
December 2008 Rev 1 1/58

UM0560
User manual

STM8S bootloader user manual

1 Introduction

This user manual contains the bootloader specifications for STM8S devices which contain a
bootloader embedded in the system memory of the device (the ROM memory). Through this
firmware, the device memory can be erased and programmed using one of the standard
communication interfaces present on the particular device. For each device, please refer to
the corresponding datasheets to know if the bootloader is present and which peripherals are
supported.

The document describes the features and operation of the STM8S integrated bootloader
program. This code allows memories, including Flash program, data EEPROM, and RAM, to
be written into the device using the standard serial interfaces UART1, UART2, UART3,
CAN, and SPI (only available on STM8S105xx devices).

The bootloader code is the same for all STM8S versions, including STM8S20xxx and
STM8S105xx devices. However, even though a peripheral may be present in a product, the
product may not support it (for example, the SPI is not supported in STM8S20xxx devices).
In addition, different cuts support different peripherals: The bootloader code can be
accessed via the UART1, UART3 and CAN peripherals in STM8S20xxx devices and via
UART2 and SPI in STM8S105xx devices.

For further information on the STM8S family features, pinout, electrical characteristics,
mechanical data and ordering information, please refer to the STM8S datasheets.

www.st.com

http://www.st.com

Contents UM0560

2/58

Contents

1 Introduction . 1

2 Bootloader introduction . 6

2.1 Bootloader activation . 6

3 Peripheral settings . 10

3.1 UART1 settings . 10

3.2 UART2 and UART3 settings . 10

3.3 SPI settings . 11

3.4 CAN settings . 11

4 Bootloader command set . 13

4.1 Get command . 14

4.1.1 Get command via UART1/ UART2/UART3 . 14

4.1.2 Get command via SPI . 16

4.1.3 Get command via CAN . 18

4.2 Read memory command . 20

4.2.1 Read memory command via UART1/UART2/UART3 20

4.2.2 Read memory command via SPI . 22

4.2.3 Read memory command via CAN . 25

4.3 Erase memory command . 26

4.3.1 Erase memory command via UART1/UART2/UART3 27

4.3.2 Erase memory command via SPI . 30

4.3.3 Erase memory command via CAN . 32

4.4 Write memory command . 34

4.4.1 Write memory command via UART1/UART2/UART3 34

4.4.2 Write memory command via SPI . 37

4.4.3 Write memory command via CAN . 40

4.5 Speed command . 43

4.5.1 Speed command via CAN . 43

4.6 Go command . 45

4.6.1 Go command via UART1/UART2/UART3 . 45

4.6.2 Go command via SPI . 47

UM0560 Contents

 3/58

4.6.3 Go command via CAN . 49

4.7 Sector codes . 50

5 Software model . 54

6 Error management . 55

7 Programming time . 56

8 Revision history . 57

List of tables UM0560

4/58

List of tables

Table 1. Initial checking . 9
Table 2. Serial interfaces associated with STM8S devices . 10
Table 3. Bootloader commands . 13
Table 4. Examples of delay . 38
Table 5. STM8S sector codes . 50
Table 6. Error table . 55
Table 7. UART1/UART2/UART3 programming times. 56
Table 8. SPI programming time . 56
Table 9. CAN programming time . 56
Table 10. Document revision history . 57

UM0560 List of figures

 5/58

List of figures

Figure 1. Bootloader activation flow chart . 7
Figure 2. CAN frame . 11
Figure 3. Get command via UART1/UART2/UART3 Host side . 14
Figure 4. Get command via UART1/UART2/UART3: Device side. 15
Figure 5. Get command via SPI: Host side . 16
Figure 6. Get command via SPI: Device side . 17
Figure 7. Get command via CAN: Host side . 18
Figure 8. Get command via CAN: Device side . 19
Figure 9. Read memory command via UART1/UART2/UART3: Host side . 20
Figure 10. Read memory command via UART1/UART2/UART3: Device side 21
Figure 11. Read memory command via SPI: Host side . 22
Figure 12. Read memory command via SPI: Device side . 24
Figure 13. Read memory command via CAN: Host side . 25
Figure 14. Read memory command via CAN: Device side . 25
Figure 15. Erase memory command via UART1/UART2/UART3: Host side. 27
Figure 16. Erase memory command via UART1/UART2/UART3: Device side 29
Figure 17. Erase memory command via SPI: Host side . 30
Figure 18. Erase memory command via SPI: Device side. 31
Figure 19. Erase memory command via CAN: Host side. 32
Figure 20. Erase memory command via CAN: Device side . 33
Figure 21. Write memory command via UART1/UART2/UART3: Host side . 34
Figure 22. Write memory command via UART1/UART2/UART3: Device side 36
Figure 23. Write memory command via SPI: Host side . 37
Figure 24. Write memory command via SPI: Device side . 39
Figure 25. Write memory command via CAN: Host side . 40
Figure 26. Write memory command via CAN: Device side . 42
Figure 27. Speed command via CAN: Host side . 43
Figure 28. Speed command via CAN: Device side . 44
Figure 29. Go command via UART1/UART2/UART3: Host side . 45
Figure 30. Go command via UART1/UART2/UART3: Device side . 46
Figure 31. Go command via SPI: Host side. 47
Figure 32. Go command via SPI: Device side . 48
Figure 33. Go command via CAN: Host side . 49
Figure 34. Go command via CAN: Device side . 49

Bootloader introduction UM0560

6/58

2 Bootloader introduction

The main task of the bootloader is to download the application program into the internal
memories through the UART1, UART2, UART3, SPI or CAN peripherals without using the
SWIM protocol and dedicated hardware. Data are provided by any device (host) capable of
sending information through one of the above serial interfaces.

The bootloader permits downloading of application software into the device memories,
including the program memory, using standard serial interfaces (UART1, UART2, UART3,
SPI and CAN) without dedicated hardware. It is a complementary solution to programming
via the SWIM debugging interface.

The bootloader code is stored in the internal boot ROM memory. After a reset, the
bootloader code checks whether the program memory is virgin or whether a specific option
byte is set allowing code modifications.

If these conditions are not fulfilled, the bootloader resumes and the user application is
started.

In case of a successful check the bootloader is executed.

When the bootloader procedure starts, the main tasks are:

● Polling all supported serial interfaces to check which peripheral is used.

● Programming code, data, option bytes and/or vector tables at the address(es) received
from the host.

2.1 Bootloader activation
The STM8S reset vector is located at the beginning of the boot ROM (6000h), while the
other vectors are in the Flash program memory starting at address 8004h.

The device executes the boot ROM, jumps inside the boot ROM area and after checking
certain address locations (see Table 1: Initial checking on page 9), it starts to execute the
user code via the reset vector (8000h) in the Flash program memory.

The bootloader activation flowchart is described in Figure 1 on page 7.

