
In-System Serial Programming (ISSP) Protocol for

CY8C21xxx/CY8C22xxx/CY8C24xxx/CY8C24xxxA/CY8C27xxx

Application Note Abstract
This application note describes how to program CY8C21/22/24/24A/27xxx PSoC® devices using the In-System Serial
Programming (ISSP) protocol (the CY8C24x94 device family is not included).

Introduction
The emulator pod and individual chips can be programmed
in-system through ICE-Cube or MiniProg, using PSoC
Designer or an external factory programmer. You may need
in-circuit programming, either from a manufacturing or an in-
system, field-update standpoint.

This application note provides programming timing and
vectors so that developers and programmer vendors can
create their own in-system programming solutions for a PSoC
device.

There are two participants in the programming procedure: the
programmer and the target device. The programmer
communicates serially with the target. The programmer
supplies the clocking and sends commands to the target. The

target receives data from the programmer and supplies data
upon a read request. The target drives the data line only upon
request from the programmer. The programmer programs the
target with the program image contained in the <PROJECT
NAME>.hex file, which is generated by PSoC Designer.
Refer to Appendix B on page 13 for more information on Intel
.hex file format.

The critical pin connections between the programmer and the
target are listed in Table 1. This includes: 2 signal pins, a
reset pin, a power pin, and a ground pin. Other pins must be
left floating. The pin naming conventions and drive strength
requirements are also listed in Table 1.

For more information on the physical requirements of connections between the programmer and the target, refer to application
note AN2014 “Design for In-System Serial Programming (ISSP).”

AN2026a
Author: Max Kingsbury

Associated Project: No
Associated Part Family: CY8C21xxx/CY8C22xxx/

CY8C24xxx/CY8C24xxxA/CY8C27xxx
GET FREE SAMPLES HERE

Associated Application Notes: AN2014, AN2026, AN2026b

Table 1. Pin Names and Drive Strength Requirements

Pin Name Function Programmer HW Pin Requirements
P1[0] SDATA - Serial Data In/Out Drive TTL Levels, Read TTL, High Z
P1[1] SCLK - Serial Clock Drive TTL Level Clock Signal
Xres Reset Drive TTL Levels

Vss Power Supply Ground Connection Low Resistance Ground Connection

VDD Power Supply Positive Voltage 3.3 or 5V, 25 mA Capability

July 31, 2008 Document No. 001-13617 Rev. *A 1

[+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2026
http://www.cypress.com/design/AN2026
http://www.cypress.com/design/AN2026b
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_1

AN2026a
Programming Flow
Successful target programming depends on adherence to the
programming flow shown in Figure 1. Each procedure is
explained in detail in the following sections. Failure to
complete these steps can result in incorrectly programmed
Flash.

Figure 1. Target Programming Flow

Vectors
Vectors are the binary representation of the commands
necessary to perform various operations involved in the
programming flow. Each procedure in the programming flow
has many individual vectors associated with it (Appendix A
on page 10). Each vector is 22 bits long and any number of
zeros can be sent between sequential vectors. The target
ignores the zero padding and any subsequent ‘0’ on the
SDATA line. This continues until the Target receives a ‘1’,
which is the first bit in the next vector in the vector-set.

Clocking
During the programming flow, there is one clocking mode:
Data Transfer. Data Transfer mode is used when the
programmer communicates with the target, either by sending
or receiving data. During this time, the programmer can drive
the SCLK signal at any frequency that enables reliable data
transfer with a maximum transmit frequency of 8 MHz (Fsclk,
Table 3 on page 8). The SCLK rate in data transfer mode can
be controlled with less precision. Clocks are not required for
the “Wait and Poll” steps described in the procedure
flowcharts. Data Transfer clocking can be used at all other
times.

Command Format
During programming, only the programmer drives the SCLK
line. The programmer and target can drive the SDATA line,
although the target drives SDATA only upon a read request
from the programmer. The programmer always writes and
reads SDATA on the rising edge of SCLK, while the target
writes and reads on the falling edge. After the programmer
requests a read from the target (Appendix A on page 10,
Read Byte, Figure 6 on page 4, Last Portion of READ-ID
From target), it releases the SDATA to a High Z state and
resumes driving the line only after the byte is sent by the
target. The programmer supplies clocks even when it has
released (High Z) the SDATA line. During the “Wait for a High
to Low Transition on SDATA” phase of programming, the
programmer must release (High Z) the SDATA line.

Initialize Target Procedure
The Initialize Target procedure places the chip into the
programming mode. This is done by using Reset mode or
Power on mode.

