UART2/UART3: Host side

1. See product datasheet for valid addresses. If the start address is invalid, an add_error occurs (see Table 6: 
Error table on page 55).
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The host sends the bytes as follows

Byte 1: 31h - Command ID

Byte 2: CEh - Complement

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6) 

Byte 8: The number of bytes to be received (0 < N <= 127); if N > 127 a 
cmd_error occurs in the bootloader. 
N+1 data bytes: Max 128 bytes

Checksum byte: XOR (N, N+1 databytes).
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Figure 22. Write memory command via UART1/UART2/UART3: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to RAM from the start 
address’ (see Figure 22) is performed in RAM. The user, therefore has to download the write routine in 
RAM before sending a write command.
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4.4.2 Write memory command via SPI

Figure 23. Write memory command via SPI: Host side
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The ‘delay’ is calculated as follows:

Where 0 <= N <= 127.

         

The host sends the bytes as follows

Byte 1: 31h - Command ID

Byte 2: CEh - Complement

Byte 3 (token): XY; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 3, byte 4, byte 5, byte 6) 

Byte 9 (token): XY; host waits for ACK or NACK

Byte 10: The number of bytes to be received (0 < N <= 127); 
If N > 127 a cmd_error occurs in the bootloader. 
N+1 data bytes: Max 128 bytes

Checksum byte: XOR (N, N+1 databytes).

before sending the token byte, the host must wait for the bootloader to 
finish writing all data into the memory.

Last byte (token): XYh; host waits for ACK or NACK.

Table 4. Examples of delay

Write command Delay (ms)

128 bytes aligned with a memory block 8.45

128 bytes not aligned with a memory block 1082

Delay = 8.45 * (N + 1) [ms]
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Figure 24. Write memory command via SPI: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to RAM from the start 
address’ (see Figure 22) is performed in RAM. The user, therefore has to download the write routine in 
RAM before sending a write command.
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4.4.3 Write memory command via CAN

Figure 25. Write memory command via CAN: Host side

1. See product datasheet for valid addresses. If the bootloader receives an invalid address, an add_error 
occurs (see Table 6: Error table on page 55).
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The host sends the messages as follows

Command message: Std ID = 31h, DLC = 05h, data = MSB, XXh, YYh, LSB, N, 0 < N <= 
127). If N > 127 a cmd_error occurs in the bootloader.

Data message_1: Std ID = 04h, DLC_1 = 1 to 8, data = byte_11, … byte_18

Data message_2: Std ID = 04h, DLC_2 = 1 to 8, data = byte_21, … byte_28

Data message_3: Std ID = 04h, DLC_3 = 1 to 8, data = byte_31, … byte_38

…

Data message_M: Std ID = 04h, DLC_M = 1 to 8, data = byte_m1, …, byte_M8

Checksum message: Std ID = 04h, DLC = 1, data = XOR (N, N+1 data bytes)

Note: 1 DLC_1 + DLC_2 + ... DLC_M = 128 maximum

2 The bootloader does not check the standard ID of the data and checksum messages. 
Therefore, an ID from 0h to FFh can be used. It is recommended to use 04h.
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Figure 26. Write memory command via CAN: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to the Flash program 
memory/data EEPROM from the start address’ (see Figure 26) is performed in RAM. The user, therefore 
has to download the write routine in RAM before sending a write command.

2. See product datasheet for valid addresses. If the bootloader receives an invalid address, an add_error 
occurs (see Table 6: Error table on page 55).
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4.5 Speed command
The speed command allows the baud rate for CAN run-time to be changed. It can be used 
only if the CAN is the peripheral being used.

4.5.1 Speed command via CAN

Figure 27. Speed command via CAN: Host side

1. After setting the new baud rate, the bootloader sends the ACK message. Therefore, the host sets its baud 
rate while waiting for the ACK.