UM0560 Bootloader introduction

 7/58

Figure 1. Bootloader activation flow chart

1. See Flow chart description on page 8 for explanation of points 1 to 8.

2. Dotted routines are loaded in RAM by the host. They are removed by the go command before jumping to the Flash program
memory to execute an application.

ai15360

ROM reset
(6000h)

Checks according to
Table 1

3rd condition verified 1st condition verified

Yes (memory read out protected)

Send ACK byte and disable unused
peripherals. Execute RASS KEYs

Wait for a command

Is Flash virgin?
Yes

Timeout (1 s)

GET cmd

RM cmd
routine

GET cmd
routine

GO cmd
routine

Command received

EM cmd
routine

WM cmd
routine

RM cmd EM cmd

No

WM cmd GO cmd

Remove EM and WM
routines from the RAM

Flash reset
(8000h)

Jump to host address

SYNCHR received

Wait for SYNCHR

SYNCHR
failed

SD cmd
routine

SD cmd

2nd condition verified

Received a byte/message! = SYNCHR

Is an external clock present?

Initializes CAN at
125 kbps

Disable all interrupt sources

Yes No

Is ROP active?

No (memory not read out protected)

Configure HSI and initialize RX-UART3 pin (PD6) and
RX-UART1 pin (PDA) in GPIO mofe (pull-up state).

Configure SPI in slave mode

Recover the registers
reset status

1

2

3

4

4

5

6

8

7

6

6

6

Bootloader introduction UM0560

8/58

Flow chart description

1. Disable all interrupt sources.

2. The host can reprogram the Flash program memory and the bootloader option byte
values, as shown in Table 1 according to the content of the first Flash program memory
location (8000h).

3. When read out protection (ROP) is equal to AAh (ROP active), the Flash program
memory is read out protected. In this case, the bootloader stops and the user
application starts. If ROP is not equal to AAh, the bootloader continues to be executed.

4. The CAN peripheral can only be used if an external clock (8 MHz, 16 MHz, or 24 MHz)
is present. It is initialized at 125 kbps. The UART1, UART2, UART3 and SPI peripherals
do not require an external clock.

5. Set the high speed internal RC oscillator (HSI) to 16 MHz and initialize the UART1,
UART2 and UART3 receiver pins in input pull-up mode in the GPIO registers. Initialize
the SPI in slave mode.

6. Interface polling (point S): The bootloader polls the peripherals waiting for a
synchronization byte/message (SYNCHR) within a timeout of 1 s. If a timeout occurs,
either the Flash program memory is virgin in which case it waits for a synchronization
byte/message in an infinite loop, or the Flash program memory is not virgin and the
bootloader restores the registers’ reset status before going to the Flash program
memory reset vector at 8000h.

Note: When synchronization fails and the bootloader receives a byte/message different
to ‘SYNCHR’, two different situations can be distinguished according to the peripheral:

With UART1, UART2 or UART3, a device reset or power-down is necessary before
synchronization can be tried again.

With CAN or SPI, the user can continue to poll the interfaces until a synchronization or
a timeout occurs.

7. If the synchronization message is received by the UART1, UART2 or UART3, the
bootloader detects the baud rate and initializes the UART1, UART2 or UART3
respectively and goes to step 8 below. If the synchronization message is received by
the CAN or SPI, the bootloader goes directly to step 8 below.

Note: Once one of the available interfaces receives the synchronization message, all
others are disabled.

8. Waiting for commands (point C): Commands are checked in an infinite loop and
executed. To exit from the bootloader, the host has to send a ‘go’ command. When this
is done, the bootloader removes the EM and WM routines from the RAM memory
before jumping to the address selected by the host.

UM0560 Bootloader introduction

 9/58

Table 1. Initial checking(1)

1. After interface initialization, a write protection test is performed to avoid non-authorised reading of the
Flash program memory/data EEPROM,

Checks
Program memory

location 8000h

Bootloader
check

opt_byte 487Eh

Bootloader
check

opt_byteN 487Fh

Actual Flash program
memory status
-> Flash action

1st XXh! = (82h or ACh) XXh XXh
Flash program memory

virgin
-> jump to bootloader

2nd XXh = (82h or ACh) 55h AAh
Flash program memory

already written
-> jump to bootloader

3rd XXh = (82h or ACh) XXh! = 55h XXh! = AAh

Flash program memory
already written

-> jump to Flash program
memory reset

Peripheral settings UM0560

10/58

3 Peripheral settings

This section describes the hardware settings of the STM8S communication peripherals:

● UART1

● UART2

● UART3

● SPI

● CAN

Note: During bootloading only one peripheral is enabled; all others are disabled.

3.1 UART1 settings
All UART peripherals support asynchronous serial communication.

UART1 settings are:

● Data frame: 1 start bit, 8 data bit, 1 parity bit even, 1 stop bit

● Baud rate: The baud rate is autodetected by the bootloader. When the user sends the
synchronization byte, 7Fh, the bootloader automatically detects the baud rate and sets
the UART1 to the same baud rate. Maximum baud rate = 1 Mbps; minimum baud rate =
4800 bps.

Mandatory: To perform the automatic speed detection, the RX line (PA4) has to be stable in
the application board.

Note: The UART1 peripheral is accessible via pins PA4 (RX) and PA5 (TX).

3.2 UART2 and UART3 settings
All UART peripherals support asynchronous serial communication.

UART2 and UART3 settings are:

● Data frame: 1 start bit, 8 data bit, no parity bit, 1 stop bit

● Baud rate: The baud rate is autodetected by the bootloader. When the user sends the
byte 7Fh, the bootloader automatically detects the baud rate and sets the UART2 or
UART3 to the same baud rate. Maximum baud rate = 550 kbps; minimum baud rate =
4800 bps.

Mandatory: To perform the automatic speed detection, the RX line (PD6 for UART3) has to
be stable in the application board.

Note: UART2 and UART3 peripherals are accessible via pins PD5 (TX) and PD6 (RX).

Table 2. Serial interfaces associated with STM8S devices

Device Serial interface

STM8S20xxx UART1, UART3, CAN

STM8S105xx UART2, SPI

UM0560 Peripheral settings

 11/58

3.3 SPI settings
The SPI settings are:

● 8 data bit, LSB first

● Bit rate: Set by the host which acts as a master

● Peripheral set in slave mode with NSS not used.

● Data polarity: CPOL = CPOH = 0

Note: 1 Before sending a ‘token’ byte, the host has to wait for a delay of a specified period of time. If
this period is not quantified, it is equal to 6 µs.

2 The SPI peripheral is accessible via pins PC5 (SCK), PC6 (MOSI), and PD7 (MISO).

3.4 CAN settings
To address additional devices on the same bus, the CAN protocol provides a standard
identifier field (11-bit) and an optional extended identifier field (18-bit) in the frame.

Figure 2 shows the CAN frame that uses the standard identifier only.

Figure 2. CAN frame

The CAN settings are:

● Standard identifier (not extended)

● Bit rate: At the beginning is 125 kbps; run time can be changed via the speed
command to achieve a maximum bit rate of 1 Mbps.

The transmit settings (from STM8S to the host) are:

● Tx mailbox0: On

● Tx mailbox1 and Tx mailbox2: Off

● Tx identifier: 02h

● Outgoing messages contain 1 data byte.

ID

12

DLC

6 8 * N

CRC

16
2

7

EOF

A
C

K

S
O

F

R
T

R
ID

E r0

Arbitration field
Control field

Data field CRC field
ACK field

Inter-frame space
Inter-frame space
or overload frameData frame (standard identifier)

44 + 8 * N

ai15001

Peripheral settings UM0560

12/58

The receive settings (from the host to STM8S) are:

● Synchronization byte, 7Fh, is in the RX identifier and not in the data field.

● RX identifier depends on the command (00h, 03h, 11h, 21h, 31h, 43h).