Reset mode is the preferred method for initiating
communication with the target. However, in the case of the
8-pin DIP package, there is no Xres pin so power on mode is
the only option. It must be noted that because power on
mode involves cycling power to the target, in-circuit field
programming may involve PCB layout considerations in the
design phase.

Figure 2. Initialize Target Procedure

START

Initialize Target Procedure

Verify Silicon ID Procedure

Program Procedure

Secure Procedure

Verify Checksum
Procedure

END

Verify Procedure

Wait for a High to
Low Transition on

SDATA

Toggle XRES on
Device

Send
Initialize 1 Vectors

Begin Initialize
Target

End Initalize Target

Power on
or

Reset mode?

Assert VDD

Wait for
TVDDwait

Wait and Poll for
SDATA going low

Assert VDD

Reset Power on

Send
Initialize 2 Vectors

Wait for a High to

Send
Initialize 3 Vectors

Low Transition on
SDATA
July 31, 2008 Document No. 001-13617 Rev. *A 2

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_2

AN2026a
Reset Mode
The timing to enter programming mode with Reset is shown
in Figure 3. To initialize the part using the Xres line, first wait
until VDD is stable, and then assert the Xres line for the time
specified by Txres (Table 3 on page 8). After Xres is driven low,
there is a window of time specified by Txresini (Table 3 on
page 8) in which the first 8 bits of the Initialize 1 vector-set
must be transmitted.

When the target executes the operation, it drives the SDATA
line High. The programmer must wait and poll the SDATA line

for a HIGH to LOW transition, which is the signal from the
target that the Initialize 1 operation has completed.

Next, send Initialize 2 vectors, wait for HIGH to LOW
transition on SDATA, then send Initialize 3 vectors.

The programmer must sense the system supply and decide
which Initialize 3 vectors to supply. If VDD ≤ 3.6 volts, use one
set; if VDD > 3.6 volts, use the other. See Appendix A on page
10.

Figure 3. Using Reset to Initialize

Power on Mode
To initiate communication with the target using power on,
apply VDD to the target as is shown in Figure 4. This causes
the target to attempt to drive the SDATA line High. The
programmer then waits and polls for a HIGH to LOW
transition on the SDATA line, which is the signal from the
target that VDD has stabilized. Note that until VDD stabilizes,
the SDATA signal is noisy and a false edge can be detected.
As a result, the programmer must wait for the time specified
by TVDDwait (Table 3 on page 8) before beginning to wait and
poll. In addition, the programmer must not drive the SCLK
signal until the TVDDwait time period has passed.

After the SDATA transition is detected, the programmer must
transmit the Initialize 1 vectors in Tacq seconds (Table 3 on
page 8).

Next, send Initialize 2 vectors and wait for HIGH to LOW
transition on SDATA. Send the appropriate Initialize 3 vectors
for the VDD level applied to the PSoC when it is programmed.

The pin drive modes vary during the programming operation.
When the PSoC drives the SDATA line to indicate it has
started up completely, or to send data back to the host,
SDATA is in a strong drive configuration. When it waits for or
receives data, SDATA is in a pull down configuration. It is
important to design the external pin drive mode circuitry such
that a strong high to resistive low transition can be detected,
and also so that the pin can be driven both high and low
when it is in pull down mode.

During the power cycle phase of the Initialize Target
Procedure, VDD must be the only pin asserted. Xres must be
low. The PSoC's internal pull down resistor accomplishes this
if the pin is left floating externally.

Figure 4. Using Power Cycling to Initialize

Txres Txresini

XRES

SDATA

SCLK

1

TVDDwait

VDD

SDATA

SCLK

Tacq

1

Tssclk

TrsclkTfsclk
1

Fsclk

VDD = VPOR
July 31, 2008 Document No. 001-13617 Rev. *A 3

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_3

AN2026a
Verify Silicon ID Procedure
The Verify Silicon ID Procedure (shown in Figure 5) returns
the package-specific silicon ID value from the target. This is
used by the programmer to verify the package type of the
target.

Figure 5. Verify Silicon ID Procedure

The first step in the Verify Silicon ID Procedure is for the
programmer to send the ID-Setup vector-set. The
programmer then drives the SDATA line into a High Z state. It
waits and polls the SDATA line for a HIGH to LOW transition,
which signifies that the target has executed the operation.
The silicon ID value can then be read back by using the
READ-ID vector-set. The sequence for a READ-ID command
is shown in Figure 6. Two bytes must be read to obtain a
complete Silicon ID word.

