
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13630 Rev. *B Revised May 28, 2008 3:55 pm

1. USBUART Device

Copyright © 2006-2008. Cypress Semiconductor. All Rights Reserved.

Features and Overview
• The USBUART Device uses a USB interface to emulate a COM port.
• UART-like high-level functions are available on the PSoC device side.

USBUART Device Block Diagrams

Functional Description
Many embedded applications use the RS-232 interface to communicate with external systems such as
PCs, especially when debugging. But in the PC world, the RS-232 COM port is about to disappear from
most new computers, leaving USB as the replacement for serial communication. The simplest way to
migrate a device to USB is to emulate RS-232 over the USB bus. The primary advantage of this method
is that PC applications will use the USB connection as an RS-232 COM connection, making it very simple
to debug. This method uses a standard Windows® driver that is included with all versions Microsoft®
Windows from Windows 98SE through Windows XP.
The USB Communication Device Class (CDC) specification defines many communication models,
including an abstract control model for serial emulation over USB in Section 3.6.2.1. See the CDC
specification version 1.1 for details. The Microsoft Windows USB modem driver, usbser.sys, conforms to
this specification.

USBUART Device Data Sheet
USBUART vX.Y

Resources
PSoC® Blocks API Memory (Bytes) Pins (per

External I/O)Digital Analog CT Analog SC Flash RAM
CY8C24x94, CY8CLED04 1900 60 2
CY7C64215 1900 60 2

COM#

USB-UART

CY8C24x94
CY7C64215

USB

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_1

USBUART Device

Document Number: 001-13630 Rev. *B Page 2 of 22

When a new device connects to a Windows PC the first time, Windows will ask the user to provide a driver.
An INF file is required to install drivers on Windows 2000 and later. Microsoft Windows does not provide a
standard INF file for the usbser.sys driver. In order to install a device that emulates RS-232 over USB, you
must supply an INF file that maps the attached device to the Microsoft CDC drivers. The necessary INF
file for USBUART projects is generated automatically and is located in the project LIB folder. After
supplying the INF file, the driver allows the USB device to be enumerated as a COM port.
The settings in a terminal application (baud rate, data bits, parity, stop bits, and flow control) will not affect
the performance of data transmissions because it is a USB device and the USB protocol is used to control
data flow. However, the terminal settings with the exception of flow control can be retrieved with specific
API calls to use with an RS-232 device if needed. The flow control setting cannot be retrieved because it is
not supported by the CDC driver.
Use the following API calls to retrieve specific settings:

• USBUART_dwGetDTERate
• USBUART_bGetCharFormat
• USBUART_bGetParityType
• USBUART_bGetDataBits
• USBUART_bGetLineControlBitmap

USB Compliance
USB drivers may present various bus conditions to the device, including Bus Resets, and different timing
requirements. Not all of these can be correctly illustrated in the examples provided. It is your responsibilty
to design applications that conform to the USB spec.

USB Compliance for Self Powered Devices
In the USB Compliance Checklist there is a question that reads, “Is the device’s pull-up active only when
VBUS is high?”

The question lists Section 7.1.5 in the Universal Serial Bus Specification Revision 2.0 as a reference. This
section reads, in part, “The voltage source on the pull-up resistor must be derived from or controlled by the
power supplied on the USB cable such that when VBUS is removed, the pull-up resistor does not supply
current on the data line to which it is attached.”
If the device that you are creating will be self-powered, you must connect a GPIO pin to VBUS through a
resistive network and write firmware to monitor the status of the GPIO. Application Note AN15813,
Monitoring the EZ-USB FX2LP VBUS, explains the necessary hardware and software components
required. You can use the USBFS_Start() and USBFS_Stop() API routines to control the D+ and D- pin
pull-ups. The pull-up resistor does not supply power to the data line until you call USBFS_Start().
USBFS_Stop() disconnects the pull-up resistor from the data pin.
Section 9.1.1.2 in the Universal Serial Bus Specification Revision 2.0 says, “Devices report their power
source capability through the configuration descriptor. The current power source is reported as part of a
device’s status. Devices may change their power source at any time, e.g., from self- to bus-powered.“ The
device responds to GET_STATUS requests based on the status set with the USBFS_SetPowerStatus()
function. To set the correct status, USBFS_SetPowerStatus() should be called at least once if your device
is configured as self-powered. You should also call the USBFS_SetPowerStatus() function any time your
device changes status.

[+] Feedback [+] Feedback

http://www.cypress.com/design/AN15813
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_2

USBUART Device

Document Number: 001-13630 Rev. *B Page 3 of 22

Timing
The USBUART Device User Module supports USB 2.0 Full Speed operation on the CY8C24x94 and
CY7C64215 devices.

