

Host Sourced Serial Programming

March 12, 2008 Document No. 001-44168 Rev. ** 1

AN44168
Author: Navid Kamran

Associated Project: Yes
Associated Part Family: CY8C2xxxx (excluding 20xxx, 25xxx and 26xxx)

GET FREE SAMPLES HERE
Software Version: PSoC Designer™ 4.4

Associated Application Notes: AN2014, AN2026, AN2026a, AN2026b

Application Note Abstract
Host Sourced Serial Programming (HSSP) is a method of programming Cypress’ Programmable System On-Chip (PSoC

®
)

devices in-system. HSSP is particularly useful for functions such as firmware field upgrades and calibration. This application
note explains how to use the Cypress provided code and modify it for a host processor to program PSoCs.

Introduction
Cypress’ PSoC microcontrollers are known for their ease
of use, flexibility, and cost effective mix of reprogrammable
analog and digital resources. These features provide
many opportunities for creative designs, one of which is
programming the PSoC serially by an on-board host
processor. This method is used to install or update
firmware in field, or even completely reprogram the PSoC
for a different function.

The HSSP source code was created by Cypress to give
system designers a starting point to create their own serial
programming software. The designer has to make minimal
modifications to the code to make it compatible with their
specific host programmer. The source code covers a wide
range of PSoC devices and provides a high level of
abstraction. For more detailed information on serial
programming, refer to application notes AN2014, AN2026,
AN2026a, and AN2026b.

Overview
The HSSP source code has four major parts: main
function, sub functions for various programming steps, low
level IO functions, and definition files. The system
designer's direct involvement with the code is to set

certain properties via #defines to provide code to fill a

64-byte buffer with programming data and to provide low
level drivers for the host IO.

PSoC devices are programmed in two different modes:
Reset and Power Cycle. Reset mode, which is the
preferred programming mode, is used only when the
system is powered externally. In this case, the XRES pin
on the target PSoC is toggled at the end of the process to
bring it out of programming mode and resume normal
operation. However, some PSoC devices do not have an
XRES pin. These devices are programmed in power cycle
mode only. In power cycle mode, the host microcontroller
switches the PSoC’s power on and off.

In each programming mode, the host requires three IO
pins. These are serial data (SDATA), serial clock (SCLK),
and external reset (XRES) in reset mode, and SDATA,
SCLK, and PSoC power (PWR) in power cycle mode.
These pins are manipulated from the software.

The SDATA pin on the host processor must be
bidirectional. The host must be able to change the
properties of this pin so that it drives a signal to the PSoC,
is released to High-Z state, and is read. For more
information on programming modes, refer to application
note AN2014

[1]
.

Property Selection
The designer must set the three properties given below.

To do this, comment or uncomment certain #defines in

the ISSP_DIRECTIVES.H file. These #defines are

clearly marked with "User Attention Required" and are
easy to find. You may also do a page search for individual
labels. An explanation for each property, along with its
label is provided below.

Property: Target supply voltage

Label: TARGET SUPPLY VOLTAGE

Description: Comment this #define out if the target

runs at 3.3V; uncomment it if the target voltage is 5V.

Property: Programming mode

Label: PROGRAMMING MODE

Description: Comment this #define out if power

cycle mode is used. Uncommenting the #define

causes the target to be programmed in reset mode.

Property: Target PSoC device

Label: TARGET PSOC

Description: Select the target PSoC in this section.
Only one device is enabled at any given time and
every other device is commented out. If the device is
not on the list, contact your local Cypress FAE or call
the Cypress Applications Hotline at the number at the
end of this document.

Note
1. Application note AN2014: Design for In-System Serial Programming (ISSP).

[+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2026
http://www.cypress.com/design/AN2026a
http://www.cypress.com/design/AN2026b
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2026
http://www.cypress.com/design/AN2026a
http://www.cypress.com/design/AN2026b
http://www.cypress.com/design/AN2014
http://www.cypress.com/design/AN2014
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-44168_pdf_p_1

AN44168

March 12, 2008 Document No. 001-44168 Rev. ** 2

Low Level Driver Modifications
The designer must provide host specific code to
manipulate the pins involved in programming the target
PSoC. These APIs are marked "Processor Specific" and
"User Attention Required" and are found in

ISSP_DRIVER_ROUTINES.C.