The vectors in Appendix A on page 10 under READ-ID show
the package-specific values read from the target, that is, a
LLLLHLLH denotes a 0x09 hex read back from an 8-pin
target (CY8C27143). The programmer must compare the
value in the READ-ID (Appendix A on page 10) and the value
returned by the target. If these values do not match, the
programmer must terminate the programming flow.

Figure 6. Last Portion of READ-ID from Target

Begin Verify Silicon
ID

END Verify Silicon
ID

Correct Value?
NY

Wait for a High to
Low Transition on

SDATA

Read back Silicon
ID word

Programming
Failed

Send ID
Setup Vectors

1 0 1 Z D7 D6 D1 D0 Z 1

SCLK

SDATA

Programmer Drives SDATA Target Drives SDATA

A7 A0...
July 31, 2008 Document No. 001-13617 Rev. *A 4

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_4

AN2026a
Program Procedure
The Program Procedure is responsible for the actual
programming of the Flash.

Figure 7. Program Procedure

A Bulk Erase operation must be executed to prepare the
Flash for programming.

The ERASE vector-set is sent. As before, the programmer
must wait and poll the SDATA line for a HIGH to LOW
transition before continuing with the Program Procedure.

To place the actual program image into the Flash, the
program portion of the .hex (Appendix B on page 13) is read
by the programmer in 64-byte blocks. This is written into the
SRAM of the target one byte at a time using the WRITE-
BYTE vector.

After the programmer completely writes the block into the
target’s SRAM, the block number to be written is set using the
SET-BLOCK-NUM vector. Then the PROGRAM-BLOCK is
sent. The PROGRAM-BLOCK vector executes a write block
operation. Following the previous commands, the
programmer must wait and poll the SDATA line before
continuing. This loop is executed for each 64-byte block of
the program image until the entire program is loaded into the
Flash. Note that data can only be written to Flash in 64-byte
blocks.

Figure 8. WRITE-BYTE to Target

Verify Procedure
The Verify Procedure (shown in Figure 10 on page 6), is
responsible for verification of the programmed Flash.

Flash must be verified to ensure program integrity. This
procedure uses a loop to read back the same number of
blocks programmed into the Flash. To verify a block of Flash,
the SET-BLOCK-NUM vector (Appendix A on page 10) is first
sent with the ‘dddddddd’ in the vector replaced with the block
number to be read from Flash.

The programmer sends the VERIFY-SETUP vector-set and
then waits and polls. Each Read Block operation reads a
64-byte block from Flash and stores the data in the target’s
SRAM starting at address 0x80. The programmer must then
use the READ-BYTE vector with an offset of 0x80 (Figure 9
on page 6) to individually read each byte in the block. After
the programmer reads the block, the programming software
must compare it with the block written to the Flash. Data
mismatch must terminate the programming flow as a failure.

Execute Bulk
Erase Macro

Begin Erase/
Program

BLK_NUM = 0

Address = 0

WRITE-BYTE
referenced by
Address and

BLK_NUM. Store
in Target SRAM

Address = 63?
N

Y

Execute Program
Macro

Increment
Address

BLK_NUM = Total
Number of Blocks?

Increment
BLK_NUM

N

Y

Send ERASE
Vectors

Wait for a High to
Low Transition on

SDATA

End Bulk Erase
Macro

Bulk Erase Macro

Send SET-BLOCK-
NUM Vectors

with Block Number
as the Data

Send PROGRAM-
BLOCK Vectors

Wait for a High to
Low Transition on

SDATA

End Program
Macro

Program Macro

End Erase/
Program

1 0 0 A7 A6 A1 A0 D7 D6 D1 D0 1 1 1

SCLK

SDATA
July 31, 2008 Document No. 001-13617 Rev. *A 5

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_5

AN2026a
Figure 9. READ-BYTE From Target

Figure 10. Verify Procedure

1 0 1 Z D7 D6 D1 D0 Z 1

SCLK

SDATA

Programmer Drives SDATA Target Drives SDATA

A5 A0A401

Send VERIFY-
SETUP Vectors

End Verify Macro

Verify Macro

Send Set Block
Number Vectors

with BLK_NUM as
the data

Wait for a High to
Low Transition on

SDATA

BLK_NUM = 0

Address = Offset*

Read Byte
referenced by

Address

Address =
Offset* + 63?

Y

Block Read =
Block Written?

Verify Macro

Increment
Address

BLK_NUM = Total
Number of Blocks?