Parameters
Vendor ID
Each USB product must have a unique combination of Vendor ID (VID) and Product ID (PID). This 2-byte
string contains the Vendor ID. Vendor IDs are assigned by the USB Implementers Forum.
Product ID
Each USB product must have a unique combination of Vendor ID (VID) and Product ID (PID). This 2-byte
string contains the Product ID. Product IDs are assigned by the manufacturer and must be unique to the
product.
VendorString
A free form string describing the manufacturer of the product. Do not use apostrophes (‘) in the
VendorString.
ProductString
A free form string describing the product. Do not use apostrophes (‘) in the ProductString.
SerialNumberType
Choose the type of Serial Number. The possible settings are given in the following table.

SerialNumberString
Sets the serial number for the device. Is reccommended to use numeric value. Applied only if
SerialNumberType parameter is set to Manual.
DevicePower
Choose the device power source. The device can be self-powered or powered from the USB.
MaxPower
Set the power (in mA) consumed from the USB bus when the device is powered from the USB bus. If the
device is self-powered this parameter is ignored. The minimum is 1 mA and the maximum is 500 mA.
Normally you will set this to 100 mA for a low power device or 500 mA for a high power device.

Application Programming Interface
The Application Programming Interface (API) routines are provided as part of the user module to allow you
to deal with the module at a higher level. This section specifies the interface to each function together with
related constants provided by the include files.

Parameter Description
None This device have no serial number. Value entered in SerialNumberString param-

eter is ignored.
Automatic The serial number is automatically generated from PSoC device serialization

number. Serial number is 24 hex characters. Value entered in SerialNumber-
String parameter is ignored.

Manual Used value entered in the SerialNumberString parameter.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_3

USBUART Device

Document Number: 001-13630 Rev. *B Page 4 of 22

Note In this, as in all user module APIs, the values of the A and X register may be altered by calling an
API function. It is the responsibility of the calling function to preserve the values of A and X prior to
the call if those values are required after the call. This “registers are volatile” policy was selected
for efficiency reasons and has been in force since version 1.0 of PSoC Designer. The C compiler
automatically takes care of this requirement. Assembly language programmers must ensure their
code observes the policy, too. Though some user module API function may leave A and X
unchanged, there is no guarantee they will do so in the future

The following tables list the USBUART supplied API functions.

USBUART API

Function Description
void USBUART_Start(BYTE bVoltage) Enable the user module for use with the device.
void USBUART_Stop(void) Disable the user module.
BOOL USBUART_Init(void) Initialize the USBUART module. Returns a nonzero value if the

USBUART is successfully initialized.
void USBUART_Write(BYTE * pData, BYTE
bLength)

Sends bLength bytes from pData array to the PC.

void USBUART_CWrite(const BYTE * pData,
BYTE bLength)

Sends bLength bytes from constant (ROM) pData array to the PC.

void USBUART_PutString(BYTE * pStr) Sends a NULL terminated string pStr to the PC.
void USBUART_CPutString(const BYTE *
pStr)

Sends a constant (ROM) NULL terminated string pStr to the PC.

void USBUART_PutChar(BYTE bChar) Sends one character to the PC
void USBUART_PutCRLF(void) Sends a carriage return (0x0D) and a line feed (0x0A) to the PC.
void USBUART_PutSHexByte(BYTE bValue) Sends a two character hex representation of bValue to the PC.
void USBUART_PutSHexInt(INT iValue) Sends a four character hex representation of iValue to the PC.
BYTE USBUART_bGetRxCount(void) Returns the current byte count ready for read.
BYTE USBUART_bTxIsReady(void) Returns a nonzero value if USBUART is ready to send data.
BYTE USBUART_Read(BYTE * pData, BYTE
bLength)

Reads the specified number of bytes from the RX buffer and
places it in the RAM array specified by pData. The function
returns the number of bytes remaining in RX buffer and operation
status.

void USBUART_ReadAll(BYTE * pData) Reads all available data from the RX buffer and places it in the
RAM array specified by pData.

WORD USBUART_ReadChar(void) Returns one byte from the RX buffer in the LSB of the return
value. The function also returns the operations status and num-
ber of bytes remaining in the RX buffer in the MSB of the return
value.

BYTE USBUART_bCheckUSBActivity(void) Checks and clears the USB Bus Activity Flag. Returns a one if the
USB was active since the last check, otherwise returns zero.

DWORD *USBUART_dwGetDTERate(
DWORD * dwDTERate)

Returns the data terminal rate set for this port in bits per second.

BYTE USBUART_bGetCharFormat(void) Returns the number of stop bits.
BYTE USBUART_bGetParityType(void) Returns the parity type.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_4

USBUART Device

Document Number: 001-13630 Rev. *B Page 5 of 22

USBUART_Start
Description:

Performs all required operations to start the USBUART Device User Module.
C Prototype:

void USBUART_Start(BYTE bVoltage)

Assembly:
mov A, USBUART_5V_OPERATION ; Select the Voltage level
call USBUART_Start ; Call the Start Function

Parameters:
bVoltage is the operating voltage of the chip, passed in the Accumulator. This will determine whether
the voltage regulator will be enabled for 5V operation or pass through mode will be used for 3.3V oper-
ation. Symbolic names are provided in C and assembly, and their associated values are given in the
following table.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_Stop
Description:

