[image: image11.jpg]PERFORM

	Communication - Using the USBUART
User Module

	AN2401

	Author: Svyatoslav Paliy, Vadym Grygorenko

	Associated Project: Yes

	Associated Part Family: CY8C24x94

GET FREE SAMPLES HERE

	Software Version: PSoC Designer™ 4.3, SP1/SP2 Recommended

	Associated Application Notes: None

PSoC Application Notes Index

Application Note Abstract

This Application Note describes how to use the USBUART User Module in PSoC Designer to quickly migrate from UART to USB.

	

Introduction

Many embedded applications use the RS232 interface to communicate with external systems, such as PCs, especially for debugging. The RS232 COM port is rapidly disappearing from most new computers, replaced by USB. The simplest way to migrate to USB is to emulate RS232 over the USB bus. An advantage of this method is that PC applications see the USB connection as an RS232 COM port connection and thus it is very simple to use for debugging. This method uses a standard Windows® driver that is included with all versions of Microsoft® Windows from 98SE on.

Figure 1. USBUART vs. Traditional UART

[image: image1.wmf]PC

PSoC Application

COM Driver

R

S

2

3

2

PC Application

PC

PSoC Application

COM Driver

U

S

B

PC Application

CDC Driver

Traditional Application

USBUART Usage

UART

USBUART

A Windows application detects a physically connected USB device as a COM port connected device and communicates with it using the standard WinAPI CreateFile, ReadFile, and WriteFile functions. No modifications of the existing PC software are required to support a USBUART-featured device.

A Simple Echo Project

In PSoC Designer Device Editor, select the USBUART User Module from the Protocols tab. Switch to the Interconnect View, place the user module, and rename it to USBUART.

Figure 2. USBUART User Module Location

[image: image2.png]BolLdi2C

BoolLdUSEFS

USBUBRT

Once the user module is placed you can select the user module parameters.

· Vendor ID and Product ID. The VendorID (VID) and ProductID (PID) are used by the operating system to identify the USB device and assign it a driver. The VID is a 16-bit number unique to each manufacturer and assigned by the USB Implementers Forum. The VID can be purchased directly from USB Implementers Forum at www.usb.org/developers/vendor. Each VID comes with 65536 different PIDs. The PID is also a 16-bit number and you assign a unique product ID to each USB product you create.

· VendorString. A string that describes the product vendor.

· ProductString. A string that describes the product.

· SerialNumberString. Each USB device can have a unique serial number. The serial number is used to differentiate between two devices with the same VID and PID connected to the PC at the same time.

· DevicePower. The USB device can be Bus Powered, meaning that it uses the USB bus as its power source or Self Powered meaning that it uses an external power source and uses the USB bus only for data exchange.

· MaxPower. This is the maximum amount of power that your device will require from the USB port. If the DevicePower is set to Self Powered, this parameter is ignored. If you set this value higher than 100 mA, it cannot be connected to a low-power USB hub. The maximum power that can be supplied by the USB is 500 mA. If the device needs draws more than 500 mA it must use an external power source.

Figure 3. Parameter Values Used In This Demo. Project

[image: image3.png]& test [CYBC24794-24LFXI] - PSoC Designe:

Fle Edt Uew Popct Config Buld Debug Program Toos Widow e
& a@ =] 2w EEHO® | F ® || @ faocs ~feoone <] b3 B
=3 EERE @

For Help, press F1 [

Giobal Fesources Vaue Selected User Modtes (5 test |

Power Seting [Vec / SysCk freq 50V / 24MHz

CPU_Clock SysOk/B

Slecp_Timer 8124z Lo useusRT
VCT= SOk 1
VE2=VCIN 1
VC3Sauce SysCk/1 T T
V3 Divicer 1 g o
Sys0K Saurce Irtemal = i
Sys0K2 Disable No i . i
Anclog Power SCOn/Ref Low ‘ :
Fif Mus (Vdd/2)s/Bandiap &
USBUART - § =
User Module Parameters Value i
VendailD 04 i

