

Communication - Using the USBUART
User Module

January 24, 2007 Document No. 001-41445 Rev. ** 1

AN2401
Author: Svyatoslav Paliy, Vadym Grygorenko

Associated Project: Yes
Associated Part Family: CY8C24x94

GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.3, SP1/SP2 Recommended
Associated Application Notes: None

PSoC Application Notes Index

Application Note Abstract
This Application Note describes how to use the USBUART User Module in PSoC Designer to quickly migrate from UART to
USB.

Introduction
Many embedded applications use the RS232 interface to
communicate with external systems, such as PCs,
especially for debugging. The RS232 COM port is rapidly
disappearing from most new computers, replaced by USB.
The simplest way to migrate to USB is to emulate RS232
over the USB bus. An advantage of this method is that PC
applications see the USB connection as an RS232 COM
port connection and thus it is very simple to use for
debugging. This method uses a standard Windows® driver
that is included with all versions of Microsoft® Windows
from 98SE on.

Figure 1. USBUART vs. Traditional UART

PC

PSoC Application

COM Driver

R
S

23
2

PC Application
PC

PSoC Application

COM Driver

U
S

B

PC Application

CDC Driver

Traditional Application USBUART Usage

UART USBUART

A Windows application detects a physically connected
USB device as a COM port connected device and
communicates with it using the standard WinAPI
CreateFile, ReadFile, and WriteFile functions. No
modifications of the existing PC software are required to
support a USBUART-featured device.

A Simple Echo Project
In PSoC Designer Device Editor, select the USBUART
User Module from the Protocols tab. Switch to the
Interconnect View, place the user module, and rename it
to USBUART.

Figure 2. USBUART User Module Location

[+] Feedback [+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/design/appnoteindex
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_1

AN2401

Once the user module is placed you can select the user
module parameters.

 Vendor ID and Product ID. The VendorID (VID) and
ProductID (PID) are used by the operating system to
identify the USB device and assign it a driver. The
VID is a 16-bit number unique to each manufacturer
and assigned by the USB Implementers Forum. The
VID can be purchased directly from USB
Implementers Forum at
www.usb.org/developers/vendor. Each VID comes
with 65536 different PIDs. The PID is also a 16-bit
number and you assign a unique product ID to each
USB product you create.

 VendorString. A string that describes the product
vendor.

 ProductString. A string that describes the product.

 SerialNumberString. Each USB device can have a
unique serial number. The serial number is used to
differentiate between two devices with the same VID
and PID connected to the PC at the same time.

 DevicePower. The USB device can be Bus Powered,
meaning that it uses the USB bus as its power source
or Self Powered meaning that it uses an external
power source and uses the USB bus only for data
exchange.

 MaxPower. This is the maximum amount of power
that your device will require from the USB port. If the
DevicePower is set to Self Powered, this parameter is
ignored. If you set this value higher than 100 mA, it
cannot be connected to a low-power USB hub. The
maximum power that can be supplied by the USB is
500 mA. If the device needs draws more than 500 mA
it must use an external power source.

Figure 3. Parameter Values Used In This Demo. Project

Add the following code to main.c:

Code 1. Contents of main.c

BYTE Len;
BYTE pData[32];

void main() {
 //Enable Global Interrupts
 M8C_EnableGInt;
 //Start USBUART 5V operation
 USBUART_Start(USBUART_5V_OPERATION);

 //Wait for Device to initialize
 while(!USBUART_Init());

 // Main loop

 while(1) {
 //Get count of ready data
 Len = USBUART_bGetRxCount();
 if (Len) {
 //Read all data rom RX
 USBUART_ReadAll(pData);
 //Wait for TX ready
 while(!USBUART_bTxIsReady());
 //Send received data back
 USBUART_Write(pData, Len);
}} }

Compile your project, download it to the PSoC® device
and connect the board to the USB port on your PC. When
the device is first connected to the PC the New Hardware
Wizard will start.

Figure 4. New Hardware Wizard – Step 1

Select No, not this time and click the Next button.