Programming
Failed

N

Y

N

Increment
BLK_NUM

End Verify

Begin Verify

Y

July 31, 2008 Document No. 001-13617 Rev. *A 6

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_6

AN2026a
Secure Procedure
The Secure Procedure (shown in Figure 11 on page 7), writes
the user-determined security values to the target for each
block.

After the flash is programmed and verified, each byte of the
64-byte security block is written to the target SRAM using the
WRITE-BYTE vector. This block defines the access modes
for each 64-byte block of the program image. After the 64-
byte block is written to the target, the appropriate SECURE
vector-set is sent to the target and the programmer waits and
polls SDATA for the operation to execute. There are different
SECURE vectors for different part numbers. The correct
vector must be specified for the PSoC being programmed.
The security data is located in the .hex file (Appendix B on
page 13).

Figure 11. Secure Procedure

Verify Checksum Procedure
The Verify Checksum Procedure (shown in Figure 12),
causes the target to generate a Checksum Value for the data
in Flash.

Figure 12. Verify Checksum Procedure

To get the Checksum Value from the target, the programmer
sends the appropriate CHECKSUM-SETUP vector-set to the
target. There are different CHECKSUM-SETUP vectors for
different part numbers. The correct vector must be specified
for the PSoC being programmed. The programmer releases
the SDATA line then waits and polls. After the target signals
that the operation is complete, the READ-CHECKSUM
vector-set is used to read back the two-byte Checksum Value
from the target. This value from the target is compared to the
Device Checksum Value from the .hex file (Appendix B). If
the values are not equal, a programming error has occurred.

To calculate a correct checksum, the entire Flash must be
programmed.

Begin Secure

Address = 0

Send Byte of
Security Data
Referenced by

Address

Address = 63?
N

Y

Increment
Address

Send Secure
Vectors

End Secure

Wait for a High to
Low Transition on

SDATA

Send CHECKSUM-
SETUP Vectors

Begin Device

Checksum

END Device

Checksum

Correct Value?
N Y

Wait for a High to

Low Transition on

SDATA

Read back

Checksum word

Programming

Failed
July 31, 2008 Document No. 001-13617 Rev. *A 7

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_7

AN2026a
Specifications and Definitions

DC Programming Specifications

AC Programming Specifications

Table 2. DC Programming Specifications

DC Programming Specifications Minimum Maximum
IDDp (Supply Current During Programming or Verify) 25 mA

Vilp (Input Low Voltage During Programming or Verify) -0.3 V 0.8 V

Vihp (Input High Voltage During Programming or Verify) 2.2 V VDD+0.3 V

Iilp (Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify) 0.20a mA

a. Driving internal pull down resistor.

Iihp (Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify) 1.5a mA

Volv (Output Low Voltage During Programming or Verify IOL=0.1 mA) Vss+0.75 V

Vohv (Output High Voltage During Programming or Verify IOH=5 mA) VDD-1.0 V VDD

Vddp (VDD for Programming and Erase)b

b. The minimum voltage of 2.7 only applies to devices that support this value.

2.7 V 5.5 V

Vdd (VDD for Verify) 3.0 V 5.5 V

Vipor (Power On Reset Trip) 1.6 V 2.30 V

Table 3. AC Programming Specifications

AC Programming Specifications Minimum Maximum
Trsclk (Rise Time of SCLK) 1 ns 20 ns

Tfsclk (Fall Time of SCLK) 1 ns 20 ns

Tssclk (Data Set Up Time to Falling Edge of SCLK) 40 ns

Thsclk (Data Hold Time From Falling Edge of SCLK) 40 ns

Fsclk (Frequency of SCLK) 0 MHz 8 MHz a

Tdsclk (Data-Out Delay from Falling Edge of SCLK) 45 ns a

Tvddwait (VDD Stable to WAIT-AND-POLL Hold Offb) 0.1 ms 1 ms

Tpoll (SDATA High Pulse Timec) 10 µs 100 ms

Tacq (Delay from WAIT-AND-POLL to Initialize-1d) 3 ms

Txres (Duration of External Reset) 10 µs

Txresini (Programming Mode Acquisition Window) 125 µs

a. With capacitance ≤ 30 pF.
b. Until VDD stabilizes, SDATA is noisy and the falling edge must not be searched for. Therefore, a delay of Tvddwait is needed after VDD is applied and before

