

enCoRe™ II USB Bootloader

December 4, 2007 Document No. 001-17190 Rev. *A 1

AN6075
Author: James Cahoon

Associated Project: Yes
Associated Part Family: USB Low-Speed Peripherals – CY7C638xx, CY7C633xx

GET FREE SAMPLES HERE
Software Version: PSoC Designer™ 4.3 SP2

Associated Application Notes: None

Application Note Abstract
Allowing end users to upgrade their products for bug fixes or feature enhancements is a desirable feature from both a
marketing and engineering perspective. enCoRe™ II, as a Flash-based microcontroller, has the potential to allow firmware
upgrades in the field via the USB protocol. However, firmware assistance is required to manage the download of the new code
from the USB host, re-program the Flash, and re-start operation under the new code. This application note describes a
bootloader for the low-speed USB enCoRe II device to implement this capability.

Introduction
It is convenient to change the running code in a device on
site without physically replacing the device. To do this,
bootloader code is programmed in a protected memory
space in the enCoRe II and through this bootloader
program, the user code is downloaded to the device. The
bootloader uses USB to communicate with the
downloading master.

All the routines required for the bootloader, the USB user
module, the bootloader code, bootloader descriptors, and
the flash block programming are contained in a protected
area to prevent any data corruption and failure of the
bootloader.

Bootloader Operation
The bootloader is located from 1300h. This memory space
is write protected to prevent any accidental modification or
corruption. The reset vector is modified so that when the
processor is reset, the bootloader executes first.

The bootloader carries out the following operations:

 Upon reset, the bootloader calculates checksum for
the user code and verifies it with a checksum written
to the last two bytes of the Flash. If the two
checksums match, it means that the previous
bootloading attempt was successful and the
bootloader branches to the beginning of the user code
and the user code can execute.

 If the checksums do not match, the bootloader
executes a customizable user code to perform system
critical tasks, such as turning on a fan and so forth,
then enters the bootloading mode.

 It starts the bootloader USB device and waits until the
PC enumerates. The device has an interrupt IN
endpoint of 8 bytes and an interrupt OUT endpoint of
8 bytes. When enumeration is complete, the
bootloader waits for a 64-byte packet containing a 10-
byte bootloader key from the host.

 If, due to some reason such as power transient, the
previous bootloading failed, then the checksum
verification fails and the program enters the
bootloading mode.

 Upon receiving a valid bootloader key from the host,
the bootloader responds with a status byte informing
the host that it is ready to receive the FLASH image.

 The host sends the user code in 64-byte packets with
some encoding bytes (explained in a later section).

 The bootloader writes the user code to the Flash.
When all the Flash pages are written successfully, it
performs a Flash verify operation and then performs a
software reset to start the user code.

[+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_1

AN6075

The bootloader can also be entered from the user code.
For this, the application has a command that is sent to the
USB device while the application is running. Upon
receiving this command over the application USB
interface, the main application must stop all the resources,
stop the USB, and then call the EnterBootLoader function.
When the bootloader is entered, the bootloader device
enumerates and the bootloading operation listed above is
performed. The bootloader can also be entered by
checking for some hardware status such as a switch.
Upon sensing the switch press, the EnterBootLoader
function is called. This bootloader function can also be
called upon the reception of certain requests from the
host.

Memory Map
The memory map is shown in Figure 1.

The bootloader resides at Flash location 1300h. This is so
the development of user code can be done with minimum
modifications to the project settings.

The flashsecurity.txt file needs the following modifications:

 All Flash blocks from 76 to 126 that contain the
bootloader are write protected and have a setting of
W.

 The first two blocks that contain the reset vector and
the USB vectors are also write protected with W. This
protects the reset vector and the USB vectors from
corruption.

 Block 127 contains the Flash checksum of the user
code in the last two bytes (1FFEh and 1FFFh). This
block is set to field upgrade mode, R.

 The protection level for all the other blocks is set to
field upgrade, R, so that the user code can be written
to them.

As the first two blocks are write protected, the interrupt
vectors in these blocks are to be mapped to another
unprotected location. The interrupt vectors are relocated to
80h. In the boot.tpl file, ljmp instructions are placed to
branch to the corresponding relocated vector. In the
relocated vector, the command such as
@INTERRUPT_25 is placed so that the application build
process automatically places the name of the respective
ISRs at the relocated address.