January 24, 2007 Document No. 001-41445 Rev. ** 2

[+] Feedback [+] Feedback

http://www.usb.org/developers/vendor
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_2

AN2401

Figure 5. New Hardware Wizard – Step 2

Select Install from a list or specific location
(Advanced) and click the Next button.

Figure 6. New Hardware Wizard – Step 3

Select Search for the best driver in these locations,
and Include this location in the search and set the path
to the \lib subfolder of the PSoC USBUART
demonstration project. PSoC Designer automatically
generates an .inf file with the driver in the \lib
subfolder of the project that contains the USBUART User
Module.

Figure 7. New Hardware Wizard – Step 4

Click Continue Anyway.

Figure 8. New Hardware Wizard – Step 5

Click Finish.

January 24, 2007 Document No. 001-41445 Rev. ** 3

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_3

AN2401

Figure 9. Device Manager Tree

Now that the USBUART is connected, you can open
HyperTerminal, set parameters, and communicate with the
board. The system simply echoes back anything that you
type in the terminal window. For this echo project the port
settings (speed, parity and so on) are ignored, as the
communication is handled using USB protocols. However,
if you are creating an interface for an existing project and
the software that you use to communicate with the device
or the device itself requires these settings, the terminal
settings can be accessed using USBUART API calls. See
the USBUART User Module data sheet for details.

The demonstration project echo.zip echoes the text that
you type in the HyperTerminal program and also sends
the text to the LCD display. The project is designed for the
CY3214-PSoCEvalUSB board and uses port 4 to connect
to the LCD. The project is included in the project file with
this Application Note.

RX8-to-USB Dongle Project
The second project is the RX8-to-USB dongle. This project
demonstrates how to correctly handle data
synchronization between the RX8 and USB.

To begin, you place and configure the USBUART User
Module as you did in the previous project. In addition,
place an RX8 User Module, connect input to the desired
pin and set the correct clock speed according to chosen
communication speed. The clock rate must be set to eight
times the desired bit receive rate.

Add the following code to main.c:

Code 2. ain.c for RX8-to-USB Dongle Project

BYTE baBuf0[32], baBuf1[32];
BYTE bPointer, bActiveBuf, bfBufferFull;

void main() {
 M8C_EnableGInt;

//Start USBUART Operation with 5V operation
USBUART_Start(USBUART_5V_OPERATION);

//Wait for Device to initialise
while(!USBUART_Init());

 bPointer = 0;
 bActiveBuf = 0;
 bfBufferFull = 0;

//Start RX8
 RX8_Start(0);
 RX8_EnableInt();

// mail loop
 while (1) {
 while (bfBufferFull == 0);
 bfBufferFull = 0;
 //If TX is ready
 while (!USBUART_bTxIsReady());
 // choose active buffer
 if (bActiveBuf == 0)
 USBUART_Write(baBuf1, 32);
 else
 USBUART_Write(baBuf0, 32);
 //
 while (!USBUART_bTxIsReady());
 // flush the CDC driver buffer
 USBUART_Write(0, 0);
} }

January 24, 2007 Document No. 001-41445 Rev. ** 4

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_4

AN2401

January 24, 2007 Document No. 001-41445 Rev. ** 5

Two buffers, baBuf0 and baBuf1, are used to synchronize
the RX8 and USBUART functions. The double buffer
avoids data corruption in case a USB transaction takes
place at the same time as a UART transaction. The
bActiveBuf flag indicates disposition of the buffers.

 bActiveBuf == 0 – Indicates that baBuf0 is used to
receive data from RX8 and baBuf1 is used to transmit
data by USBUART. The data in baBuf1 was
previously received via RX8.

 bActiveBuf == 1 – Indicates that baBuf1 is used to
receive data from RX8 and baBuf0 is used to transmit
previously received data via USBUART.

Data is transmitted via USBUART in the main loop and
read from TX8 in the RX8 interrupt. You can see the
interrupt handler in the user section of rx8int.asm located
in the usb_uart_rx.zip archive.