The host sends the message as follows

Command message: Std ID = 03h, DLC = 01h, data = XXh where XXh assumes the 
following values depending on the baud rate to be set:

● 01h -> baud rate = 125 kbps

● 02h -> baud rate = 250 kbps

● 03h -> baud rate = 500 kbps

● 04h -> baud rate = 1 Mkbps

 

End of speed

Send speed message (std ID = 03h)

Start speed command

ai15031b

Wait for ACK
or NACK

Changes the CAN baud rate
according to command sent

Wait for ACK

NACK

ACK



Bootloader command set UM0560

44/58   

Figure 28. Speed command via CAN: Device side
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4.6 Go command 
The go command is used to execute the downloaded code or any other code by branching 
to an address specified by the host.

4.6.1 Go command via UART1/UART2/UART3

Figure 29. Go command via UART1/UART2/UART3: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product 
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on 
page 55).

The host sends the bytes as follows

Byte 1: 21h - Command ID

Byte 2: DEh - Complement

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6).
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Send the start address (4 bytes) 
and checksum

End of Go

NACK

ACK

Send 21h+DEh

Start Go

ai15017

Wait for ACK
or NACK
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Figure 30. Go command via UART1/UART2/UART3: Device side
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4.6.2 Go command via SPI

Figure 31. Go command via SPI: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product 
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on 
page 55).

The host sends the bytes as follows

Byte 1: 21h - Command ID

Byte 2: DEh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 9 (token): XYh; host waits for ACK or NACK.
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Figure 32. Go command via SPI: Device side
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4.6.3 Go command via CAN

Figure 33. Go command via CAN: Host side

1. See product datasheet for valid addresses.

The host sends the bytes as follows

Go command message: Std ID = 21h, DLC = 04h, data = MSB, XXh, YYh, LSB

Figure 34. Go command via CAN: Device side
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4.7 Sector codes
         

         

Table 5. STM8S sector codes

Sector code
Flash program memory/

data EEPROM 
(STM8S20xxx devices)

Flash program memory/
data EEPROM 

(STM8S105xx devices)

00h 8000h -> 83FFh 8000h -> 83FFh

01h 8400h -> 87FFh 8400h -> 87FFh

02h 8800h -> 8BFFh 8800h -> 8BFFh

03h 8C00h -> 8FFFh 8C00h -> 8FFFh

04h 9000h -> 93FFh 9000h -> 93FFh

05h 9400h -> 97FFh 9400h -> 97FFh

06h 9800h -> 9BFFh 9800h -> 9BFFh

07h 9C00h -> 9FFFh 9C00h -> 9FFFh

08h A000h -> A3FFh A000h -> A3FFh

09h A400h -> A7FFh A400h -> A7FFh

0Ah A800h -> ABFFh A800h -> ABFFh

0Bh AC00h -> AFFFh AC00h -> AFFFh

0Ch B000h -> B3FFh B000h -> B3FFh

0Dh B400h -> B7FFh B400h -> B7FFh

0Eh B800h -> BBFFh B800h -> BBFFh

0Fh BC00h -> BFFFh BC00h -> BFFFh

10h C000h -> C3FFh C000h -> C3FFh

11h C400h -> C7FFh C400h -> C7FFh

12h C800h -> CBFFh C800h -> CBFFh

13h CC00h -> CFFFh CC00h -> CFFFh

14h D000h -> D3FFh D000h -> D3FFh

15h D400h -> D7FFh D400h -> D7FFh

16h D800h -> DBFFh D800h -> DBFFh

17h DC00h -> DFFFh DC00h -> DFFFh

18h E000h -> E3FFh E000h -> E3FFh

19h E400h -> E7FFh E400h -> E7FFh

1Ah E800h -> EBFFh E800h -> EBFFh

1Bh EC00h -> EFFFh EC00h -> EFFFh

1Ch F000h -> F3FFh F000h -> F3FFh

1Dh F400h -> F7FFh F400h -> F7FFh

1Eh F800h -> FBFFh F800h -> FBFFh
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1Fh FC00h -> FFFFh FC00h -> FFFFh