● Error checking: If the error field (bit [6:4] in the CESR register) is different from 000b,
the message is discarded and a NACK is sent to the host.

● In FIFO overrun condition, the message is discarded and a NACK is sent to the host.

● Incoming messages can contain from 1 to 8 data bytes.

Note: The CAN peripheral is accessible via pins PG0 (TX) and PG1 (RX).

UM0560 Bootloader command set

 13/58

4 Bootloader command set

The supported commands are listed in Table 3 below.

When the bootloader receives a command via the UART1, UART2, UART3, CAN or SPI
peripherals, the general protocol is as follows: The bootloader sends an ACK byte to the
host and waits for an address and for a checksum byte, both of which are checked when
received. If the address is valid and the checksum is correct, the bootloader transmits an
ACK byte, otherwise it transmits a NACK byte and aborts the command. When the address
is valid and the checksum is correct, the bootloader waits for the number of bytes to be
transmitted (N bytes) and for its complemented byte (checksum). If the checksum is correct,
it then carries out the command, starting from the received address. If the checksum is
incorrect, it sends a NACK byte before aborting the command.

The bootloader protocol via UART1, UART2, UART3 and SPI are identical on the device
side, but, differ regarding the host. A token byte is needed when sending each byte to the
host via SPI (see Figure 5, Figure 11, Figure 17, Figure 23, and Figure 31). The bootloader
protocol via CAN differs from all other peripherals.

The following sections are organised as follows:

● Commands via UART1/ UART2/ UART3

● Commands via SPI

● Commands via CAN

Table 3. Bootloader commands

Command Command code Command description

Get 00h
Gets the version and the allowed commands supported by
the current version of the bootloader

Read memory 11h
Reads up to 256 bytes of memory starting from an address
specified by the host

Erase memory 43h
Erases from one to all of the Flash program memory/data
EEPROM memory sectors

Write memory 31h
Writes up to 128 bytes to the RAM or the Flash program
memory/data EEPROM memory starting from an address
specified by the host

Speed 03h Allows the baud rate for CAN run-time to be changed

Go 21h
Jumps to an address specified by the host to execute a
loaded code

Bootloader command set UM0560

14/58

4.1 Get command
The get command allows the host to get the version of the bootloader and the supported
commands. When the bootloader receives the get command, it transmits the bootloader
version and the supported command codes to the host.

4.1.1 Get command via UART1/ UART2/UART3

Figure 3. Get command via UART1/UART2/UART3 Host side

The host sends the bytes as follows

Byte 1: 00h - Command ID

Byte 2: FFh - Complement

Send 00h + FFh

Start get command

Wait for ACK
or NACK

Receive 1 byte: Number of bytes
(version + commands)

Receive 1 byte: Bootloader version

Receive 5 bytes: Supported commands

End of get command

NACK

ACK

ai15003

Wait for ACK
or NACK

UM0560 Bootloader command set

 15/58

Figure 4. Get command via UART1/UART2/UART3: Device side

The STM8S sends the bytes as follows

Byte 1: ACK (after the host has sent the command)

Byte 2: N = 5 = the number of bytes to be sent -1 (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 00h - Get command

Byte 5: 11h - Read memory command

Byte 6: 21h - Go command

Byte 7: 31h - Write memory command

Byte 8: 43h - Erase memory command

Byte 9: ACK

Send ACK byte

Start get command

Received
byte = 00h+FFh?

Send 1 byte: Number of bytes
(version+commands)

Send 1 byte: Bootloader version

Send 5 bytes: Supported commands

End of get command

No

Yes

Send NACK byte

Send ACK byte

ai15004

Bootloader command set UM0560

16/58

4.1.2 Get command via SPI

Figure 5. Get command via SPI: Host side

Send 00h + FFh

Start get command

Receive 1 byte (05h): Number of bytes

End of get command

NACK

ACK

ai15033b

Send token byte

Send token byte

Send token byte

Receive 1 byte: Bootloader version

Send token byte

Receive 1 byte (00h): Get command ID

Send token byte

Receive 1 byte (11h): Read command ID

Send token byte

Receive 1 byte (21h): Go command ID

Send token byte

Receive 1 byte (31h): Write command ID

Send token byte

Receive 1 byte (43h): Erase command ID

Send token byte

Wait for ACK
or NACK

Wait for ACK
or NACK

UM0560 Bootloader command set

 17/58

The host sends the bytes as follows

Byte 1: 00h - Command ID

Byte 2: FFh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Byte 4 (token): XYh; host waits for 05h

...

Byte 4 (token): XYh; host waits for ACK or NACK.

Figure 6. Get command via SPI: Device side

The STM8S sends the bytes as follows

Byte 1: ACK

Byte 2: N = 5 = the number of bytes to be sent -1 (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 00h - Get command

Byte 5: 11h - Read memory command

Byte 6: 21h - Go command

Byte 7: 31h - Write memory command

Byte 8: 43h - Erase memory command

Byte 9: ACK

Send ACK byte

Start get command

Received
byte = 00h+FFh?

Send 1 byte: Number of bytes
(version+commands)

Send 1 byte: Bootloader version

Send 5 bytes: Supported commands

End of get command

No

Yes

Send NACK byte

Send ACK byte

ai15034

Bootloader command set UM0560

18/58

4.1.3 Get command via CAN

Figure 7. Get command via CAN: Host side

The host sends the messages as follows

Command message: Std ID = 00h, data length code (DLC) = ‘not important’.

Wait for ACK
or NACK

Receive 1 message: number of bytes
(version + commands)

End of get command

NACK

ACK

Send message with std ID = 00h

Start get command

ai15029

Receive 1 message: Bootloader version

Wait for ACK
or NACK

Receive 1 message: Get command

Receive 1 message: Speed command

Receive 1 message: Read command

Receive 1 message: Go command

Receive 1 message: Write command

Receive 1 message: Erase command

UM0560 Bootloader command set

 19/58

Figure 8. Get command via CAN: Device side

The STM8S sends the messages as follows

Message 1: Std ID = 02h, DLC = 1, data = ACK

Message 2: Std ID = 02h, DLC = 1 data = N = 6 = the number of bytes to be sent -1
(1 <= N +1 <= 256)

Message 3: Std ID = 02h, DLC = 1, data = bootloader version (0 < version <= 255)

Message 4: Std ID = 02h, DLC = 1, data = 00h - Get command

Message 5: Std ID = 02h, DLC = 1, data = 03h - Speed command

Message 6: Std ID = 02h, DLC = 1, data = 11h - Read memory command

Message 7: Std ID= 02h, DLC = 1, data = 21h - Go command

Message 8: Std ID = 02h, DLC = 1, data = 31h - Write memory command

Message 9: Std ID= 02h, DLC = 1, data = 43h - Erase memory command

Message 10: Std ID = 02h, DLC = 1, data = ACK

Send 1 message: Number of bytes
(version + commands)

End of get command

No

Yes

Start get command

ai15030

Send 1 message: Bootloader version

Send 6 messages: Supported commands

Received message
with ID = 00h?

Send ACK message

Send ACK message

Send NACK message

Bootloader command set UM0560

20/58

4.2 Read memory command
The read memory command is used to read the memory (RAM, Flash program
memory/data EEPROM or registers). When the bootloader receives the read memory
command, it transmits the needed data ((N + 1) bytes) to the host, starting from the received
address.