Performs all necessary shutdown tasks required for the USBUART Device User Module.
C Prototype:

void USBUART_Stop(void)

Assembly:
call USBUART_Stop

BYTE USBUART_bGetDataBits(void) Returns the number of data bits.
BYTE
USBUART_bGetLineControlBitmap(void)

Returns the DTE and RTS signal state.

void USBUART_SendStateNotify(BYTE
bState)

Sends notification about the current UART state to the PC.

void USUART_SetPowerStatus(BYTE bPow-
erStatus)

Sets the device to self powered or bus powered

Mask Value Description
USBUART_3V_OPERATION 0x02 Disable the voltage regulator and pass-through Vcc for

pull-up
USBUART_5V_OPERATION 0x03 Enable the voltage regulator and use the regulator for pull-

up

USBUART API (continued)

Function Description

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_5

USBUART Device

Document Number: 001-13630 Rev. *B Page 6 of 22

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer register is modified.

USBUART_Init
Description:

Try to initialize the USBUART device and set up communication with the PC.
C Prototype:

BOOL USBUART_Init(void)

Assembly:
call USBUART_Init

Parameters:
None

Return Value:
Returns a nonzero value in the accumulator if the device initializes successfully. Returns a 0 if initial-
ization failed. The user module can operate only after successful initialization.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and CUR_PP page pointer registers is modified.

USBUART_Write
Description:

Sends bLength characters from the location specified by (RAM) pointer pData to the PC.
C Prototype:

void USBUART_Write(BYTE * pData, BYTE bLength)

Assembly:
mov A,20 ; Load array count
push A
mov A,>pData ; Load MSB part of pointer to RAM string
push A
mov A,<pData ; Load LSB part of pointer to RAM string
push A
call USBUART_Write ; Make call to function
add SP,253 ; Reset stack pointer to original position

Parameters:
pData is a pointer to a data array. The maximum length of the data array is 32 bytes.

bLength is the number of bytes to be transferred from the array and sent to the PC. Valid values are
between 0 and 32.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_6

USBUART Device

Document Number: 001-13630 Rev. *B Page 7 of 22

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_CWrite
Description:

Sends bLength characters from the location specified by (ROM) pointer pData to the PC.
C Prototype:

void USBUART_CWrite(const BYTE * pData, BYTE bLength)

Assembly:
mov A,20 ; Load array count
push A
mov A,>pData ; Load MSB part of pointer to ROM string
push A
mov A,<pData ; Load LSB part of pointer to ROM string
push A
call USBUART_CWrite ; Make call to function
add SP,253 ; Reset stack pointer to original position

Parameters:
pData is a pointer to a data array in ROM. Maximum length of the data array is 32 bytes.

bLength is the number of bytes to be transferred from the array and sent to the PC. Valid values are
between 0 and 32.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_PutString
Description:

Sends a null terminated (RAM) string to the PC.
C Prototype:

void USBUART_PutString(BYTE * pStr)

 Assembler:
mov A,>pStr ; Load MSB part of pointer to RAM based null

; terminated string
mov X,<pStr ; Load LSB part of pointer to RAM based null

; terminated string
call USBUART_PutString ; Call function to send string out

Parameters:
pStr: Pointer to the string to be sent to PC. The MSB is passed in the Accumulator and the LSB is

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_7

USBUART Device

Document Number: 001-13630 Rev. *B Page 8 of 22

passed in the X register. The maximum string length is 32 bytes including the terminating null charac-
ter.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_CPutString
Description:

Sends a null terminated (ROM) string to the PC.
C Prototype:

void USBUART_CPutString(const BYTE * pStr)

 Assembler:
mov A,>pStr ; Load MSB part of pointer to ROM based null

; terminated string
mov X,<pStr ; Load LSB part of pointer to ROM based null

; terminated string
call USBUART_PutString ; Call function to send string out

Parameters:
pStr: Pointer to the string to be sent to the PC. The MSB is passed in the Accumulator and the LSB is
passed in the X register. The maximum string length is 32 bytes including the terminating null charac-
ter.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_PutChar
Description:

Writes a single character to the PC.
C Prototype:

void USBUART_PutChar(BYTE bChar)

Assembler:
mov A,0x33 ; Load ASCII character "3" in A
call USBUART_PutChar ; Call function to send single character to PC

Parameters:
bChar: Character to be sent to the PC. Data is passed in the Accumulator.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_8
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_8

USBUART Device

Document Number: 001-13630 Rev. *B Page 9 of 22

true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_PutCRLF
Description:

Sends a carriage return (0x0D) and line feed (0x0A) to the PC.
C Prototype:

void USBUART_PutCRLF(void)

Assembler:
call USBUART_PutCRLF ; Send a carriage return and line feed out

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_PutSHexByte
Description:

Sends a two byte ASCII Hex representation of the data to the PC.
C Prototype:

void USBUART_PutSHexByte(BYTE bValue)

 Assembler:
mov A,0x33 ; Load data to be sent
call USBUART_PutSHexByte ; Call function to output hex representation of

; data. The output for this value would be "33".