WAIT-AND-POLL.
c. This applies to WAIT-AND-POLL mnemonic. The SDATA remains high for Tpoll time.
d. The Initialize-1 bitstream data must not be delayed more than Tacq from the end of the WAIT-AND-POLL (measured from SDATA’s falling edge).
July 31, 2008 Document No. 001-13617 Rev. *A 8

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_8

AN2026a
Device Address and Block Definitions

Table 4. Device Address and Block Definitions

Device Address Numbers
(Bytes Within a Block)

Block Numbers
(Program Data) max_data_block

CY8C21123 0-63 0-63 63

CY8C21223 0-63 0-63 63

CY8C21323 0-63 0-63 63

CY8C21234 0-63 0-127 127

CY8C21334 0-63 0-127 127

CY8C21434 0-63 0-127 127

CY8C21534 0-63 0-127 127

CY8C21634 0-63 0-127 127

CY8C22113 0-63 0-31 31

CY8C22213 0-63 0-31 31

CY8C24123a

a. Also applies to CY8C24xxxA devices.

0-63 0-63 63

CY8C24223a 0-63 0-63 63

CY8C24423a 0-63 0-63 63

CY8C27143 0-63 0-255 255

CY8C27243 0-63 0-255 255

CY8C27443 0-63 0-255 255

CY8C27543 0-63 0-255 255

CY8C27643 0-63 0-255 255
July 31, 2008 Document No. 001-13617 Rev. *A 9

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_9

AN2026a
Appendix A

Programming Vectors for CY8C21/22/24/24A/27xxx
Table 5. Programming Vectors

Name Data
Vector Bit Stream (Executed From Left Bit to Right)

Initialize-1 1100101000
00110111101110000000011111011110110000000001111001
111100000111010111100111110010000001111111011110101000000001111101111010000000011111100111
110111000000011111011111001001100001111101111101001000000111110111100000000100111111011111
000000000001111101111111100010010111

Initialize-2 1101111011100000000111110111101100000000011110011111000001110101111001111100100000011111110111101010000
00001111101111010000000011111100111110111000000011111011111001001100001111101111101001000000111100111110
1000000001111110111100000000011011111011111000000000001111101111111100010010111

Initialize-3 3V

Initialize-3 5V

1101111011100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000101
00011111101111100111111000111110111110100011000011111011111111000100101110000000000000000000000110111101
1100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000110000011111
0111110011110101011111011111010001100001111101111011100010000111110111111110001001011100000000000000000
0000011011110111000000001111101111010000000011111110111101010000000011111011110110000010001111101111100
0010100011111101111100111111001111110111110100011000011111011111111000100101110000000000000000000000110
1111011100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000110000
01111101111100111101000111110111110100011000011111011110111000100001111101111111100010010111000000000000
0000000000

1101111011100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000101
00011111101111100111111100111110111110100011000011111011111111000100101110000000000000000000000110111101
1100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000110000011111
0111110011110101011111011111010001100001111101111011100010000111110111111110001001011100000000000000000
0000011011110111000000001111101111010000000011111110111101010000000011111011110110000010001111101111100
0010100011111101111100111111101111110111110100011000011111011111111000100101110000000000000000000000110
1111011100000000111110111101000000001111111011110101000000001111101111011000001000111110111110000110000
01111101111100111101000111110111110100011000011111011110111000100001111101111111100010010111000000000000
0000000000

ID-SETUP 110111101110001000011111011100000000000101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111001111101000000000111110111
100000000011011111011111000000000001111101111111100010010111

READ-ID-WORD (CY8C27143)
10111111000ZLLLLLLLLZ110111111001ZLLLLHLLHZ1

READ-ID-WORD (CY8C27243)
10111111000ZLLLLLLLLZ110111111001ZLLLLHLHLZ1

READ-ID-WORD (CY8C27443)
10111111000ZLLLLLLLLZ110111111001ZLLLLHLHHZ1

READ-ID-WORD (CY8C27543)
10111111000ZLLLLLLLLZ110111111001ZLLLLHHLLZ1

READ-ID-WORD (CY8C27643)
10111111000ZLLLLLLLLZ110111111001ZLLLLHHLHZ1

READ-ID-WORD (CY8C24123)a
10111111000ZLLLLLLLLZ110111111001ZLLLHLLHLZ1

READ-ID-WORD (CY8C24223)1
10111111000ZLLLLLLLLZ110111111001ZLLLHLLHHZ1

READ-ID-WORD (CY8C24423)1
10111111000ZLLLLLLLLZ110111111001ZLLLHLHLLZ1

READ-ID-WORD (CY8C22113)
10111111000ZLLLLLLLLZ110111111001ZLLLLHHHHZ1

READ-ID-WORD (CY8C22213)
10111111000ZLLLLLLLLZ110111111001ZLLLHLLLLZ1

READ-ID-WORD (CY8C21123)
10111111000ZLLLLLLLLZ110111111001ZLLLHLHHHZ1

READ-ID-WORD (CY8C21223)
10111111000ZLLLLLLLLZ110111111001ZLLLHHLLLZ1
July 31, 2008 Document No. 001-13617 Rev. *A 10