ProductiD F235
VendarSting Copress Cop

Productsting Demo USBUIART

SeriaNumberSting o001 — — E&:’
DevicePoer Sef Powred S,
MasPower 100 =

Name | Por Sdect |Dive | mempt |4] N S| -
Paif0 " POO] SGCPU HighZAnalc Disablint
Fot 01 ol SWCPU HighZ Analc Dissblelnt —|
Pot02 POZ SGCPU HighZAnak Disablint Jem— o |
Pot03 PO SGCPU HighZAnal Disablint i
Pot 04 PO4I SGCPU HighZAnel Disablnt il
Pot05 POS SOCPU HighZAnal Disablint e —
Pot06 POl SGCPU HighZAnal Disablint

PO7l SWCPU HighZ Anac Disablelnt
Pot10 POl SGCPU HighZénak Dsablelt
% 1CE discommected 2

Attenpting Connection vith port 'USB/0525C1S4" and "Pod povered by the ICE"

Connect=d to ICE_(debugger version 18, pod ID 1B. pod nicro CY8C24x94 rev A)

Initial project Supply Voltage configured for 5.0V / 24MHz operation

ICE is supplying pover to ped at 5.0V

Dovnload to emulator succeeded

Ealted

Running

Dovnload to emulator succeeded

Ealted

B), Debug (T nFiEs 1), Fndnles 2, Resuls Tl of

Add the following code to main.c:

Code 1. Contents of main.c
BYTE Len;

BYTE pData[32];

void main() {

 //Enable Global Interrupts

 M8C_EnableGInt;

 //Start USBUART 5V operation

 USBUART_Start(USBUART_5V_OPERATION);

 //Wait for Device to initialize

 while(!USBUART_Init());

 // Main loop

 while(1) {

 //Get count of ready data

 Len = USBUART_bGetRxCount();

 if (Len) {

 //Read all data rom RX

 USBUART_ReadAll(pData);

 //Wait for TX ready

 while(!USBUART_bTxIsReady());

 //Send received data back

 USBUART_Write(pData, Len);

}} }

Compile your project, download it to the PSoC® device and connect the board to the USB port on your PC. When the device is first connected to the PC the New Hardware Wizard will start.

Figure 4. New Hardware Wizard – Step 1

[image: image4.png]Found New Hardware Wizard

=2

‘Welcome to the Found New

Hardware Wizard

‘Windaws ill search fr curent and updated software by
laoking on your computer, on the hardware nstalation CD. or an

the Windows Update Web site (it your permissior.

Fiead ou pivacy policy

CanWindaws carnest to Windows Update to search for

saftware?

€ Yes, this time oy

€ Yes, now and every time | connect a device:

@ No, ot ths time.

Clck Net o contiue.

Neit>

Cancel

Select No, not this time and click the Next button.

Figure 5. New Hardware Wizard – Step 2

[image: image5.png]This wizard helps you nstal software for

Demo USBUART

“)_If your hardware came with an installation CD
< or floppy disk. insert it now.

What do you want the wizaid o do?

€ Install the software automatical [Recommended)
@ Install fom a fist o specifclocation [Advanced)

Cick Nest o continue.

<Back Neit> Cancel

Select Install from a list or specific location (Advanced) and click the Next button.

Figure 6. New Hardware Wizard – Step 3

[image: image6.png][Found New Hardware Wizard

Please choose your search and installation options. @

& Search fo the bestdiver in these locations

Use the check boxes below o it o expand the default search, which includss local
paths and rerovable medis. The best diver found wil be nstalled

I™ Search removable media (loppy, CDROM..]

V' Include this location in the search:
[Program FiesiCypress MiorosystemsPsoc Desi =] [__Biowse

" Don't ssarch. | il chaase the dilver o nstal.

Chaase this optian to select the device civer fiom a s, Windows does not quarariee that
the chiver you choose wil be the best malch for your hardare.

<Back Neit> Cancel

Select Search for the best driver in these locations, and Include this location in the search and set the path to the \lib subfolder of the PSoC USBUART demonstration project. PSoC Designer automatically generates an .inf file with the driver in the \lib subfolder of the project that contains the USBUART User Module.