Following the relocated vectors at 100h, there are two
blocks reserved for the application USB descriptors.
These blocks are located at this fixed location so that the
bootloader finds them when a new image is written to
Flash. The allocated memory for the descriptors is
changed by adjusting the following line in custom.lkp: -
busb_desc:0x100.0x2FF. You must then change the
ORG point for the following area called start from 300h to
a new value to enlarge the descriptor area. Reducing the
area conserves memory if the descriptors are reduced in
size.

The address of __Start follows the descriptor table in the
area called start.

Figure 1. Bootloader Memory Map

 0000h
 Modified Reset Vector and ISR

0080h

 User Code

1300h

 Bootloader Code

 1FC0h
Checksum Page 1FFFh

Bootloader Descriptors
The file bl_descr.asm contains the descriptors for the
bootloader. Before releasing the initial enCoRe II image,
the bootloader descriptors are modified to contain the
proper VID or PID to meet the customer’s needs. There
are a few extra bytes in the bootloader section of memory
for these descriptors to expand for different string lengths.
Once the code is released, these descriptors cannot be
updated via the bootloader protocol.

Application Descriptors
The application descriptors are updated using the USB
Setup Wizard. This is done by right clicking on the USB
user module in the Device Editor. When code generation
is executed, the descriptors are generated and placed at
100h during linker execution.

December 4, 2007 Document No. 001-17190 Rev. *A 2

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_2

AN6075

USB Interrupt Vectors
As the USB interrupt vectors are shared by the bootloader
and the application, there needs to be some mechanism
by which the currently running configuration is checked
and the proper ISR executed. For this, the bootloader
contains the interrupt vectors for the USB interrupts.
boot.tpl is modified to redirect some of the USB interrupts
to USB handlers in bootloader. The USB handlers check
for a 2-byte bootloader signature. This signature is stored
in RAM. If the sequence of values in these locations
matches the signature sequence defined in the
bootloader.inc file, then the interrupt is redirected to the
bootloader ISR. If there is no signature found, it means
that the user application is running and so control is
transferred back to the newly relocated user code vector in
boot.asm.

The signature sequence is modified by changing the
SIGNATURE0 to SIGNATURE1 constants in
bootloader.inc.

The signature locations in the RAM are updated with the
signature whenever the bootloader is entered either after a
flash verification failure or from the user code.

Sequence of Operation
The sequence of operation is as follows:

1. Upon reset, RAM is checked for presence of a
bootloader signature. This determines if the
bootLoaderVerify has been reached after a power on
reset or after the user code has generated a reset to
enter bootloader. If the bootloader has to be invoked
from the user code, the user code calls a function that
programs the signature and generates a reset.

2. If RAM does not contain the signature, the checksum
of the entire user code is compared with the
checksum stored in 1FFEh and 1FFFh. If the
checksums match, then the previous bootloading
operation was successful and the program branches
to __Start, from where the user code executes.

3. If the checksums do not match, then there is no user
code present, or the previous bootloading operation
failed. In this condition, the program writes the
bootloader signature to RAM and enters the bootload
mode, where the bootloader USB interface is started.
The bootloader then waits for the host to enumerate
and the program waits for a 10-byte bootloader key
from the host.

4. Upon receiving a valid 10-byte bootloader key, the
program waits for a 64-byte data packet from the
host. During this wait, a timeout variable is
decremented. When the host does not send a data
packet within this timeout period, the program resets
and again waits for the bootloader key. The timeout
can be modified by changing the BOOT_TIMEOUT
constant in bootloader.inc. The sleep timer is used for
timing. It is configured to run at 8 Hz. So for a timeout
of 1 second, the value of BOOT_TIMEOUT is 8. For a
BOOT_TIMEOUT value of 255, a timeout of 32
seconds is achieved.

5. When a 64-byte packet is received from the host, the
bootVerifyPacketChecksum function is called to verify
if the packet was received without error. If there is no
packet checksum error, the operation indicated by the
bootloader command (byte 2 of the 64-byte packet) is
performed on the data. The host can send the
following commands: Flash Write, Flash Verify, and
Bootloader Exit. When the operation completes, a
status byte is constructed to let the host know the
status of the operation. The host waits for the status
byte to be available in the IN endpoint before sending
further data. If the host issued a Bootloader Exit
command, then the user code checksum is verified
and if valid, the BOOTLOAD_DONE flag is set.

6. The program then waits for the host to read the status
byte. If the host does not read the status within the
timeout period, the wait is timed such that a reset is
performed.