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_10

AN2026a
READ-ID-WORD (CY8C21323)
10111111000ZLLLLLLLLZ110111111001ZLLLHHLLHZ1

READ-ID-WORD (CY8C21234)
10111111000ZLLLLLLLLZ110111111001ZLLHHLHHLZ1

READ-ID-WORD (CY8C21334)
10111111000ZLLLLLLLLZ110111111001ZLLHHLHHHZ1

READ-ID-WORD (CY8C21434)
10111111000ZLLLLLLLLZ110111111001ZLLHHHLLLZ1

READ-ID-WORD (CY8C21534)
10111111000ZLLLLLLLLZ110111111001ZLHLLLLLLZ1

READ-ID-WORD (CY8C21634)
10111111000ZLLLLLLLLZ110111111001ZLHLLHLLHZ1

SET-BLOCK-NUM 10011111010dddddddd111
where dddddddd=block #

ERASE 100111111000001010111110011111110010101101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111101111000000000101111110111
11000000000001111101111111100010010111

WRITE-BYTE 10010aaaaaadddddddd111
where dddddddd= data in, aaaaaa=address (6 bits)

PROGRAM-BLOCK
(CY8C21xxx/CY8C22x
xx/CY8C24xxx/CY8C2
4xxxA)

100111111000101010011110011111110010101101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111101111000000000010111110111
11000000000001111101111111100010010111

PROGRAM-BLOCK
(CY8C27xxx)

100111111000001010111110011111110010101101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111101111000000000010111110111
11000000000001111101111111100010010111

VERIFY-SETUP 110111101110000000011111011110110000000001111001111100000111010111100111110010000001111111
011110101000000001111101111010000000011111100111110111000000011111011111001001100001111101
111101001000000111110111100000000000111111011111000000000001111101111111100010010111

READ-BYTE 10110aaaaaaZDDDDDDDDZ1
where DDDDDDDD= data out, aaaaaa=address (6 bits)

SECURE
(CY8C21xxx/CY8C22x
xx/CY8C24xxx/CY8C2
4xxxA)

100111111000101010011110011111110010101101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111101111000000000100111110111
11000000000001111101111111100010010111

SECURE
(CY8C27xxx)

100111111000001010111110011111110010101101111101111011100000000111110111101100000000011110
011111000001110101111001111100100000011111110111101010000000011111011110100000000111111001
111101110000000111110111110010011000011111011111010010000001111101111000000000100111110111
11000000000001111101111111100010010111

CHECKSUM-SETUP
(CY8C27xxx)

110111101110000000011111011110110000000001111001111100000111010111100111110010000001111111
011110101000000001111101111010000000011111100111110111000000011111011111001001100001111101
111101001000000111100111110100000000011111011110000000001111111101111100000000000111110111
1111100010010111

CHECKSUM-SETUP
(CY8C21x23/CY8C24x
xx/CY8C24xxxA)

110111101110000000011111011110110000000001111001111100000111010111100111110010000001111111
011110101000000001111101111010000000011111100111110111000000011111011111001001100001111101
111101001000000111100111110100100000011111011110000000001111111101111100000000000111110111
1111100010010111

CHECKSUM-SETUP
(CY8C21x34

110111101110000000011111011110110000000001111001111100000111010111100111110010000001111111
011110101000000001111101111010000000011111100111110110000000011111011111001001100001111101
111101001000000111100111110101000000011111011110000000001111111101111100000000000111110111
1111100010010111

CHECKSUM-SETUP
(CY8C22xxx)

110111101110000000011111011110110000000001111001111100000111010111100111110010000001111111
011110101000000001111101111010000000011111100111110111000000011111011111001001100001111101
111101001000000111100111110100010000011111011110000000001111111101111100000000000111110111
1111100010010111

READ-CHECKSUM 10111111001ZDDDDDDDDZ110111111000ZDDDDDDDDZ1
where DDDDDDDDDDDDDDDD= Device Checksum data out

a. Also applies to CY8C24xxxA devices.