Figure 7. New Hardware Wizard – Step 4

[image: image7.png]Please wait while the wizard installs the software. Bey

Hardware Installation

A The sofwate you ae instling fr this hrcare

5 Dema USBUART
=
s not passed Windows Logo testing to veiy s compatibiiy

withWindaws <P. (Tell me why i tesing s mpartant

Continuing your installation of this software may impair
o destabilize the correct operation of your system
either immediately or in the future. Microsot strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
passed Windows Logo testing.

Continue Anyway | [_STOP Installation

— |

Click Continue Anyway.

Figure 8. New Hardware Wizard – Step 5

[image: image8.png]Found New Hardware Wizard

Completing the Found New
@ Hardware Wizard

_7) Demo USBUART

Clck Firsh to close the wizard.

The wizard has frished instaling the saftware fo.

Firish

Click Finish.

Figure 9. Device Manager Tree

[image: image9.png]9 Computer
< Disk crives
@ Display adapters
S Floppy disk contrallers
23 Fioppy disk drives
{88 Hurman Interface Devices
2 IDE ATA/ATAPI controllers
> Keyboards
*) Mice and other pointing devices
2 Monitors
B Network adapters
=7 Ports (COM& LPT)
¥ communications Part (COM1)
¥ communications Part (COMZ2)
. Printer Port (PTL)
¥ USB UBRT Dongle Demo (COMZ)
4 Processors
@, Sound, video and game controllers
< Storage volumes
4 System devices
& Universal Serial Bus controllers

Now that the USBUART is connected, you can open HyperTerminal, set parameters, and communicate with the board. The system simply echoes back anything that you type in the terminal window. For this echo project the port settings (speed, parity and so on) are ignored, as the communication is handled using USB protocols. However, if you are creating an interface for an existing project and the software that you use to communicate with the device or the device itself requires these settings, the terminal settings can be accessed using USBUART API calls. See the USBUART User Module data sheet for details.

The demonstration project echo.zip echoes the text that you type in the HyperTerminal program and also sends the text to the LCD display. The project is designed for the CY3214-PSoCEvalUSB board and uses port 4 to connect to the LCD. The project is included in the project file with this Application Note.

RX8-to-USB Dongle Project

The second project is the RX8-to-USB dongle. This project demonstrates how to correctly handle data synchronization between the RX8 and USB.

To begin, you place and configure the USBUART User Module as you did in the previous project. In addition, place an RX8 User Module, connect input to the desired pin and set the correct clock speed according to chosen communication speed. The clock rate must be set to eight times the desired bit receive rate.
Add the following code to main.c:

Code 2. ain.c for RX8-to-USB Dongle Project

BYTE baBuf0[32], baBuf1[32];

BYTE bPointer, bActiveBuf, bfBufferFull;

void main() {

 M8C_EnableGInt;

//Start USBUART Operation with 5V operation

USBUART_Start(USBUART_5V_OPERATION);

//Wait for Device to initialise

while(!USBUART_Init());

 bPointer = 0;

 bActiveBuf = 0;

 bfBufferFull = 0;

//Start RX8

 RX8_Start(0);

 RX8_EnableInt();

// mail loop

 while (1) {

 while (bfBufferFull == 0);

 bfBufferFull = 0;

 //If TX is ready

 while (!USBUART_bTxIsReady());

 // choose active buffer

 if (bActiveBuf == 0)

 USBUART_Write(baBuf1, 32);

 else

 USBUART_Write(baBuf0, 32);

 //

 while (!USBUART_bTxIsReady());

 // flush the CDC driver buffer

 USBUART_Write(0, 0);

} }

Two buffers, baBuf0 and baBuf1, are used to synchronize the RX8 and USBUART functions. The double buffer avoids data corruption in case a USB transaction takes place at the same time as a UART transaction. The bActiveBuf flag indicates disposition of the buffers.

· bActiveBuf == 0 – Indicates that baBuf0 is used to receive data from RX8 and baBuf1 is used to transmit data by USBUART. The data in baBuf1 was previously received via RX8.

· bActiveBuf == 1 – Indicates that baBuf1 is used to receive data from RX8 and baBuf0 is used to transmit previously received data via USBUART.

Data is transmitted via USBUART in the main loop and read from TX8 in the RX8 interrupt. You can see the interrupt handler in the user section of rx8int.asm located in the usb_uart_rx.zip archive.