 Port Bit Masks: There are four port bit masks that
must be adjusted for the specific host processor you
are using. Note that though there are four bits to set,
only three are used in programming depending on
your choice of programming method—SDATA, SCLK,
and XRES in reset mode; SDATA, SCLK, and PWR in
power cycle mode.

 Delay(n) Function: This function is adjusted so that

each iteration of the while loop takes at least 1 µs.
Generally, there is no upper limit for the loop time.
However, the longer this loop takes, the longer it
takes to program the target. For example, if the host
microcontroller is also a PSoC, each iteration takes
about 1 µs and there is a 3 µs overhead. So the
function generates a delay of n+3 µs, where n is the
parameter passed to the function. To adjust the delay

time for your host processor, modify the #defines in

ISSP_DELAYS.H.

 Port Bit Manipulation Functions: These functions
manipulate host pins to generate signals needed to
program the PSoC. They deal with driving pins high
and low and releasing pins to High-Z state. A list of
these functions follows. Most of the functions are self
explanatory, but they are all documented within the
code. The descriptions are also available in the
Appendix.

 fSDATACheck()

 SCLKHigh()

 SCLKLow()

 SetSCLKStrong()

 SetSDATAHigh()

 SetSDATALow()

 SetSDATAHiZ()

 SetSDATAStrong()

 SetXRESStrong()

 AssertXRES()

 DeassertXRES()

 SetSCLKHiZ()

 SetTargetVDDStrong()

 ApplyTargetVDD()

 RemoveTargetVDD()

Loading Data into RAM Buffer

The HSSP code takes data from a 64-byte buffer to
program PSoC Flash blocks sequentially. This process
starts at the lowest block address. After the first block is
programmed, the same buffer is used to program further
Flash blocks.

The designer must provide code to fill this buffer
depending on the data source (USB, RS-232, SD Card,
and so on). There are two functions to be written for the

specific host processor used—LoadProgramData() and

fLoadSecurityData(). These functions are found in

ISSP_DRIVER_ROUTINES.C and are marked with

"Processor Specific" and "User Attention Required." In
their original state, these functions call two secondary
functions that load the buffer with pseudo test data for
debugging purposes. In the final version, delete or
comment out these calls.

Modifying Flash Block Sequence or Quantity

In some cases you may have to program a specific area in
Flash. An example is an area set aside for
characterization, calibration, or firmware field upgrades.
These features are usually implemented using the
EEPROM user module. However, in some cases
programming them directly into the PSoC saves code
space if that is a limitation.

You can change the start address of the target block and
the order in which the blocks are programmed. This does
not cause any problems as each programming sequence
includes the block address. However, remember the
following points:

 Flash bank number is set only once per block write.
This is applicable only to CY8C29x66 and
CY8C24x94 family of products as other families have
only one bank. For more information about banks see
the Supervisory ROM (SROM) chapter of the PSoC

Technical Reference Manual (TRM). The FLS_PR1

register determines which Flash block the
programming calls affect.

 If the programming loop is modified the same
changes must be applied to the verify loop otherwise
verification fails.

 The code accumulates the checksum as it goes. It
examines the checksum against the entire Flash up to
that point. If you program only a section of Flash, you

should set the variable iChecksumData accordingly.

Verifying with Built In Test Points
One of the most critical factors in successful host sourced
programming is getting the erase and write pulse widths
right. To help the user with the process, a few strategically
placed test point (TP) calls are implemented in the
program. To enable this debugging mode, uncomment the

USE_TP #ifdef in ISSP_DRIVER_SOUTINES.H. There

are a few functions associated with the debugging mode
which are similar to pin manipulation functions mentioned
earlier in this application note. The system designer must
provide host specific code to drive a pin high, low, or to
toggle it.

Proper debugging requires monitoring TP and SDATA
lines, and both erase and programming pulses must be
measured. The recommended way to do this is to use a 2-
channel oscilloscope and have it trigger in single
sequence mode from the rising edge of the TP channel.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-44168_pdf_p_2

AN44168

March 12, 2008 Document No. 001-44168 Rev. ** 3

The erase pulse width is measured from the end of the
data burst to the TP falling edge, as shown in Figure 1.
Note that the TP rising edge does not line up with the end
of the data burst. This is expected due to the delay caused
by the overhead between the instant the TP pin is driven
high and the start of sending the data out by the host.