Table 5. Programming Vectors (Continued)

Name Data
July 31, 2008 Document No. 001-13617 Rev. *A 11

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_11

AN2026a
Notes
1=Logic high=Vihp

0=Logic low=Vilp

Z=High Z (floating)

D=Data read from device (Most Significant Bit [MSb] of binary data comes out first)

d=Data applied to the device (MSb of the binary data goes in first)

a=Address applied to the device (MSb of the binary data goes in first)

H=High data read from the device (Vout=Vohv)

L=Low data read from the device (Vout=Volv)

If the programmer has delays between executing the different mnemonics, SDATA must be High Z (floating) during these
delays.

Other Mnemonics
WAIT-AND-POLL:

The programmer clocks in a “Z” to the device (with enough set up time for the device SDATA pin to drift low to Vilp by the
device’s internal pull down resistor -- typically 1 µS). The SCLK is then held low.

The device outputs a logic high on the SDATA pin and then switches to output a logic low. The programmer must WAIT-AND-
POLL the SDATA pin for the HIGH to LOW transition.

WAIT-AND-POLL uses AC timing specification Tpoll (from Table 3 on page 8).

After the transition to low is observed, the programmer must apply a bit stream of
00 (40 zero bits) to the SDATA pin of the device and then continue to the next
step.
July 31, 2008 Document No. 001-13617 Rev. *A 12

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_12

AN2026a
Appendix B

IntelHex File Format for CY8C21/22/24/24A/27xxx
IntelHex file records are a text representation of Hexadecimal
coded binary data. Only ASCII characters are used, so the
format is portable across virtually all computer platforms.

PSoC Designer generates this file and stores it under the
<PROJECT_DIR>/OUTPUT directory.

Each line in an IntelHex file is called a 'record'. The flash
program data and end data are made up of a single record.
The security data and checksum data are made up of
multiple records. These data each have an extended linear
address record and one or more data records. Records
always begin with a colon (:), followed by the number of data
bytes in each record. For the devices, Flash program data
records always use 64 bytes of data so the Hexadecimal
value in the file is always $40 for that type.

For flash programming data records, the next pair of numbers
represent the 16-bit starting address of the data in the record.
This is the absolute location in the Flash memory. This
number must be a multiple of 64 ($00, $40, $80, $C0,…) for
Flash program data records because each record contains
64 bytes.

The starting address is followed by a byte representing the
record type. If this is $00, the next bytes are the actual
program data to be stored in Flash. A $01 indicates that this

is the end of the file. A $04 indicates an “Extended Linear
Address Record” and is used for security data and device
checksum data storage (see the following examples).

The security and checksum data use multiple records
because they have longer addresses than the other data. The
first record, the Extended Linear Address Record, gives the
upper bytes of the address of the data in memory. The other
records give the lower bytes of the address along with the
data.

Following the record type are the Hexadecimal
representations of the data to be stored. The last byte is a
two's-complement checksum of all of the bytes in the record,
not including the colon. This is called the record checksum.
Note that this value is derived from the binary values of the
bytes rather than the ASCII representation.

Typically, a standard CR/LF pair (carriage return/linefeed,
$0D $0A) terminates the record. Other end-of-line
conventions are also acceptable (like CR only).

Example Flash Program Data Record
:4000C000505152535455565758595A5B5C5D5E5F00
00E8(CR/LF)
Broken down, it is as follows:
: - Colon, indicates that this is IntelHex
40 - Number of data bytes to follow = $40(40 hex)
00C0 - Starting address in the FLASH for record.
00 - This is the record type -- $00 = Data
505152535455565758595A5B5C5D5E5F000
00000000000000000000000000000000000

These are 64 bytes of data in hex as noted above. The
first byte ($50) will be stored at $00C0, with the
remaining bytes following in sequence.

E8 - This is record checksum. If you add all of successive bytes
(note that the address is treated as two individual
bytes), and truncate it to the lowest eight bits, the
result is $18. The two's complement of $18 is $E8.
(This may be derived by subtracting $18 from $100, or
by inverting the bits and adding one to the result.)

(CR/LF) - End of this record.
July 31, 2008 Document No. 001-13617 Rev. *A 13

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_13

AN2026a
Example Security Data Records
:020000040010ea(CR/LF)
:4000000055
5580(CR/LF)

: - Colon, indicates IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero
04 - This is the record type -- $04 indicates

Extended Linear Address record
0010 - 2 hex data bytes used – here byte 1 has $00,

byte 2 has $10 data.
This indicates that the
security data is offset in memory space
($0010 is used for security data).

ea - The record checksum, calculated as above.
(CR/LF) - End of this record.