When the active receive buffer fills up, the RX8 interrupt
handler sets the bfBufferFull flag and inverts the value of
bActiveBuf.

The data is transmitted to the PC in 32-byte packets. You
can decrease the buffer length to 1 if you want to
immediately send each byte received by the RX8. This
allows you to synchronize the fully asynchronous RX8 and
virtually asynchronous USBUART.

The Windows CDC driver has an additional buffer. If the
timing of received data is critical to your application, you
must use the driver’s buffer flush. To flush the buffer, you
send a zero-length data packet with the
USBUART_Write(0,0) API function. If the timing of
received data is not critical to your application you can
remove this line from the source code. This makes the
transfer from USB to RX8 simpler because the
intermediate buffer is not required.

Figure 10. Full UART to USB Block Diagram

USBUART
User

Module

baBuf0
Buffer

TX8
User

Module

RX8
 User

ModulebaBuf1
Buffer

If (USBUART_bTxIsReady())
 USBUART_Write(baBufX, Len)

If (TX8_bReadTxStatus() & TX8_TX_BUFFER_EMPTY)
 TX8_Write(Buf, Len)

pActiveBuf

pActiveBuf

USB

The UART-to-USB dongle project, usb_uart_bridge.zip, is
included in the project file included with this Application
Note.

You can adjust the port parameters with the following API
functions:

 USBUART_dwGetDTERate – Returns the data
terminal rate set for this port in bits per second. You

can use this API function to determine the port speed
that was set in the terminal software. You can then
adjust the clock for the TX8 and RX8 user modules to
match this speed.

 USBUART_bGetCharFormat – Returns the number of
stop bits.

 USBUART_bGetParityType – Returns the parity type.

 USBUART_bGetDataBits – Returns the number of
data bits.

PC Programming for USBUART
The PC program for the USBUART is the same as if the
device is attached to a physical COM port. You can use
the MSCOMM object or Win32 API functions. The
following example uses Win32 API functions.

Code 3. C# Code Sample to Work With USBUART COM
Port

//port open
hPortHandle = CreateFile(“COM” + PortNum,
GENERIC_READ | GENERIC_WRITE, 0 , 0
OPEN_EXISTING, 0 , 0);

//port settings
DCB dcbCommPort = new DCB();
GetCommState(hPortHandle, ref dcbCommPort);
dcbCommPort.BaudRate = Baudrate;
dcbCommPort.Parity = Parity;
dcbCommPort.ByteSize = ByteSize;
dcbCommPort.StopBits = stopBits;

//read data
ReadFile(hPortHandle, BufBytes, NumBytes,
ref BytesRead, 0);

//write data
WriteFile(hPortHandle, BufBytes, NumBytes,
ref BytesWritten, 0);

//close port
CloseHandle(hPortHandle);

Note. To open a COM port COM10 and above you must
add the prefix string "\\.\" to the COM port name. In C the
slash character must be escaped, so the code looks like
this:

CreateFile("\\\\.\\COM10",...)

A simple C# project, UsbUartRead.net.zip, is included in
the project file included with this Application Note.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_5

AN2401

About the Authors
Name: Svyatoslav Paliy Name: Vadym Grygorenko

Title: Application Engineer Title: Sr. Application Engineer
Background: Svyatoslav earned a Master of Science

degree from Lviv Polytechnic National
University (Lviv, Ukraine) in 2000. His
interests include the various aspects of
embedded systems design, and
Windows and Linux programming.

Background: Ukraine Solution Center

Contact: svt@isto.lviv.ua

Contact: vad_gr@ukr.net

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

January 24, 2007 Document No. 001-41445 Rev. ** 6

[+] Feedback [+] Feedback

mailto:svt@isto.lviv.ua
mailto:vad_gr@ukr.net
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41445_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_communication___using_the_usbuart_user_module___an2401_12_pdf_p_6

	Application Note Abstract
	Introduction
	A Simple Echo Project
	RX8-to-USB Dongle Project
	PC Programming for USBUART
	About the Authors