7. After the host reads the status, the program checks
the status byte to see if there was any error in the
previous operation. If any error is detected (such as
flash write error or packet checksum error), the
program generates a reset.

8. Then the program checks if the BOOTLOAD_DONE
flag is set in the status register. This flag indicates
successful completion of the bootloading operation. If
the flag is set, the program branches to __Start, from
where the user code executes.

December 4, 2007 Document No. 001-17190 Rev. *A 3

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_3

AN6075

10-Byte Bootloader Key
The following is the composition of the 10-byte bootloader
key:

Bootloader Mode (0xFF)

Bootloader Command

KEY1

KEY2

KEY3

KEY4

KEY5

KEY6

KEY7

KEY8

The first byte is always 0xFF. The second byte is the
bootloader command. The following commands are
available:

 38h – Enter Bootloader mode

 39h – Perform Flash Write Operation

 3Ah – Perform Flash Verify Operation

 3Bh – Perform Flash Verify and Exit Bootloader

The user can add other commands and modify the
bootloader code to easily implement them.

64-Byte Data Packet
The construction of the 64-byte data packet sent by the
host is as follows:

1 to 10: Bootloader Key

11 and 12: 16-Bit Block ID

13: Flag to indicate if the 32 bytes are the first half or
second half of the 64-byte page.

0 = First Half of Flash Page
1 = Second Half of Flash Page

14 to 45: 32-Byte Flash Data

46: Packet Checksum of Bytes 1 to 46

47 to 64: Filled with Zeroes

The first 10 bytes are the same as the 10-byte bootloader
key. The command byte has to be modified to the
corresponding code of the operation to be performed.
Bytes 11 and 12 contain the Block ID of the flash block on
which the operation is to be performed. Byte 13 is a flag
that indicates if the 32-byte data is the first or the second
half of the 64-byte Flash data. The next 32 bytes are the
actual Flash data. Byte 46 is the packet checksum of
bytes 1 to 45. Bytes 47 to 64 are filled with zeroes.

December 4, 2007 Document No. 001-17190 Rev. *A 4

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_4

AN6075

Error Code Register
The bootloader constructs an 8-bit error code for the host to read.

Bit Number 7 6 5 4 3 2 1 0

Bit Name IVCERR IVKERR BM CCERR FPERR FCERR IVERR BCOK

IVCERR Invalid Command Error. Set when the command is not recognized.

IVKERR Invalid Key Error. Set when the 10-byte bootloader key received is invalid.

BM Bootload Mode. Set when the program is in bootload mode.

CCERR Communication Checksum Error. Set when checksum of received packet does not match the packet checksum. Also
set when the first byte is not FFh.

FPERR Flash Protection Error. Set when the Flash block on which write operation is requested is protected.

FCERR Flash Checksum Error. Set when the verification of Flash block indicated by Block ID failed.

IVERR Image Verify Error. Set when Flash image verification from block 2 to 75 failed.

BCOK Boot completed successfully (Boot Completed OK). Set when the boot operation completes successfully.

Important Functions
The bootloader code is written in modules so that
modification is easy. Functions are also written that
perform specific tasks and modify specific bits in the Error
Code register. The main bootloader calls these functions
and tests the bits in error code to determine the status.

 bootLoaderVerify: This is the entry point of the
bootloader. The program first checks if RAM has the
Bootloader signature. If a valid signature is found, the
program directly branches to bootloaderStart. If there
is no valid signature, the bootVerifyFlashChecksum
function is called to verify the Flash image. Then the
program checks the status register to find if the Flash
checksum was successful. If successful, it branches
to __Start for the user code to execute, or it calls the
bootUserCode function where custom code performs
the system critical tasks. Then it branches to
bootLoaderStart where the bootloader operation
starts.

 bootUserCode: This function can be modified by the
user to implement system critical tasks such as
turning on a fan or tripping relays in case of boot
failure.

 bootProcessFlashPage: This function processes the
64-byte packet received from the host. First it calls the
bootVerifyBootLoaderKey to check the first 10 bytes
for a valid bootloader key. If the key is valid, it
performs the corresponding operation indicated by the
command byte. Then it checks if the Flash packet is
the first or the second half of the block. If the data is in
the first half of the Flash page, it stores these 32
bytes in a buffer. If the data is in the second half of
the Flash page, it stores the data in the buffer and
then performs the operation requested by the
command byte.