: - Colon, indicates that this is IntelHex
40 - Number of data bytes – 64 bytes
0000 - Address – zero
00 - Record type - $00 indicates data record
555
55555555555555555555555555555555555

- 64 data bytes – here bytes have $55 data
80 - The record checksum, calculated as above.
(CR/LF) - End of this record.

Additional Notes on Security Records
The security data must be in the file after all FLASH program data records are specified.

As seen in the previous example, security data use multiple records (one to access the extended memory space, and the others
for data). There is one security data record for every 256 blocks of flash. For devices with under 256 blocks of flash, the record
is still 64 bytes long. The most significant bytes are used, and the remainder are ignored. The extended linear address record
that precedes the security data record always specify the same data, and as a result, always have the same checksum. This
record can be copied from a known good hex file.

The data of the security data record indicates the flash security settings specified in PSoC Designer, in flashsecurity.txt. Each
letter in flashsecurity.txt indicates the security settings for one block of flash space. Each letter is encoded into two bits of a hex
digit in the security data record. Four blocks' settings are concatenated into two digits of data, in reverse order. The encoding
may be further examined by changing flashsecurity.txt and generating hex files.
July 31, 2008 Document No. 001-13617 Rev. *A 14

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_14

AN2026a
Example Device Checksum Data Records
:020000040020da(CR/LF)
:02000000253a9f(CR/LF)

: - Colon, indicates that this is IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero
04 - This is the record type -- $04 indicates

Extended Linear Address record
0020 - 2 hex data bytes used – here byte 1 has $00,

byte 2 has $20 data.
This indicates that indicates that the checksum
data is offset in memory space ($0020 is use
for checksum data).

da - The record checksum, calculated as above.
(CR/LF) - End of this record.

: - Colon, indicates that this is IntelHex
02 - Number of data bytes – 2 bytes of data
0000 - Address - zero
00 - Record type -- $00 indicates data record
253a - 2 hex data bytes used – here byte 1 has $25, byte 2 has $39 data. The data is a 2

byte checksum of all of the data stored in flash.
9f - The record checksum, calculated as above.

(CR/LF)- End of this record.

Additional Notes on Device Checksum Data Records
The Device Checksum data must be in the file after all security data records are specified.

As seen in the previous example, Device Checksum data use two records (one to access the extended memory space, and the
other for data). The extended linear address record that precedes the checksum data record always specifies the same data,
and as a result, always has the same checksum. This record can be copied from a known good hex file.

End Record (End of File)
:00000001FF(CR/LF)

: - Colon, indicates that this is IntelHex
00 - Number of data bytes - zero
0000 - Address - zero
01 - Record type -- $01 indicates end record,

- no data bytes used
FF - The record checksum, calculated as above.
(CR/LF) - End of this record.

Device Address and Block Definitions
The least significant 6 bits in the IntelHex address define the byte address (0 to 63) within a block. The most significant bits in
the IntelHex address define the block number. See Table 4 on page 9.

About the Author
Name: Max Kingsbury
Title: Applications Engineer

Background:
B.S. Electrical Engineering, Washington
State University

Contact: maxk@cypress.com
July 31, 2008 Document No. 001-13617 Rev. *A 15

[+] Feedback

mailto:maxk@cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_15

AN2026a
Document History Page

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Document Title: In-System Serial Programming (ISSP) Protocol for CY8C21xxx/CY8C22xxx/CY8C24xxx/CY8C24xxxA
/CY8C27xxx
Document Number: 001-13617
Revision ECN Orig. of Change Submission Date Description of Change
** 1772947 FSU 11/26/2007 Converted to new template.
*A 2546104 MAXK/AESA 07/31/2008 Updated Power on Mode on page 3. Updated IntelHex File Format for

CY8C21/22/24/24A/27xxx on page 13. Converted to latest application note
template. Modified author details.
Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2005-2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of
Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress
against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal,
non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for
the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit
as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified
above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to
make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any
product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies
that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

July 31, 2008 Document No. 001-13617 Rev. *A 16

[+] Feedback

http://www.cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13617_pdf_p_16

	Application Note Abstract
	Introduction
	Programming Flow
	Initialize Target Procedure
	Program Procedure
	Verify Procedure
	Secure Procedure
	Verify Checksum Procedure
	Specifications and Definitions
	Appendix A
	Appendix B
	About the Author
	Document History Page