When the active receive buffer fills up, the RX8 interrupt handler sets the bfBufferFull flag and inverts the value of bActiveBuf.

The data is transmitted to the PC in 32-byte packets. You can decrease the buffer length to 1 if you want to immediately send each byte received by the RX8. This allows you to synchronize the fully asynchronous RX8 and virtually asynchronous USBUART.

The Windows CDC driver has an additional buffer. If the timing of received data is critical to your application, you must use the driver’s buffer flush. To flush the buffer, you send a zero-length data packet with the USBUART_Write(0,0) API function. If the timing of received data is not critical to your application you can remove this line from the source code. This makes the transfer from USB to RX8 simpler because the intermediate buffer is not required.

Figure 10. Full UART to USB Block Diagram

[image: image10.wmf]USBUART

User

Module

baBuf

0

Buffer

TX

8

User

Module

RX

8

 User

Module

baBuf

1

Buffer

If

(

USBUART

_

bTxIsReady

())

 USBUART

_

Write

(

baBufX

,

Len

)

If

(

TX

8

_

bReadTxStatus

()

&

TX

8

_

TX

_

BUFFER

_

EMPTY

)

 TX

8

_

Write

(

Buf

,

Len

)

pActiveBuf

pActiveBuf

U

S

B

The UART-to-USB dongle project, usb_uart_bridge.zip, is included in the project file included with this Application Note.

You can adjust the port parameters with the following API functions:

· USBUART_dwGetDTERate – Returns the data terminal rate set for this port in bits per second. You can use this API function to determine the port speed that was set in the terminal software. You can then adjust the clock for the TX8 and RX8 user modules to match this speed.

· USBUART_bGetCharFormat – Returns the number of stop bits.

· USBUART_bGetParityType – Returns the parity type.

· USBUART_bGetDataBits – Returns the number of data bits.

PC Programming for USBUART

The PC program for the USBUART is the same as if the device is attached to a physical COM port. You can use the MSCOMM object or Win32 API functions. The following example uses Win32 API functions.

Code 3. C# Code Sample to Work With USBUART COM Port

//port open

hPortHandle = CreateFile(“COM” + PortNum, GENERIC_READ | GENERIC_WRITE, 0 , 0 OPEN_EXISTING, 0 , 0);

//port settings

DCB dcbCommPort = new DCB();

GetCommState(hPortHandle, ref dcbCommPort);

dcbCommPort.BaudRate = Baudrate;

dcbCommPort.Parity = Parity;

dcbCommPort.ByteSize = ByteSize;

dcbCommPort.StopBits = stopBits;

//read data

ReadFile(hPortHandle, BufBytes, NumBytes, ref BytesRead, 0);

//write data

WriteFile(hPortHandle, BufBytes, NumBytes, ref BytesWritten, 0);

//close port

CloseHandle(hPortHandle);

Note. To open a COM port COM10 and above you must add the prefix string "\\.\" to the COM port name. In C the slash character must be escaped, so the code looks like this:

CreateFile("\\\\.\\COM10",...)

A simple C# project, UsbUartRead.net.zip, is included in the project file included with this Application Note.

About the Authors
	Name:
	Svyatoslav Paliy
	Name:
	Vadym Grygorenko

	Title:
	Application Engineer
	Title:
	Sr. Application Engineer

	Background:
	Svyatoslav earned a Master of Science degree from Lviv Polytechnic National University (Lviv, Ukraine) in 2000. His interests include the various aspects of embedded systems design, and Windows and Linux programming.

	Background:
	Ukraine Solution Center

	Contact:
	svt@isto.lviv.ua

	Contact:
	vad_gr@ukr.net

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

	

	
	Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone: 408-943-2600

Fax: 408-943-4730

http://www.cypress.com/

	

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

January 24, 2007
Document No. 001-41445 Rev. **
6

_1231071259.vsd
PC

RS232

PSoC Application

COM Driver

PC Application

PC

PSoC Application

COM Driver

USB

PC Application

CDC Driver

Traditional Application

USBUART Usage

UART

USBUART

_1231136037.vsd