Parameters:
bValue: Byte to be converted to an ASCII string (hex representation). Data is passed in the Accumula-
tor.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_PutSHexInt
Description:

Sends a four byte ASCII hex representation of the data to the PC.
C Prototype:

void USBUART_PutSHexInt(INT iValue)

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_9
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_9

USBUART Device

Document Number: 001-13630 Rev. *B Page 10 of 22

 Assembler:
mov A,0x34 ; Load LSB in A
mov X,0x12 ; Load MSB in X
call UART_PutSHexInt ; Call function to output hex representation of data.

; The output for this value would be "1234".

Parameters:
iValue: Integer to be converted to ASCII string (hex representation). The MSB is passed in the X regis-
ter and the LSB is passed in Accumulator

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_bGetRxCount
Description:

This function returns the number of bytes that were received from the PC and are waiting in the RX
buffer.

C Prototype:
BYTE USBUART_bGetRxCount(void)

Assembly:
call USB_bGetEPCount

Parameters:
None

Return Value:
Returns the current byte count in A.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP page pointer register are modified.

USBUART_bTxIsReady
Description:

Returns a nonzero value if the TX buffer is ready to send more data. Otherwise it returns zero.
C Prototype:

BYTE USBUART_bTxIsReady(void)

Assembly:
call USBUART_bTxIsready

Parameters:
None

Return Value:
If TX buffer can accept data then this function returns a nonzero value. Otherwise a zero is returned.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_10
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_10

USBUART Device

Document Number: 001-13630 Rev. *B Page 11 of 22

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions.

USBUART_Read
Description:

Reads bLength bytes of received data from the RX Buffer and places it in a data array specified by
pData.

C Prototype:
BYTE USBUART_Read(BYTE * pData, BYTE bLength)

Assembly:
mov A, 25 ; Load count
push A
mov A, >pData ; Load MSB part of pointer to RAM array
push A
mov A, <pData ; Load LSB part of pointer to RAM array
push A
call USBUART_Read

Parameters:
pData is a pointer to a data array. Maximum length of the data array is 32 bytes.

bLength is the number of bytes to be read to the array. Valid values are between 0 and 32.
Return Value:

Returns the number of bytes remaining in the RX buffer using bit 0..6 of the Accumulator and the MSb
(bit 7) of the Accumulator indicates an error condition. Error conditions usually occur when you request
more bytes than are available in the buffer. The data from the RX buffer is placed in the data array
specified by pData.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_ReadAll
Description:

Reads all bytes of received data from the RX buffer and places it in a data array specified by pData.
C Prototype:

void USBUART_ReadAll(BYTE * pData)

Assembly:
mov A,>pData ; Load MSB part of pointer to RAM buffer
mov X,<pData ; Load LSB part of pointer to RAM buffer
call USBUART_ReadAll

Parameters:
pData is a pointer to a data array. The MSB is passed in the Accumulator and the LSB is passed in the
X register. The maximum size of the data array is 32 bytes.

Return Value:
None

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_11
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_11

USBUART Device

Document Number: 001-13630 Rev. *B Page 12 of 22

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_ReadChar
Description:

Reads one byte of received data from the RX Buffer.
C Prototype:

WORD USBUART_ReadChar(void)

Assembly:
call USBUART_ReadChar

Parameters:
None

Return Value:
The MSB of the returned value (Accumulator) contains the number of bytes remaining in the RX buffer
using bits 0..6. Bit 7 indicates error status. Bit 7 is set to one if the buffer is empty when the function is
called. The LSB of the returned value (X) contains a character from buffer.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_bCheckUSBActivity
Description:

Checks for activity on the USB.
C Prototype:

BYTE USBUART_bCheckUSBActivity(void)

Assembly:
call USB_bCheckUSBActivity

Parameters:
None

Return Value:
Returns one in the Accumulator if the USB was active since the last check, otherwise returns zero.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions.

USBUART_dwGetDTERate
Description:

Returns the data terminal rate set for this port in bits per second. Pass the function a pointer to a
DWORD. The function returns the DTE rate in the location referenced by the pointer.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_12
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_12

USBUART Device

Document Number: 001-13630 Rev. *B Page 13 of 22

C Prototype:
DWORD * USBUART_dwGetDTERate(DWORD * dwDTERate)

Assembly:
mov A,>dwDTERate ; Load MSB part of pointer
mov X,<dwDTERate ; Load LSB part of pointer
call USBUART_dwGetDTERate

Parameters:
dwDTERate: A pointer to where the DTE rate will be stored when the function returns.