 bootVerifyBootLoaderKey: This function checks the
KEY1 to KEY8 bytes of the 10-byte bootloader key
with a predetermined pattern. If the patterns match,
the IVKERR bit in the Error Code register is cleared. If
the patterns do not match, the IVKERR bit is set.

 bootVerifyPacketChecksum: This function
calculates the checksum of the received packet from
bytes 1 to 45. Then it compares this calculated packet
checksum with the packet sent by the host in byte 46.
If the checksums match, the CCERR bit of the Error
Code register is cleared. If the checksums do not
match, the CCERR bit is set.

 bootVerifyFlashChecksum: This routine calculates
a two-byte checksum for the user code. The starting
address of the user code is defined by the
START_ADDRESS constant. The number of blocks
of user code is defined by the
NUMBER_OF_BLOCKS constant defined in
bootloader.inc. Then it compares this checksum with
the checksum stored in locations 1FFEh and 1FFFh.
If the checksums match, the IVERR bit in the Error
Code register is cleared. If the checksums do not
match, the IVERR bit is set.

December 4, 2007 Document No. 001-17190 Rev. *A 5

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_5

AN6075

Flow Charts
The following flow charts for key code modules provide additional information about the operation of the bootloader.

Reset Operation
This function checks to see if the signature is present in RAM. If it is present, then it directly branches to bootLoaderStart. If no
signature is present, it calls the flash verify function. If the Flash checksum is valid, it starts the user code; if not, it enters the
bootloader.

 Reset

Call
bootVerifyFlashChecksum

IVERR bit Set? Jump to __Start

Yes Signature present in
RAM?

Execute
bootUserCode

Jump to
bootLoaderStart

Yes

No

No

December 4, 2007 Document No. 001-17190 Rev. *A 6

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_6

AN6075

bootLoaderStart
This function initializes resources. It starts the USB and waits for enumeration to complete. It then waits for the 10-byte
bootloader key. Upon receiving a valid bootloader key, it sets the Bootload Mode flag in status register and enters bootloader.

Clear bootErrorCode
Initialize CPU hardware

Yes

TimeOut?

Set IVCERR bit in Error
Code register

Command = Enter
Bootload?

Enable USB interface
Wait for enumeration to complete

10-byte key
Received?

byte #1 = FFh?

No

Verify Boot Loader key

No

IVKERR = 1?

Set CCERR bit in Error
Code register

Has Master
read the error

code?

Yes

Yes

Yes

No

No

No

No

Yes

Yes

To bootLoader

bootLoaderStart
 Reset

December 4, 2007 Document No. 001-17190 Rev. *A 7

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_7

AN6075

bootLoader
This function performs the bootloader process.

bootLoader
Boatload Successful

A
Write Signature to RAM

No

No

No

No

No

No

Time out?

Has host read
the error

Yes

Yes

Yes

Yes

64 bytes received
and processed?

Time out?

Yes

Has host read
error code?

Time out?

Yes
Any Errors?

Yes

A Reset

Execute Error
Handler Code

No

No

BCOK = 1?

Bootload Successful:
Disable USB
Disable Interrupts
Clear the signature bytes
Generate Reset

Yes

December 4, 2007 Document No. 001-17190 Rev. *A 8

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_8

AN6075

bootProcessFlashPage
This function processes the 64-byte data packet received from the master.

bootProcessFlashPag

Read Command from packet
Read Block ID from packet

Yes

Bootloader Key
Ok?

Command =
Bootload

Yes

Flash Verify
Ok?

Set BCOK flag

Return

Packet
Checksum

Store the second half of
Flash data to a buffer

No

Yes

Write data to Flash
Verify written data
Update Error Code

No

No

Yes

No

Yes
Store the first half of
Flash data to a buffer

First half of Flash
Data?

No

No

Yes

Command =
Flash Write?

Return

Yes

Return

Verify Flash block
indicated by blockId

and update Error

Command =
Flash Verify?

No

Return
Set ICERR flag in

Error Code register

December 4, 2007 Document No. 001-17190 Rev. *A 9

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_9

AN6075

Allocation of RAM and Location of
USB APIs
The allocation of RAM and location of USB APIs is as
follows:

1. The relocatable code start address in the Linker tab of
the Project >> Settings menu is set to 340h to
accommodate the new ISR table and application
descriptors. This changes if the application
descriptors grow significantly.