4.2.1 Read memory command via UART1/UART2/UART3

Figure 9. Read memory command via UART1/UART2/UART3: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on
page 55).

Wait for ACK
or NACK

Send the start address (4 bytes) with
checksum

Wait for ACK
or NACK

End of read memory

NACK

ACK

Send 11h+EEh

Start read memory

Send the number of bytes to be read (1 byte)
and a checksum (1 byte)

Wait for ACK
or NACK

Receive data from the bootloader

NACK

ACK

NACK

ACK

ai15005

UM0560 Bootloader command set

 21/58

The host sends the bytes to the STM8S as follows

Bytes 1-2: 11h+EEh

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 8: The number of bytes to be read (0 < N <= 255)

Byte 9: Checksum ≠ byte 8.

Figure 10. Read memory command via UART1/UART2/UART3: Device side

Start read memory

Received byte =
11h+EEh

No

Yes

 Receive the start address (4 bytes)
with checksum

Checksum OK?

End of read memory

Receive the number of bytes to be read (1 byte)
and the checksum byte

Address valid &
checksum OK?

Send data to the host

Send ACK byte

Send ACK byte

Send ACK byte Send NACK byte

No

Yes

No

Yes

ai15006

Bootloader command set UM0560

22/58

4.2.2 Read memory command via SPI

Figure 11. Read memory command via SPI: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on
page 55).

Wait for ACK
or NACK

Send the start address (4 bytes) with
checksum

N+1 bytes
received?

End of read memory

NACK

ACK

Send 11h+EEh

Start read memory

Send the number of bytes (N) to be read
(1 byte) and a checksum (1 byte)

Wait for ACK
or NACK

Receive 1 byte from STM8A

NACK

ACK

NACK

ai15035

Start token byte

Start token byte

Wait for ACK
or NACK

ACK

Start token byte

Start token byte

No

Yes

UM0560 Bootloader command set

 23/58

The host sends the bytes to the STM8S as follows

Byte 1: 11h - Command ID

Byte 2: EEh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 4, byte 5, byte 6, byte 7)

Byte 9 (token): XYh; host waits for ACK or NACK

Byte 10: The number of bytes to be read (0 < N <= 255)

Byte 11: Checksum = Complement of byte 10

Byte 12 (token): XYh; host waits for the 1st data byte

Byte 12+N (token): XYh; host waits for the N+1th data byte

Bootloader command set UM0560

24/58

Figure 12. Read memory command via SPI: Device side

Start read memory

Received byte =
11h+EEh?

No

Yes

 Receive the start address (4 bytes)
with checksum

Checksum OK?

End of read memory

Receive the number of bytes to be read (1 byte)
and the checksum byte

Send data to the host

Send ACK byte

Send ACK byte
Send NACK byte

No

Yes

No

Yes

ai15036

Address valid &
checksum OK?

Send ACK byte

UM0560 Bootloader command set

 25/58

4.2.3 Read memory command via CAN

The CAN message sent by the host is as follows:

● The ID contains the command type (11h)

● The data field contains a destination address (4 bytes, byte 1 is the MSB and byte 4 is
LSB of the address) and the ‘number of bytes’ (N) to be read.

Figure 13. Read memory command via CAN: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on
page 55).

The host sends the messages as follows

Command message: Std ID = 11h, DLC = 05h, data = MSB, XXh, YYh, LSB, N
(where 0 < N <= 255).

Figure 14. Read memory command via CAN: Device side

Start read memory

End of read memory

Receive (N+1) messages from bootloader

Wait for ACK or NACK
NACK

ai15008

Send read message (std ID = 11h)

ACK

Start read memory

End of read memory

Received message
with std ID = 11h?

Send (N+1) messages to the host

Send ACK message

Send NACK message

No

Yes

ai15008

Bootloader command set UM0560

26/58

The STM8S sends the messages as follows

ACK message: Std ID = 02h, DLC = 1, data = ACK

Data message 1: Std ID = 02h, DLC = 1, data = XXh

Data message 2: Std ID = 02h, DLC = 1, data = XXh

…

Data message (N+1): Std ID = 02h, DLC = 1, data = XXh

Note: The bootloader sends as many data messages as bytes which can be read.

4.3 Erase memory command
The erase memory command allows the host to erase sectors of the Flash program
memory/data EEPROM memory.

The bootloader receives the erase command message, when the ID contains the command
type (43h) and the data field contains the sectors to be erased (see Table 5: STM8S sector
codes on page 50). A sector is 1 Kbyte, therefore, the granularity with the erase command is
8 blocks. If the host wants to erase one byte, the write command (write 00h) can be used.

Erase memory command specifications:

1. The bootloader receives one byte which contains the number (N) of sectors to be
erased. N is device dependent.

2. The bootloader receives (N + 1) bytes, where each byte contains a sector code (see).

UM0560 Bootloader command set

 27/58

4.3.1 Erase memory command via UART1/UART2/UART3

Figure 15. Erase memory command via UART1/UART2/UART3: Host side

1. Memory erased =130 Kbytes for devices with 128 Kbytes of Flash program memory and 2 Kbytes of Data
EEPROM and 33 Kbytes for devices with 32 Kbytes of Flash program memory and 1 Kbyte of Data
EEPROM.

2. A sector is 8 blocks i.e. 1 Kbyte for any device. Therefore, the granularity of the erase command is
1 Kbyte.

Warning: If the host sends an erase command that includes some
correct sector code and one or more forbidden sector codes,
the command fails.

Wait for ACK
or NACK

End of erase memory

NACK

ACK

Send 43h+BCh

Start erase memory

Total
erase?

NoYes

Send FFh

Send 00h

Send the number of sectors
to be erased (1 byte)

Send the sector codes

Send checksum

ai15009

Wait for ACK
or NACK

Bootloader command set UM0560

28/58

The host sends the bytes as follows

Byte 1: 43h - Command ID

Byte 2: BCh - Complement

Byte 3: FFh or number of sectors to be erased (0 <= N <= M);
if N > M, a cmd_error occurs in the bootloader, afterwhich the
bootloader receives N + 1 data bytes and the checksum (i.e. the host
completes the command).

Note: N is product dependent.
M = (size of the Flash program memory in Kbyte) + (size of Data EEPROM in Kbyte) -1.
For instance :
For STM8S20xxB, M = 129 as Flash program memory is 128 Kbytes and Data EEPROM
memory is 2 Kbytes (128 + 2 -1).
For STM8S105x6, M = 32 as Flash program memory is 32Kbytes and Data EEPROM is
1Kbyte (32 + 1 - 1).
Byte 4 or N+1 bytes: 00h or (N+1 bytes and then checksum: XOR(N, N+1 bytes)).

UM0560 Bootloader command set

 29/58

Figure 16. Erase memory command via UART1/UART2/UART3: Device side

1. For safety reasons no erase routine is placed into ROM. The ‘erase the corresponding sectors’ routine (see
Figure 16) is performed in RAM. The user, therefore has to download the erase routine in RAM before
sending an erase command.

No

Start erase memory

00h
received?

Received bytes =
43h+BCh?

Send ACK byte

Receive the sector codes

End of erase memory

Send NACK byte

Yes

FFh received?