Return Value:
Stores the DTE rate DWORD value in the location referenced by the pointer it was passed, and then
returns a pointer to that location.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

USBUART_bGetCharFormat
Description:

Returns the number of stop bits.
C Prototype:

BYTE USBUART_bGetCharFormat(void)

Assembly:
call USBUART_bGetCharFormat

Parameters:
None

Return Value:
Returns number of stop bits in Accumulator. Symbolic names provided in C and assembly, and their
associated values are given in the following table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

USBUART_bGetParityType
Description:

Returns the parity type.
C Prototype:

BYTE USBUART_bGetParityType(void)

Mask Value Description
USBUART_1_STOPBITS 0x00 1 stop bit
USBUART_1_5_STOPBITS 0x01 1.5 stop bits
USBUART_2_STOPBITS 0x02 2 stop bits

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_13
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_13

USBUART Device

Document Number: 001-13630 Rev. *B Page 14 of 22

Assembly:
call USBUART_bGetParityType

Parameters:
None

Return Value:
Returns the parity type in Accumulator. Symbolic names provided in C and assembly, and their associ-
ated values are given in the following table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

USBUART_bGetDataBits
Description:

Returns the number of data bits.
C Prototype:

BYTE USBUART_bGetDataBits(void)

Assembly:
call USBUART_bGetDataBits

Parameters:
None

Return Value:
Returns the number of data bits in the Accumulator. The number can be 5, 6, 7, 8 or 16.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

USBUART_bGetLineControlBitmap
Description:

Returns a bitmap with the state of the RS-232 style control signal.
C Prototype:

BYTE USBUART_bGetLineControlBitmap(void)

Assembly:
call USBUART_bGetLineControlBitmap

Mask Value Description
USBUART_PARITY_NONE 0x00 No parity
USBUART_PARITY_ODD 0x01 Parity odd
USBUART_PARITY_EVEN 0x02 Parity even
USBUART_PARITY_MARK 0x03 Mark parity
USBUART_PARITY_SPACE 0x04 Space parity

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_14
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_14

USBUART Device

Document Number: 001-13630 Rev. *B Page 15 of 22

Parameters:
None

Return Value:
Returns a bitmap with the state of the control signal in the Accumulator. Each bit of the bitmap can be
treated individually. Bits D7..D2 are reserved. Symbolic names are provided in C and assembly, and
their associated values are given in the following table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

USBUART_SendStateNotify
Description:

Sends notification to the PC about the UART status.
C Prototype:

void USBUART_SendStateNotify(BYTE bState)

Assembly:
mov A, (USBUART_DCD + USBUART_DSR)
call USBUART_SendStateNotify

Parameters:
bState bitmap with the state of the control signal in Accumulator. Each of the bits in the bitmap can be
treated individually. Symbolic names provided in C and assembly, and their associated values are
given in the following table.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same is
true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the

Mask Value Description
USBUART_RTS 0x02 RTS (1 – activate carrier; 0 – deactivate carrier)
USBUART_DTR 0x01 DTR (1 – present; 0 – not present)

Mask Value Description
USBUART_DCD 0x01 RS-232 DCD signal
USBUART_DSR 0x02 RS-232 DSR signal
USBUART_BREAK 0x04 State of the break detection mechanism
USBUART_RING 0x08 State of the ring detection signal.
USBUART_FRAMING_ERR 0x10 A framing error has occurred.
USBUART_PARITY_ERR 0x20 A parity error has occurred.
USBUART_OVERRUN 0x40 Received data has been discarded due to an overrun.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_15
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_15

USBUART Device

Document Number: 001-13630 Rev. *B Page 16 of 22

CUR_PP and IDX_PP page pointer registers are modified.

USBUART_SetPowerStatus
Description:

Sets the current power status. Set the power status to one for self powered or zero for bus powered.
The device will reply to USB GET_STATUS requests based on this value. This allows the device to
properly report its status for USB Chapter 9 compliance. Devices may change their power source from
self powered to bus powered at any time and report their current power source as part of the device
status. You should call this function any time your device changes from self powered to bus powered
or vice versa, and set the status appropriately.

C Prototype:
void USBUART_SetPowerStatus(BYTE bPowerStaus);

Assembly:
MOV A, USB_DEVICE_STATUS_SELF_POWERED ; Select self powered
call USBUART_SetPowerStatus

Parameters:
bPowerStatus contains the desired power status, one for self powered or zero for bus powered. Sym-
bolic names are provided in C and assembly, and their associated values are given here:

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

Sample Code
The following code illustrates how to use the USBUART user module in a simple application. When a new
device connects to a Windows PC for the first time, Windows will ask the user to provide a driver. An INF
file is required to install drivers on Windows 2000 and later. Microsoft Windows does not provide a
standard INF file for the usbser.sys driver supplied with Windows. In order to install a device that emulates
RS-232 over USB, you must supply an INF file that maps the attached device to the Microsoft usbser.sys
driver. The necessary INF file for USBUART projects is generated automatically and is located in the
project LIB folder. Use this INF file to install the device. Once the driver is installed, this device enumerates
as a COM port and simply echoes any received symbol back to the PC.