20h 10000h -> 103FFh 4000h -> 43FFh

21h 10400h -> 107FFh

22h 10800h -> 10BFFh

23h 10C00h -> 10FFFh

24h 11000h -> 113FFh

25h 11400h -> 117FFh

26h 11800h -> 11BFFh

27h 11C00h -> 11FFFh

28h 12000h -> 123FFh

29h 12400h -> 127FFh

2Ah 12800h -> 12BFFh

2Bh 12C00h -> 12FFFh

2Ch 13000h -> 133FFh

2Dh 13400h -> 137FFh

2Eh 13800h -> 13BFFh

2Fh 13C00h -> 13FFFh

30h 14000h -> 143FFh

31h 14400h -> 147FFh

32h 14800h -> 14BFFh

33h 14C00h -> 14FFFh

34h 15000h -> 153FFh

35h 15400h -> 157FFh

36h 15800h -> 15BFFh

37h 15C00h -> 15FFFh

38h 16000h -> 163FFh

39h 16400h -> 167FFh

3Ah 16800h -> 16BFFh

3Bh 16C00h -> 16FFFh

3Ch 17000h -> 173FFh

3Dh 17400h -> 177FFh

3Eh 17800h -> 17BFFh

3Fh 17C00h -> 17FFFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM 
(STM8S20xxx devices)

Flash program memory/
data EEPROM 

(STM8S105xx devices)
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40h 18000h -> 183FFh

41h 18400h -> 187FFh

42h 18800h -> 18BFFh

43h 18C00h -> 18FFFh

44h 19000h -> 193FFh

45h 19400h -> 197FFh

46h 19800h -> 19BFFh

47h 19C00h -> 19FFFh

48h 1A000h -> 1A3FFh

49h 1A400h -> 1A7FFh

4Ah 1A800h -> 1ABFFh

4Bh 1AC00h -> 1AFFFh

4Ch 1B000h -> 1B3FFh

4Dh 1B400h -> 1B7FFh

4Eh 1B800h -> 1BBFFh

4Fh 1BC00h -> 1BFFFh

50h 1C000h -> 1C3FFh

51h 1C400h -> 1C7FFh

52h 1C800h -> 1CBFFh

53h 1CC00h -> 1CFFFh

54h 1D000h -> 1D3FFh

55h 1D400h -> 1D7FFh

56h 1D800h -> 1DBFFh

57h 1DC00h -> 1DFFFh

58h 1E000h -> 1E3FFh

59h 1E400h -> 1E7FFh

5Ah 1E800h -> 1EBFFh

5Bh 1EC00h -> 1EFFFh

5Ch 1F000h -> 1F3FFh

5Dh 1F400h -> 1F7FFh

5Eh 1F800h -> 1FBFFh

5Fh 1FC00h -> 1FFFFh

60h 20000h -> 203FFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM 
(STM8S20xxx devices)

Flash program memory/
data EEPROM 

(STM8S105xx devices)
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61h 20400h -> 207FFh

62h 20800h -> 20BFFh

63h 20C00h -> 20FFFh

64h 21000h -> 213FFh

65h 21400h -> 217FFh

66h 21800h -> 21BFFh

67h 21C00h -> 21FFFh

68h 22000h -> 223FFh

69h 22400h -> 227FFh

6Ah 22800h -> 22BFFh

6Bh 22C00h -> 22FFFh

6Ch 22000h -> 223FFh

6Dh 22400h -> 227FFh

6Eh 23800h -> 23BFFh

6Fh 23C00h -> 23FFFh

70h 24000h -> 243FFh

71h 24400h -> 247FFh

72h 24800h -> 24BFFh

73h 24C00h -> 24FFFh

74h 25000h -> 253FFh

75h 25400h -> 257FFh

76h 25800h -> 25BFFh

77h 25C00h -> 25FFFh

78h 26000h -> 263FFh

79h 26400h -> 267FFh

7Ah 26800h -> 26BFFh

7Bh 26C00h -> 26FFFh

7Ch 27000h -> 273FFh

7Dh 27400h -> 277FFh

7Eh 27800h -> 27BFFh

7Fh 27C00h -> 27FFFh

80h 4000h -> 43FFh

81h 4400h -> 47FFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM 
(STM8S20xxx devices)

Flash program memory/
data EEPROM 

(STM8S105xx devices)
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5 Software model

The boot code has been designed with the same logical protocol for exchanging command 
frames between host and any STM8S device.