Receive the checksum

Yes

No

Yes

No

Start total erase

Receive the number of sectors
to be erased (1 byte)

No

Yes

Erase the corresponding sectors

Send ACK byte

Checksum
OK?

ai15010

Bootloader command set UM0560

30/58

4.3.2 Erase memory command via SPI

Figure 17. Erase memory command via SPI: Host side

1. When using the erase command via SPI, it is necessary to wait for a brief time interval (see ‘delay’ in
Figure 17 above) before sending the last token byte. This delay interval depends on the SPI baud rate and
on the number of sectors to be erased. Delay = 13 * (N + 1)[ms], where 0 <= N <= 32. N = 32 in the case of
tatal erase.

The host sends the bytes as follows

Byte 1: 43h - Command ID

Byte 2: BCh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Byte 4: FFh or number of sectors to be erased (0 <= N <= 32);
If N >32 a ‘cmd_error’ occurs.

Byte 5 or N+1 bytes: 00h or (N+1 bytes and then checksum: XOR (N, N+1 bytes))

Last byte (token): XYh; host waits for ACK or NACK.

Wait for ACK
or NACK

End of erase memory

NACK

ACK

Send 43h+BCh

Start erase memory

NoYes

Send FFh

Send 00h

Send the number of sectors
(N) to be erased (1 byte)

Send the sector code

Send checksum

ai15037

Wait for ACK
or NACK

Send token byte

Total
erase?

Delay

Send token byte

UM0560 Bootloader command set

 31/58

Figure 18. Erase memory command via SPI: Device side

No

Start erase memory

00h
received?

Received bytes =
43h+BCh?

Send ACK byte

Receive the sector codes

End of erase memory

Send NACK byte

Yes

FFh received?

Receive the checksum

Yes

No

Yes

No

Start total erase

Receive the number of sectors
to be erased (1 byte)

No

Yes

Erase the corresponding sectors

Send ACK byte

Checksum
OK?

ai15038

Bootloader command set UM0560

32/58

4.3.3 Erase memory command via CAN

Figure 19. Erase memory command via CAN: Host side

1. Memory erased =130 Kbytes for devices with 128 Kbytes of Flash program memory and 2 Kbytes of Data
EEPROM and 33 Kbytes for devices with 32 Kbytes of Flash program memory and 1 Kbyte of Data
EEPROM.

2. A sector is 8 blocks i.e. 1 Kbyte for any devices. Therefore, the granularity of the erase command is
1 Kbyte.

Warning: If the host sends an erase command that includes some
correct sector code and one or more forbidden sector codes,
the command fails.

The host sends the message as follows

Total erase message: Std ID = 43h, DLC = 01h, data = FFh.

Erase sector by sector message: Std ID = 43h, DLC = 01h to 08h, data = see product
datasheet.

Has the user to
perform a

total erase?

Start erase memory

NoYes

Send a message with std
ID = 43h and data byte 1
= FFh. The bootloader
takes no account of other
data in the message

Send a message with std
ID = 43h and data field
containing sector codes

End of erase memory
ai15011

Wait for 2 ACK
or 1 NACK

UM0560 Bootloader command set

 33/58

Figure 20. Erase memory command via CAN: Device side

1. For safety reasons no erase routine is placed into ROM. The ‘erase memory sector by sector according to
data contained in the messages data field’ (see Figure 20) is performed in RAM. The user, therefore has to
download the erase routine in RAM before sending an erase command.

No

Start erase memory

Received message
with std ID =

43h?

Send ACK message

Yes

Is byte 1 of the
data field = FFh?

Yes

No

Start total erase
Erase memory sector by sector

according to data contained in the
messages data field

End of erase memory

Send NACK messageSend ACK message

ai15012

Bootloader command set UM0560

34/58

4.4 Write memory command
The write memory command allows the host to write data to any memory address (RAM,
Flash program memory/data EEPROM or registers) starting from the received address.
Incoming data are always written in RAM before being loaded in the memory locations
decided by the host. The bootloader then checks whether the host wants to write in RAM or
in the Flash program memory/data EEPROM.

The maximum length of the block to be written for the STM8S is 128 data bytes. To write the
data in the Flash program memory/data EEPROM memory locations, the bootloader
performs two different write operations:

1. WordWrite/FastWordWrite: Writes a byte in the Flash program memory/data EEPROM.
It is used when the number of bytes (N) sent from the host is less than 128. In this case
the bootloader performs the operation N times.

2. BlockWrite: Writes a block in the Flash program memory/data EEPROM. It is used
when the number of bytes (N) sent from the host is 128 and the destination address is
an integer module of 128. In other words, to use this operation, the block sent from the
host has to be aligned with a memory block.

4.4.1 Write memory command via UART1/UART2/UART3

Figure 21. Write memory command via UART1/UART2/UART3: Host side

1. See product datasheet for valid addresses. If the start address is invalid, an add_error occurs (see Table 6:
Error table on page 55).

Wait for ACK
or NACK

Wait for ACK
or NACK

End of write memory

NACK

ACK

Send 31h+CEh

Start write memory

Wait for ACK
or NACK

Send the start address (4 bytes)
and checksum

Send the number of bytes to be written
(1 byte), the data (N + 1) bytes) and checksum

NACK

ACK

ai15013

UM0560 Bootloader command set

 35/58

The host sends the bytes as follows

Byte 1: 31h - Command ID

Byte 2: CEh - Complement

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 8: The number of bytes to be received (0 < N <= 127); if N > 127 a
cmd_error occurs in the bootloader.
N+1 data bytes: Max 128 bytes

Checksum byte: XOR (N, N+1 databytes).

Bootloader command set UM0560

36/58

Figure 22. Write memory command via UART1/UART2/UART3: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to RAM from the start
address’ (see Figure 22) is performed in RAM. The user, therefore has to download the write routine in
RAM before sending a write command.

 Receive the start address (4 bytes)
and checksum

Send ACK byte

Start write memory

Received byte =
31h+CEh?

Yes

Flash/data
EEPROM address?

No

Receive the number of bytes to be written
(1 byte), the data (N + 1 bytes) and the checksum

Address valid and
checksum OK?

No

Yes

Send ACK byte

Write the received data to RAM memory
starting from the 00h location

End of write memory

Yes

Write the received data to the
memory from the start address

No

Checksum ok?

Write the received data to
RAM from the start address

Send NACK byte

Send ACK byte

YesNo

ai15014

UM0560 Bootloader command set

 37/58

4.4.2 Write memory command via SPI

Figure 23. Write memory command via SPI: Host side

Wait for ACK
or NACK

Wait for ACK
or NACK

End of write memory

NACK

ACK

Send 31h+CEh

Start write memory

Wait for ACK
or NACK

Send the start address (4 bytes)
and checksum

Send the number of bytes to be written
(1 byte), the data (N+1 byte) and checksum

NACK

ACK

ai15039

Send token byte

Send token byte

Delay

Send 'token' byte

Bootloader command set UM0560

38/58

The ‘delay’ is calculated as follows:

Where 0 <= N <= 127.

The host sends the bytes as follows

Byte 1: 31h - Command ID

Byte 2: CEh - Complement

Byte 3 (token): XY; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 9 (token): XY; host waits for ACK or NACK

Byte 10: The number of bytes to be received (0 < N <= 127);
If N > 127 a cmd_error occurs in the bootloader.
N+1 data bytes: Max 128 bytes

Checksum byte: XOR (N, N+1 databytes).

before sending the token byte, the host must wait for the bootloader to
finish writing all data into the memory.