BYTE Len;
BYTE pData[32];
void main()
{
 M8C_EnableGInt; //Enable Global Interrupts
 USBUART_Start(USBUART_5V_OPERATION); //Start USBUART 5V operation
 while(!USBUART_Init()); //Wait for Device to initialize

 while(1)
 {

State Value Description
USB_DEVICE_STATUS_BUS_POWERED 0x00 Set the device to bus powered.
USB_DEVICE_STATUS_SELF_POWERED 0x01 Set the device to self powered.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_16
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_16

USBUART Device

Document Number: 001-13630 Rev. *B Page 17 of 22

 Len = USBUART_bGetRxCount(); //Get count of ready data
 if (Len)
 {
 USBUART_ReadAll(pData); //Read all data rom RX
 while (!USBUART_bTxIsReady()); //If TX is ready
 USBUART_Write(pData, Len); //Echo
 }
 }
}

The equivalent code, written in Assembly, is:

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

AREA bss (RAM, REL)

Len: blk 1
pData: blk 32

export _main

AREA text (ROM, REL)

_main:

M8C_EnableGInt ; Enable Global Interrupts

MOV A, USBUART_5V_OPERATION
LCALL USBUART_Start ; Start USBUART 5V operation

deviceInit: ; Wait for Device to initialize
LCALL USBUART_Init
CMP A,0
JZ deviceInit

mainLoop:
LCALL USBUART_bGetRxCount
MOV [Len],A ; Get count of ready data

CMP [Len],0 ; Check if Len is 0
JZ mainLoop

mov A,>pData ; Load MSB part of pointer to RAM buffer
mov X,<pData ; Load LSB part of pointer to RAM buffer
call USBUART_ReadAll ; Read all data rom RX

txReady:
LCALL USBUART_bTxIsReady ; Check to see if TX is ready
CMP A,0
JZ txReady

 ; Echo data
mov A,[Len] ; Load array count
push A
mov A,>pData ; Load MSB part of pointer to RAM string
push A

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_17
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_17

USBUART Device

Document Number: 001-13630 Rev. *B Page 18 of 22

mov A,<pData ; Load LSB part of pointer to RAM string
push A
call USBUART_Write
add SP,253 ; Reset stack pointer to original position

jmp mainLoop

Configuration Registers
This section describes the PSoC Resource Registers used or modified by the USBUART Device User
Module.

Setup Received: When this bit is one, it indicates a valid SETUP packet has been received and ACKed.
This bit is forced high from the start of the data packet phase of the SETUP transaction, until the start of
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval. After
this interval, the bit will remain set until cleared by firmware. While this bit is set to one, the CPU cannot
write to the EP0_DRx registers. This prevents firmware from overwriting an incoming SETUP transaction
before firmware has a chance to read the SETUP data. This bit is cleared by any nonlocked writes to the
register.
IN Received: When this is one, it indicates a valid IN packet has been received. This bit is set to one after
the host acknowledges an IN data packet. When zero, this bit indicates either that no IN has been
received or that the host did not acknowledge the IN data by sending an ACK handshake. It is cleared to
zero by any nonlocked writes to the register.
OUT Received: When this bit is one, it indicates a valid OUT packet has been received and ACKed. This
bit is set to one after the last received packet in an OUT transaction. When zero this bit indicates no OUT
packets have been received. It is cleared to zero by any nonlocked writes to the register.
ACK’d Transaction: This bit is one whenever the SIE engages in a transaction to the register’s endpoint
that completes with a ACK packet. This bit is zero by any nonlocked writes to the register.
Mode: The mode controls how the USB SIE responds to traffic and how the USB SIE will change the
mode of that endpoint as a result of host packets to the endpoint.

Resource EP0_CNTL: Bank 0 reg[56] Endpoint0 Control Register

Bit 7 6 5 4 3 2 1 0

Value
Setup

Received
IN

Received
OUT

Received
ACK’d

Transaction
Mode

Mode Description Mode Description
1h NAK IN/OUT Accept NAK NAK NAK IN and

OUT token.
9h ACK OUT (Stall = 0) Ignore Ignore ACK This

mode is changed by the SIE to mode 8h on
issuance of ACK handshake to an OUT.

2h Status OUT Only Accept STALL Check For con-
trol endpoint, STALL IN and ACK zero byte
OUT.

Ah Reserved Ignore Ignore Ignore

3h Status IN/ OUT Accept STALL STALL For con-
trol endpoint, STALL IN and OUT token.

Bh ACK OUT – Status IN Accept TX 0 Byte ACK
ACK the OUT token or send zero byte data for
IN token.

4h Reserved Ignore Ignore Ignore Ch NAK IN Ignore NAK Ignore Send NAK hand-
shake for IN token.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_18
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_18

USBUART Device

Document Number: 001-13630 Rev. *B Page 19 of 22

Stall: When this bit is one, the SIE stalls an OUT packet if the Mode bits are set to ACK-OUT. The SIE
stalls an IN packet if the mode bits are set to ACK-IN. This bit must be zero for all other modes.
NakIntEnable: When set to one, this bit causes an endpoint interrupt to be generated even when a transfer
completes with a NAK.
ACK’d Transaction: This bit is one whenever the SIE engages in a transaction to the register’s endpoint
that completes with an ACK packet. This bit is zero after any writes to the register.
Mode: Same as EP0_CNTL above.