Figure 1. Measuring the Erase Pulse Width

ERASE PULSEWIDTH

The programming pulse width is also measured from the
end of the data burst to the TP falling edge. Figure 2
shows this measurement. As with the erase pulse width,
the rising edge of the TP signal does not line up with the
end of the data burst.

Figure 2. Measuring the Write Pulse Width

WRITE PULSEWIDTH

Table 1 summarizes ideal erase and write pulse widths for
various PSoC devices. The measured values must be
within -3% to +15% of the ideal values. Failure to meet this
requirement results in improper programming, which has

undesirable side effects such as shorter than specified
Flash data retention

[2]
, and fewer Flash erase and write

cycles than expected
[3]

.

Table 1.Erase and Write Pulse Widths for Various PSoCs

Part Number

Erase Pulse Width
(ms)

Write Pulse Width
(ms)

Min Ideal Max Min Ideal Max

CY8C21x23 19.4 20 23 77.6 80 92

CY8C21x34 19.4 20 23 38.8 40 46

CY8C24x23A 19.4 20 23 77.6 80 92

CY8C24x94 38.8 40 46 38.8 40 46

CY8C27x43 77.6 80 92 9.7 10 11.5

CY8C29x66 77.6 80 92 38.8 40 46

Constraints
The comments at the beginning of main.c include useful
and important information that system designers should
consider. The HSSP code has some constraints that are
explained in those comments; however, below is a brief
summary.

 Serial programming occurs only within the
temperature range of 5

º
C and 50

º
C.

 The HSSP program does not support voltages below
3.0V.

 The programming procedure is completed in one
voltage range only. If the device is initialized at 5.0V,
the entire procedure must be completed in 5.0V range
and with 5.0V vectors.

 CY8C20x34 and obsolete PSoCs are currently not
supported.

 There is an upper limit on SCLK’s frequency. It is
specified with a symbol of FSCLK under the AC
Programming Specifications section of the device
data sheet.

Final Steps
The HSSP program has a built in error reporting section
that is very handy when debugging. Read the

bErrorNumber variable to find out about potential

problems. The ISSP_ERRORS.H file contains a list of all

caught errors.

The last step in successful HSSP programming is to reset
the PSoC device to bring it out of programming mode. To

do this, call the ReStartTarget() function.

Notes
2. Specified with a symbol of FlashDR under the DC Programming Specifications section of the device data sheet.
3. Specified with symbols of FlashENPB and FlashENT under the DC Programming Specifications section of the device data sheet.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-44168_pdf_p_3

AN44168

March 12, 2008 Document No. 001-44168 Rev. ** 4

Appendix: Port Bit Manipulation Functions

Function Name Description

SetSCLKStrong() Sets the SCLK pin to an output (Strong drive mode)

SetSCLKHiZ() Releases the SCLK pin to high Z

SetSDATAHigh() Sets the SDATA pin high

SetSDATALow() Sets the SDATA pin low

SetSDATAStrong() Sets the SDATA pin to an output (Strong drive mode)

SetSDATAHiZ() Releases the SDATA pin to high Z (to be driven by the target)

AssertXRES() Sets the XRES pin high

DeassertXRES() Sets the XRES pin low

SetXRESStrong() Sets the XRES pin to an output (Strong drive mode)

ApplyTargetVDD() Provide power to the target PSoC

RemoveTargetVDD() Remove power from the target PSoC

SetTargetVDDStrong() Sets the PWR pin to an output (Strong drive mode)

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-44168_pdf_p_4

AN44168

March 12, 2008 Document No. 001-44168 Rev. ** 5

About the Author
Name: Navid Kamran

Title: Applications Engineer

Background: Navid has a BSEE from University of
Washington, Seattle. He is an amateur
musician and records and produces
music in his spare time.

Contact: navid.kamran@cypress.com

Note: The HSSP code and application note
are based on extensive work done by
Mr. Mark Latham of Liquid Logic.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-44168_pdf_p_5

	Application Note Abstract
	Introduction
	Overview
	Property Selection
	Low Level Driver Modifications
	Loading Data into RAM Buffer
	Modifying Flash Block Sequence or Quantity

	Verifying with Built In Test Points
	Constraints
	Final Steps
	Appendix: Port Bit Manipulation Functions