Last byte (token): XYh; host waits for ACK or NACK.

Table 4. Examples of delay

Write command Delay (ms)

128 bytes aligned with a memory block 8.45

128 bytes not aligned with a memory block 1082

Delay = 8.45 * (N + 1) [ms]

UM0560 Bootloader command set

 39/58

Figure 24. Write memory command via SPI: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to RAM from the start
address’ (see Figure 22) is performed in RAM. The user, therefore has to download the write routine in
RAM before sending a write command.

 Receive the start address (4 bytes)
and checksum

Send ACK byte

Start write memory

Received byte =
31h+CEh?

Yes

Flash/data
EEPROM address?

No

Receive the number of bytes to be written
(1 byte), the data (N + 1 byte) and the checksum

Address valid and
checksum OK?

No

Yes

Send ACK byte

Write the received data to RAM memory
starting from the 00h location

End of write memory

Yes

Write the received data to the
memory from the start address

No

Checksum ok?

Write the received data to
RAM from the start address

Send NACK byte

Send ACK byte

YesNo

ai15040

Bootloader command set UM0560

40/58

4.4.3 Write memory command via CAN

Figure 25. Write memory command via CAN: Host side

1. See product datasheet for valid addresses. If the bootloader receives an invalid address, an add_error
occurs (see Table 6: Error table on page 55).

End of write memory

NACK

ACK

Send write message (std ID = 31h)

Start write memory

Send the data messages. At same
time, the host checks whether it

received a NACK message
from the STM8A

If NACK message received

Send message with checksum

ai15015

Wait for ACK
or NACK

Wait for ACK
or NACK

UM0560 Bootloader command set

 41/58

The host sends the messages as follows

Command message: Std ID = 31h, DLC = 05h, data = MSB, XXh, YYh, LSB, N, 0 < N <=
127). If N > 127 a cmd_error occurs in the bootloader.

Data message_1: Std ID = 04h, DLC_1 = 1 to 8, data = byte_11, … byte_18

Data message_2: Std ID = 04h, DLC_2 = 1 to 8, data = byte_21, … byte_28

Data message_3: Std ID = 04h, DLC_3 = 1 to 8, data = byte_31, … byte_38

…

Data message_M: Std ID = 04h, DLC_M = 1 to 8, data = byte_m1, …, byte_M8

Checksum message: Std ID = 04h, DLC = 1, data = XOR (N, N+1 data bytes)

Note: 1 DLC_1 + DLC_2 + ... DLC_M = 128 maximum

2 The bootloader does not check the standard ID of the data and checksum messages.
Therefore, an ID from 0h to FFh can be used. It is recommended to use 04h.

Bootloader command set UM0560

42/58

Figure 26. Write memory command via CAN: Device side

1. For safety reasons no write routine is placed into ROM. The ‘write the received data to the Flash program
memory/data EEPROM from the start address’ (see Figure 26) is performed in RAM. The user, therefore
has to download the write routine in RAM before sending a write command.

2. See product datasheet for valid addresses. If the bootloader receives an invalid address, an add_error
occurs (see Table 6: Error table on page 55).

Start address and
number of bytes (N)

valid?

Receive the 'data messages' and
temporarily write the data to RAM

starting from the 00h location

No

Yes

Start write memory

Receive the 'checksum message'

Yes

Received message
with std ID =

31h?

Send ACK message

Send ACK message

Write the received data to the
memory from the start address

End of write memory

No

Yes

Send NACK message

If a message is corrupted

Write the received data to RAM
from the start address

Checksum ok?
YesNo

ai15016

Address in Flash/data
EEPROM?

UM0560 Bootloader command set

 43/58

4.5 Speed command
The speed command allows the baud rate for CAN run-time to be changed. It can be used
only if the CAN is the peripheral being used.

4.5.1 Speed command via CAN

Figure 27. Speed command via CAN: Host side

1. After setting the new baud rate, the bootloader sends the ACK message. Therefore, the host sets its baud
rate while waiting for the ACK.

The host sends the message as follows

Command message: Std ID = 03h, DLC = 01h, data = XXh where XXh assumes the
following values depending on the baud rate to be set:

● 01h -> baud rate = 125 kbps

● 02h -> baud rate = 250 kbps

● 03h -> baud rate = 500 kbps

● 04h -> baud rate = 1 Mkbps

End of speed

Send speed message (std ID = 03h)

Start speed command

ai15031b

Wait for ACK
or NACK

Changes the CAN baud rate
according to command sent

Wait for ACK

NACK

ACK

Bootloader command set UM0560

44/58

Figure 28. Speed command via CAN: Device side

Received a message
with std ID = 03h

and with valid
data?

Start speed command

No

Yes

End of speed command

ai15032b

Changes the CAN baud rate according
to received data (new baud rate)

Send ACK message
(new baud rate)

Send NACK message
(old baud rate)

Send ACK message
(old baud rate)

UM0560 Bootloader command set

 45/58

4.6 Go command
The go command is used to execute the downloaded code or any other code by branching
to an address specified by the host.

4.6.1 Go command via UART1/UART2/UART3

Figure 29. Go command via UART1/UART2/UART3: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on
page 55).

The host sends the bytes as follows

Byte 1: 21h - Command ID

Byte 2: DEh - Complement

Bytes 3-6: The start address

Byte 3 = MSB

Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6).

Wait for ACK
or NACK

Send the start address (4 bytes)
and checksum

End of Go

NACK

ACK

Send 21h+DEh

Start Go

ai15017

Wait for ACK
or NACK

Bootloader command set UM0560

46/58

Figure 30. Go command via UART1/UART2/UART3: Device side

Received bytes =
21h+DEh?

Start Go

Send ACK byte

Receive the start address (4 bytes)
and checksum

Address valid and
checksum OK?

Send ACK byte

Send NACK byte

No

No

Yes

End of Go

Yes

ai15018b

UM0560 Bootloader command set

 47/58

4.6.2 Go command via SPI

Figure 31. Go command via SPI: Host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheet). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 6: Error table on
page 55).

The host sends the bytes as follows

Byte 1: 21h - Command ID

Byte 2: DEh - Complement

Byte 3 (token): XYh; host waits for ACK or NACK

Bytes 4 to 7: The start address

Byte 4 = MSB

Byte 7 = LSB

Byte 8: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 9 (token): XYh; host waits for ACK or NACK.

Wait for ACK
or NACK

Send the start address (4 bytes)
and checksum

End of Go

NACK

ACK

Send 21h+DEh

Start Go

ai15041

Wait for ACK
or NACK

Send token byte

Send token byte

Bootloader command set UM0560

48/58

Figure 32. Go command via SPI: Device side

Remove EM and WM routines
from the RAM

Start go command

ai15042

Received bytes
21h + DEh?

Send ACK byte

No

Yes

Receive the start address (4 bytes)
and checksum

Address valid and
checksum ok?

Send NACK byteNo

Yes

Send ACK byte

Jump to address End of go

UM0560 Bootloader command set

 49/58

4.6.3 Go command via CAN

Figure 33. Go command via CAN: Host side

1. See product datasheet for valid addresses.

The host sends the bytes as follows

Go command message: Std ID = 21h, DLC = 04h, data = MSB, XXh, YYh, LSB

Figure 34. Go command via CAN: Device side

Wait for ACK
or NACK

End of go

Send go message (std ID = 21h)

Start go command

ai15019

Received message
with std ID = 21h
and with a valid

address?