Data Toggle: This bit selects the DATA packet’s toggle state. For IN transactions, firmware must set this
bit. For OUT or SETUP transactions, the SIE hardware sets this bit to the state of the received Data Toggle
bit.
Data Valid: This bit is used for OUT transactions only. It is cleared if CRC, bit stuff, or PID errors have
occurred. This bit does not update for some endpoint mode settings. This bit may be cleared by writing a
zero to it when the register is not locked.
Byte Count: These bits indicate the number of data bytes in a transaction. For IN transactions, firmware
loads the count with the number of bytes to be transmitted to the host from the endpoint FIFO. Valid values
are 0 to 8. For OUT or SETUP transactions, the count is updated by hardware to the number of data bytes
received, plus two for the CRC bytes. Valid values are 2 to 10.

These bits are the eight LSb of a 9-bit counter. The MSb is the Count MSb of the EPx_CNT1 register.

5h ISO OUT Ignore Ignore Always Isochronous
OUT.

Dh ACK IN (Stall = 0) Ignore TX Count Ignore The
mode is changed by the SIE to mode Ch after
receiving ACK handshake to an IN data.

6h Status IN Only Accept TX 0 Byte STALL For
control endpoint, STALL OUT and send zero
byte data for IN token.

Eh Reserved Ignore Ignore Ignore

7h ISO IN Ignore TX Count Ignore Isochronous IN. Fh ACK IN – Status OUT Accept TX Count Check
Respond to IN data or Status OUT.

8h NAK OUT Ignore Ignore NAK Send NAK hand-
shake to OUT token.

Resource EPx_CNTL: Bank 1 reg[C4-C7] Endpoint1 – Endpoint4 Control Registers

Bit 7 6 5 4 3 2 1 0
Value Stall0 Reserved NakIntEnable ACK’d Transaction Mode

Resource EP0_CNT : Bank 0 reg[57] Enpoint0 Count Register

Bit 7 6 5 4 3 2 1 0
Value Data Toggle Data Valid Reserved Byte Count

Resource EPx_CNT0: Bank 0 reg[4F,51,53,55] Endpoint1 - Endpoint4 Count0 Registers

Bit 7 6 5 4 3 2 1 0
Value Count LSb

Mode Description Mode Description

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_19
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_19

USBUART Device

Document Number: 001-13630 Rev. *B Page 20 of 22

The 9-bit count indicates the number of data bytes in a transaction. For IN transactions, firmware loads the
count with the number of bytes to be transmitted to the host. Valid values are 0 to 256.
The lower eight bits of endpoint count also sets the limit for the number of bytes that will be received for an
out transaction. Before an OUT transaction can be received for an endpoint, this count value must be set
to the maximum number of bytes that can be received where 0x01 is 1 byte and 0xff is 255 bytes. If this
count value is set to a value greater than the number of bytes received, both the data from the USB packet
and the two-byte CRC will be written to the USB's dedicated SRAM.
If the count value is less than the number of data bytes received, the SIE will mark the packet as invalid
and not generate an interrupt. For example, an eight byte data packet will try to write eight data bytes and
two CRC bytes. A count value of eight or greater will allow a good packet to generate an interrupt. A count
value of seven or less will cause the SIE to mark the packet as bad.
Once the OUT transaction is complete, the full 9-bit count will be updated by the SIE to the actual number
of data bytes received by the SIE plus two for the packet’s CRC. Valid values are 2 to 258.

Data Toggle: This bit selects the DATA packet’s toggle state. For IN transactions, firmware must set this bit
to the expected state. For OUT transactions, the hardware sets this bit to the state of the received Data
Toggle bit.
Data Valid: This bit is used for OUT transactions only and is read only. It is 0 if CRC, bit stuffing, or PID
errors occur. This bit does not update for some endpoint mode settings.
Count MSb: This bit is the most significant bit of a 9-bit counter. The least significant bits are the EPx
Count[7:0] bits of the EPx_CNT register. Refer to the EPx_CNTx register for more information.

These registers are used to read and write data to the USB control endpoint. They are shared for both
transmit and receive. The count in the EP0_CNT register determines the number of bytes received or to
be transferred.

USB Enable: When this bit is one it enables the SIE for USB traffic and the USB transceiver. The device
will not respond to USB traffic if this bit is zero.
Device Address: The SIE will respond to the USB device address specified by these bits. This address
must be set by firmware and specified by the system with a SETUP command during USB enumeration.