The boot code can download up to 128 bytes at a time. The first 130 bytes of RAM (from 
00h) store data coming from the serial interface, thus allowing the boot to use the stack. The 
25 bytes following the first 130 bytes are used for the bootloader’s variables. 

Note: Unused (empty) bootloader ROM is filled with an opcode that is not allowed (71h). If, for any 
reason (i.e. noise), the core starts to execute in the 71h area, an illegal opcode is returned 
and consequently a reset. This prevents the bootloader falling into an infinite loop with no 
reset in the event that it jumps in the ‘empty’ locations. Thus normal execution can resume. 

Caution: To erase or program the Flash program memory, the respective routines must be 
downloaded in RAM starting at 00A0h. This is imperative because the routines are 
consecutive with no empty memory locations between them.

The routines are included in the following files:

● STM8S20xxx devices: E_W_ROUTINEs_128K.s19

● STM8S105xx devices: E_W_ROUTINEs_32K.s19

Note: To execute any of the commands (get, read, erase, write, speed, and go), the bootloader 
uses part of the RAM memory. Therefore, it is forbidden to run write commands (with the 
exception of write commands that are useful for downloading routines to erase and program 
the Flash program memory) with destination addresses in the following RAM memory 
locations:

● STM8S20xxx devices: 0h to 01FFh

● STM8S105xx devices: 0h to 01CFh
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6 Error management

Table 6 describes the error type and the bootloader behavior.

         

         

Table 6. Error table

Error Description Bootloader actions

cmd_error

If a denied command is received

If a parity error occurs during command transmission
If an error occurs during the command execution

See Table 3: Bootloader commands on page 13

Sends NACK byte and goes 
back to command checking

add_error
If a received command contains a denied destination 
address (for information on valid address ranges, refer 
to the product datasheet)

Sends NACK byte and goes 
back to command checking
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7 Programming time

The programming time depends on the baud rate of the peripheral.

● UART1/UART2/UART3: 128 kbps, 256 kbps, and 500 kbps

● SPI: 125 kbps, 250 kbps, 500 kbps, and 1 Mbps

● CAN: 125 kbps, 250 kbps, 500 kbps, and 1 Mbps

Note: 1 The programming time of the SPI is measured based on 32 Kbytes instead of 48 Kbytes 
because the boot code via the SPI is implemented on the STM8S 32 Kbyte device only.

2 After a go command, the bootloader removes the erase and write routines from the RAM 
memory before jumping to the host address. It takes about 150 µs to remove these routines.

Table 7, Table 8, and Table 9 show the programming times for the UART1/UART2/UART3, 
SPI, and CAN respectively.

         

         

         

Table 7. UART1/UART2/UART3 programming times

Time to load Kbytes/block/bytes in 
the Flash program memory

Baud rate (bps)

128000 256000 500000

48 Kbytes 7.73 s 5.34 s 4.08 s

1 block 20.13 ms 13.53 ms 10.65 ms

1 byte 7.52 ms 6.93 ms 6.65 ms

Table 8. SPI programming time

Time to load Kbytes/block/bytes 
in the Flash program memory

Baud rate

125 kbps 250 kbps 500 kbps 1 Mbps

32 Kbytes 4.46 s 3.34 s 2.81 s 2.55 s

1 block 17.44 ms 13.04 ms 11.01 ms 9.95 ms

1 byte 8.52 ms 8.12 ms 7.93 ms 7.84 ms

Table 9. CAN programming time

Time to load Kbytes/block/bytes 
in the Flash program memory

Baud rate

125 kbps 250 kbps 500 kbps 1 Mbps

48 Kbytes 9.50 s 6.40 s 4.85 s 4.07 s

1 block 24.73 ms 16.66 ms 12.63 ms 10.60 ms

1 byte 9.23 ms 8.53 ms 7.91 ms 7.68 ms
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8 Revision history

         

Table 10. Document revision history

Date Revision Changes

15-Dec-2008 1 Initial release
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