Start go command

Send ACK message

Jump to address

Send NACK message

No

Yes

End of go

ai15020

Bootloader command set UM0560

50/58

4.7 Sector codes

Table 5. STM8S sector codes

Sector code
Flash program memory/

data EEPROM
(STM8S20xxx devices)

Flash program memory/
data EEPROM

(STM8S105xx devices)

00h 8000h -> 83FFh 8000h -> 83FFh

01h 8400h -> 87FFh 8400h -> 87FFh

02h 8800h -> 8BFFh 8800h -> 8BFFh

03h 8C00h -> 8FFFh 8C00h -> 8FFFh

04h 9000h -> 93FFh 9000h -> 93FFh

05h 9400h -> 97FFh 9400h -> 97FFh

06h 9800h -> 9BFFh 9800h -> 9BFFh

07h 9C00h -> 9FFFh 9C00h -> 9FFFh

08h A000h -> A3FFh A000h -> A3FFh

09h A400h -> A7FFh A400h -> A7FFh

0Ah A800h -> ABFFh A800h -> ABFFh

0Bh AC00h -> AFFFh AC00h -> AFFFh

0Ch B000h -> B3FFh B000h -> B3FFh

0Dh B400h -> B7FFh B400h -> B7FFh

0Eh B800h -> BBFFh B800h -> BBFFh

0Fh BC00h -> BFFFh BC00h -> BFFFh

10h C000h -> C3FFh C000h -> C3FFh

11h C400h -> C7FFh C400h -> C7FFh

12h C800h -> CBFFh C800h -> CBFFh

13h CC00h -> CFFFh CC00h -> CFFFh

14h D000h -> D3FFh D000h -> D3FFh

15h D400h -> D7FFh D400h -> D7FFh

16h D800h -> DBFFh D800h -> DBFFh

17h DC00h -> DFFFh DC00h -> DFFFh

18h E000h -> E3FFh E000h -> E3FFh

19h E400h -> E7FFh E400h -> E7FFh

1Ah E800h -> EBFFh E800h -> EBFFh

1Bh EC00h -> EFFFh EC00h -> EFFFh

1Ch F000h -> F3FFh F000h -> F3FFh

1Dh F400h -> F7FFh F400h -> F7FFh

1Eh F800h -> FBFFh F800h -> FBFFh

UM0560 Bootloader command set

 51/58

1Fh FC00h -> FFFFh FC00h -> FFFFh

20h 10000h -> 103FFh 4000h -> 43FFh

21h 10400h -> 107FFh

22h 10800h -> 10BFFh

23h 10C00h -> 10FFFh

24h 11000h -> 113FFh

25h 11400h -> 117FFh

26h 11800h -> 11BFFh

27h 11C00h -> 11FFFh

28h 12000h -> 123FFh

29h 12400h -> 127FFh

2Ah 12800h -> 12BFFh

2Bh 12C00h -> 12FFFh

2Ch 13000h -> 133FFh

2Dh 13400h -> 137FFh

2Eh 13800h -> 13BFFh

2Fh 13C00h -> 13FFFh

30h 14000h -> 143FFh

31h 14400h -> 147FFh

32h 14800h -> 14BFFh

33h 14C00h -> 14FFFh

34h 15000h -> 153FFh

35h 15400h -> 157FFh

36h 15800h -> 15BFFh

37h 15C00h -> 15FFFh

38h 16000h -> 163FFh

39h 16400h -> 167FFh

3Ah 16800h -> 16BFFh

3Bh 16C00h -> 16FFFh

3Ch 17000h -> 173FFh

3Dh 17400h -> 177FFh

3Eh 17800h -> 17BFFh

3Fh 17C00h -> 17FFFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM
(STM8S20xxx devices)

Flash program memory/
data EEPROM

(STM8S105xx devices)

Bootloader command set UM0560

52/58

40h 18000h -> 183FFh

41h 18400h -> 187FFh

42h 18800h -> 18BFFh

43h 18C00h -> 18FFFh

44h 19000h -> 193FFh

45h 19400h -> 197FFh

46h 19800h -> 19BFFh

47h 19C00h -> 19FFFh

48h 1A000h -> 1A3FFh

49h 1A400h -> 1A7FFh

4Ah 1A800h -> 1ABFFh

4Bh 1AC00h -> 1AFFFh

4Ch 1B000h -> 1B3FFh

4Dh 1B400h -> 1B7FFh

4Eh 1B800h -> 1BBFFh

4Fh 1BC00h -> 1BFFFh

50h 1C000h -> 1C3FFh

51h 1C400h -> 1C7FFh

52h 1C800h -> 1CBFFh

53h 1CC00h -> 1CFFFh

54h 1D000h -> 1D3FFh

55h 1D400h -> 1D7FFh

56h 1D800h -> 1DBFFh

57h 1DC00h -> 1DFFFh

58h 1E000h -> 1E3FFh

59h 1E400h -> 1E7FFh

5Ah 1E800h -> 1EBFFh

5Bh 1EC00h -> 1EFFFh

5Ch 1F000h -> 1F3FFh

5Dh 1F400h -> 1F7FFh

5Eh 1F800h -> 1FBFFh

5Fh 1FC00h -> 1FFFFh

60h 20000h -> 203FFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM
(STM8S20xxx devices)

Flash program memory/
data EEPROM

(STM8S105xx devices)

UM0560 Bootloader command set

 53/58

61h 20400h -> 207FFh

62h 20800h -> 20BFFh

63h 20C00h -> 20FFFh

64h 21000h -> 213FFh

65h 21400h -> 217FFh

66h 21800h -> 21BFFh

67h 21C00h -> 21FFFh

68h 22000h -> 223FFh

69h 22400h -> 227FFh

6Ah 22800h -> 22BFFh

6Bh 22C00h -> 22FFFh

6Ch 22000h -> 223FFh

6Dh 22400h -> 227FFh

6Eh 23800h -> 23BFFh

6Fh 23C00h -> 23FFFh

70h 24000h -> 243FFh

71h 24400h -> 247FFh

72h 24800h -> 24BFFh

73h 24C00h -> 24FFFh

74h 25000h -> 253FFh

75h 25400h -> 257FFh

76h 25800h -> 25BFFh

77h 25C00h -> 25FFFh

78h 26000h -> 263FFh

79h 26400h -> 267FFh

7Ah 26800h -> 26BFFh

7Bh 26C00h -> 26FFFh

7Ch 27000h -> 273FFh

7Dh 27400h -> 277FFh

7Eh 27800h -> 27BFFh

7Fh 27C00h -> 27FFFh

80h 4000h -> 43FFh

81h 4400h -> 47FFh

Table 5. STM8S sector codes (continued)

Sector code
Flash program memory/

data EEPROM
(STM8S20xxx devices)

Flash program memory/
data EEPROM

(STM8S105xx devices)

Software model UM0560

54/58

5 Software model

The boot code has been designed with the same logical protocol for exchanging command
frames between host and any STM8S device.

The boot code can download up to 128 bytes at a time. The first 130 bytes of RAM (from
00h) store data coming from the serial interface, thus allowing the boot to use the stack. The
25 bytes following the first 130 bytes are used for the bootloader’s variables.