Resource EPx_CNT1: Bank 0 reg[4E,50,52,54] Endpoint1 - Endpoint4 Count1 Registers

Bit 7 6 5 4 3 2 1 0
Value Data Toggle Data Valid Reserved Count MSb

Resource EP0_DRx: Bank 0 reg[57-5F] Enpoint0 Data Register 0-7

Bit 7 6 5 4 3 2 1 0
Value Data

Resource USB_CNTL0: Bank 0 reg[4A] USB Control Register 0

Bit 7 6 5 4 3 2 1 0
Value USB Enable Device Address

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_20
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_20

USBUART Device

Document Number: 001-13630 Rev. *B Page 21 of 22

Bus Activity: This is a sticky bit that detects any non-idle USB event that has occurred on the USB bus.
Once set to high by the SIE to indicate the bus activity, this bit retains its logical high value until firmware
clears it. Writing a zero to this bit clears it; writing a one preserves its value.
EnableLock: Set this bit to one to turn on the automatic frequency locking of the internal oscillator for USB
traffic. Unless an external clock is being provided, this bit should remain set to one for proper USB
operation.
RegEnable: This bit controls the operation of the internal USB regulator. For applications with PSoC
supply voltages in the 5V range, set this bit high to enable the internal regulator. For device supply
voltages in the 3.3V range, clear this bit to connect the transceiver directly to the supply.

TEN: Setting this bit allows the USB outputs to be driven manually. Normally, TEN is kept low so that the
internal hardware can control traffic flow automatically. One application for manual USB mode is driving a
resume signal (USB “K”) to wake the system from USB suspend.
TSE0: This bit is used to manually transmit a single ended zero (both D+ and D- low) on the USB pins.
This bit has no effect if TEN = 0.
TD: This bit is used to manually drive a USB J or K state onto the USB pins. There is no effect if TEN = 0,
and TSE0 overrides this bit.
RD: This read only bit gives the state of USB Received Data from the differential receiver. The USB
Enable bit in the USB_CR0 register must be set to receive data. If the USB Enable bit is not set, this bit will
read zero.

IO Mode: This bit allows the D+ and D- pins to be configured for either USB mode or bit banged modes. If
this bit is one, the DMI and DPI bits are used to drive the D- and D+ pins.
Drive Mode: If the IOMode bit is one, this bit configures the D- and D+ pins for either CMOS drive or open-
drain drive. If IOMode is zero, this bit has no effect. Note that in open drain mode 5 kΩ pull-up resistors
can be connected internally with the PS2PUEN bit.
DPI: This bit is used to drive the D+ pin if IOMode = 1.
DMI: This bit is used to drive the D- pin if IOMode = 1.

Resource USB_CNTL1: Bank 1 reg[C1] USB Control Register 1

Bit 7 6 5 4 3 2 1 0
Value Reserved Bus Activity EnableLock RegEnable

Resource USBIO_CNTL0: Bank 0 reg[4B] USB IO Control Register 0

Bit 7 6 5 4 3 2 1 0
Value TEN TSE0 TD Reserved RD

Resource USBIO_CNTL1: Bank 0 reg[4C] USB IO Control Register 1

Bit 7 6 5 4 3 2 1 0
Value IO Mode Drive Mode DPI DMI PS2PUEN USBPUEN DPO DMO

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_21
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_21

USBUART Device

Document Number: 001-13630 Rev. *B Revised May 28, 2008 3:55 pm Page 22 of 22
© Cypress Semiconductor Corporation, 2006-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products
for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PS2PUEN: This bit controls the connection of the two internal 5 kΩ pull-up resistors to the D+ and D- pins.
USBPUEN: This bit controls the connection of the internal 1.5 kΩ pull-up resistor on the D+ pin.
DPO: This read only bit gives the state of the D+ pin.
DMO: This read only bit gives the state of the D- pin.

Frame Number: The USB Start of Frame Registers (USB_SOF0 andUSB_SOF1) provide access to the
11-bit SOF frame number. The USB_SOF0 register has the lower 8 bits [7:0] and the USB_SOF1 register
has the upper 3 bits [10:8] of the SOF frame number.

Resource USB_SOFx: Bank 0 reg[48-49] USB Start of Frame Register 0 and 1

Bit 7 6 5 4 3 2 1 0
Value USB_SOF0 Frame Number

Value USB_SOF1 Reserved Frame Number

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_22
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_USBUART_pdf_p_22

	USBUART Device
	Features and Overview
	Functional Description
	USB Compliance
	USB Compliance for Self Powered Devices

	Timing
	Parameters
	Application Programming Interface
	USBUART_Start
	USBUART_Stop
	USBUART_Init
	USBUART_Write
	USBUART_CWrite
	USBUART_PutString
	USBUART_CPutString
	USBUART_PutChar
	USBUART_PutCRLF
	USBUART_PutSHexByte
	USBUART_PutSHexInt
	USBUART_bGetRxCount
	USBUART_bTxIsReady
	USBUART_Read
	USBUART_ReadAll
	USBUART_ReadChar
	USBUART_bCheckUSBActivity
	USBUART_dwGetDTERate
	USBUART_bGetCharFormat
	USBUART_bGetParityType
	USBUART_bGetDataBits
	USBUART_bGetLineControlBitmap
	USBUART_SendStateNotify
	USBUART_SetPowerStatus

	Sample Code
	Configuration Registers