Note: Unused (empty) bootloader ROM is filled with an opcode that is not allowed (71h). If, for any
reason (i.e. noise), the core starts to execute in the 71h area, an illegal opcode is returned
and consequently a reset. This prevents the bootloader falling into an infinite loop with no
reset in the event that it jumps in the ‘empty’ locations. Thus normal execution can resume.

Caution: To erase or program the Flash program memory, the respective routines must be
downloaded in RAM starting at 00A0h. This is imperative because the routines are
consecutive with no empty memory locations between them.

The routines are included in the following files:

● STM8S20xxx devices: E_W_ROUTINEs_128K.s19

● STM8S105xx devices: E_W_ROUTINEs_32K.s19

Note: To execute any of the commands (get, read, erase, write, speed, and go), the bootloader
uses part of the RAM memory. Therefore, it is forbidden to run write commands (with the
exception of write commands that are useful for downloading routines to erase and program
the Flash program memory) with destination addresses in the following RAM memory
locations:

● STM8S20xxx devices: 0h to 01FFh

● STM8S105xx devices: 0h to 01CFh

UM0560 Error management

 55/58

6 Error management

Table 6 describes the error type and the bootloader behavior.

Table 6. Error table

Error Description Bootloader actions

cmd_error

If a denied command is received

If a parity error occurs during command transmission
If an error occurs during the command execution

See Table 3: Bootloader commands on page 13

Sends NACK byte and goes
back to command checking

add_error
If a received command contains a denied destination
address (for information on valid address ranges, refer
to the product datasheet)

Sends NACK byte and goes
back to command checking

Programming time UM0560

56/58

7 Programming time

The programming time depends on the baud rate of the peripheral.

● UART1/UART2/UART3: 128 kbps, 256 kbps, and 500 kbps

● SPI: 125 kbps, 250 kbps, 500 kbps, and 1 Mbps

● CAN: 125 kbps, 250 kbps, 500 kbps, and 1 Mbps

Note: 1 The programming time of the SPI is measured based on 32 Kbytes instead of 48 Kbytes
because the boot code via the SPI is implemented on the STM8S 32 Kbyte device only.

2 After a go command, the bootloader removes the erase and write routines from the RAM
memory before jumping to the host address. It takes about 150 µs to remove these routines.

Table 7, Table 8, and Table 9 show the programming times for the UART1/UART2/UART3,
SPI, and CAN respectively.

Table 7. UART1/UART2/UART3 programming times

Time to load Kbytes/block/bytes in
the Flash program memory

Baud rate (bps)

128000 256000 500000

48 Kbytes 7.73 s 5.34 s 4.08 s

1 block 20.13 ms 13.53 ms 10.65 ms

1 byte 7.52 ms 6.93 ms 6.65 ms

Table 8. SPI programming time

Time to load Kbytes/block/bytes
in the Flash program memory

Baud rate

125 kbps 250 kbps 500 kbps 1 Mbps

32 Kbytes 4.46 s 3.34 s 2.81 s 2.55 s

1 block 17.44 ms 13.04 ms 11.01 ms 9.95 ms

1 byte 8.52 ms 8.12 ms 7.93 ms 7.84 ms

Table 9. CAN programming time

Time to load Kbytes/block/bytes
in the Flash program memory

Baud rate

125 kbps 250 kbps 500 kbps 1 Mbps

48 Kbytes 9.50 s 6.40 s 4.85 s 4.07 s

1 block 24.73 ms 16.66 ms 12.63 ms 10.60 ms

1 byte 9.23 ms 8.53 ms 7.91 ms 7.68 ms

UM0560 Revision history

 57/58

8 Revision history

Table 10. Document revision history

Date Revision Changes

15-Dec-2008 1 Initial release

UM0560

58/58

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	2 Bootloader introduction
	2.1 Bootloader activation
	Figure 1. Bootloader activation flow chart
	Table 1. Initial checking

	3 Peripheral settings
	Table 2. Serial interfaces associated with STM8S devices
	3.1 UART1 settings
	3.2 UART2 and UART3 settings
	3.3 SPI settings
	3.4 CAN settings
	Figure 2. CAN frame

	4 Bootloader command set
	Table 3. Bootloader commands
	4.1 Get command
	4.1.1 Get command via UART1/ UART2/UART3
	Figure 3. Get command via UART1/UART2/UART3 Host side
	Figure 4. Get command via UART1/UART2/UART3: Device side

	4.1.2 Get command via SPI
	Figure 5. Get command via SPI: Host side
	Figure 6. Get command via SPI: Device side

	4.1.3 Get command via CAN
	Figure 7. Get command via CAN: Host side
	Figure 8. Get command via CAN: Device side

	4.2 Read memory command
	4.2.1 Read memory command via UART1/UART2/UART3
	Figure 9. Read memory command via UART1/UART2/UART3: Host side
	Figure 10. Read memory command via UART1/UART2/UART3: Device side

	4.2.2 Read memory command via SPI
	Figure 11. Read memory command via SPI: Host side
	Figure 12. Read memory command via SPI: Device side

	4.2.3 Read memory command via CAN
	Figure 13. Read memory command via CAN: Host side
	Figure 14. Read memory command via CAN: Device side

	4.3 Erase memory command
	4.3.1 Erase memory command via UART1/UART2/UART3
	Figure 15. Erase memory command via UART1/UART2/UART3: Host side
	Figure 16. Erase memory command via UART1/UART2/UART3: Device side

	4.3.2 Erase memory command via SPI
	Figure 17. Erase memory command via SPI: Host side
	Figure 18. Erase memory command via SPI: Device side

	4.3.3 Erase memory command via CAN
	Figure 19. Erase memory command via CAN: Host side
	Figure 20. Erase memory command via CAN: Device side

	4.4 Write memory command
	4.4.1 Write memory command via UART1/UART2/UART3
	Figure 21. Write memory command via UART1/UART2/UART3: Host side
	Figure 22. Write memory command via UART1/UART2/UART3: Device side

	4.4.2 Write memory command via SPI
	Figure 23. Write memory command via SPI: Host side
	Table 4. Examples of delay
	Figure 24. Write memory command via SPI: Device side

	4.4.3 Write memory command via CAN
	Figure 25. Write memory command via CAN: Host side
	Figure 26. Write memory command via CAN: Device side

	4.5 Speed command
	4.5.1 Speed command via CAN
	Figure 27. Speed command via CAN: Host side
	Figure 28. Speed command via CAN: Device side

	4.6 Go command
	4.6.1 Go command via UART1/UART2/UART3
	Figure 29. Go command via UART1/UART2/UART3: Host side
	Figure 30. Go command via UART1/UART2/UART3: Device side

	4.6.2 Go command via SPI
	Figure 31. Go command via SPI: Host side
	Figure 32. Go command via SPI: Device side

	4.6.3 Go command via CAN
	Figure 33. Go command via CAN: Host side
	Figure 34. Go command via CAN: Device side

	4.7 Sector codes
	Table 5. STM8S sector codes

	5 Software model
	6 Error management
	Table 6. Error table

	7 Programming time
	Table 7. UART1/UART2/UART3 programming times
	Table 8. SPI programming time
	Table 9. CAN programming time

	8 Revision history
	Table 10. Document revision history