2. All the variables necessary to perform the Flash verify
operation and the bootloader operations are allocated
in RAM, overlapping with user RAM. The allocations
are done with absolute address so as not to cross
with the variable allocation of USB user module. The
address location is set in the custom.lnk file with the
following line: -bBootloader_RAM:0x2F. The RAM
address comes at the end of USB RAM. Consult the
<output>.mp file after a build and look for
__usbRAM_end to identify this address. When the
bootloader is running, the user code is not functional
so the memory space may be shared.

USB Interface
The USB interface used for the bootloader is a vendor-
specific class. It has two endpoints - one INT IN endpoint
that is 8 bytes and one INT OUT endpoint that is 8 bytes.
The IN endpoint reads the status of the bootloader and the
OUT endpoint writes the Flash data to the bootloader. The
bootloader waits for multiple packets on the bus to build
the 10-byte key and 64-byte buffers.

Creating a Project with USB
Bootloader
The steps to create a project with the USB bootloader are
as follows:
1. The associated project Bootloader_Template has all

the bootloader code and the USB code necessary for
the bootloader.

2. The end application can be built on this template.

3. Make a backup copy of the USB user module in a
directory such as <PSoC Designer Installation
directory>/data/enCoRe/USB. Replace the USB user
module with the USB user module provided in the
Bootloader_Template. It is necessary to replace the
Makefile located at <PSoC Designer install
dir>/tools/Makefile. Make a backup copy and replace
the original file with the file in the
Bootloader_Template. The new Makefile only has two
changes. They are at lines 61 and 62 and ensure that
USB data is linked at address zero:

#DATARAM=-bdata:0.0xFF
DATARAM=-busbRAM:0.0xFF
The ReadMe file provided with the
Bootloader_Template files provides similar
instructions.

4. To create a new bootloader project, go to New Project
>> Clone. Select the Bootloader_Template project as
the source.

5. Develop the application using PSoC Designer.

6. During the development phase, set the constant
DEBUG in the bootloader.inc file to 1. This bypasses
the Flash checksum verification and the subsequent
bootloader entry and directly branches to __Start.
When the application code is verified, set this
constant to 0 to implement the bootloader operation.

7. In main code, add a mechanism to enter the
bootloader. You can do this either by receiving a
command over the application USB interface or by
some other hardware implementation such as a
switch press.

8. Once the Enter Bootloader command is received,
stop all user modules in the application, stop the USB,
disable the interrupts, and call the EnterBootloader
function. This function writes the boot signature to
RAM and executes an ljmp to 0x0000. The first
instruction at 0x0000 is the ljmp BootLoaderVerify. In
the BootLoaderVerify function RAM is checked for the
bootloader signature. If the signature matches, then
the user code has requested the bootloader
operation. So, the Flash verify operation is skipped
and the bootloader is entered directly. If the reset is
due to a POR or XRES event, then RAM does not
have a valid bootloader signature so the normal
operation of Flash verification and user code
execution (if Flash verification is successful) and so
on takes place. The EnterBootloader function is in the
EnterBootloader.asm file that is present in the
Bootloader_Template.

9. When all the above steps are complete, compile the
code and load the device with the program.

10. When the program is downloaded to the device for
the first time, the locations 0x1FFE and 0x1FFF do
not contain the checksum. So the user code does not
execute. When the user code is downloaded using
the bootloader, the proper checksum is written to
locations 0x1FFE and 0x1FFF and the user code
starts executing.

11. If you want the program to run the very first time
without the process of bootloading, the checksum of
the user code is calculated and hard coded to 0x1FFE
and 0x1FFF in the project. For this, there is a utility
called HexFileChecksum that is used. After the
project development is complete and the project is
verified and finalized, copy this application to the
output directory and run. The application asks for the
hex file name. Specify the output hex file of the
project. Then enter Start Block as 2 and End Block as
75. The application calculates and displays the
checksum.

December 4, 2007 Document No. 001-17190 Rev. *A 10

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_10

AN6075

12. Now, modify the following code in bl_bootloader.h.

#pragma abs_address 0x1FFE
const int Checksum = 0xCCCC;
#pragma end_abs_address

CCCC is the checksum displayed by the
HexFileChecksum utility.

Program Flow for Host Device to
Download Data to User Module
1. Send a 10-byte bootloader key to the bootloader.

2. Read the Error Code register from the bootloader.
The Error Code register indicates the status of the
bootloader.

13. This places the checksum in locations 0x1FFE and
0x1FFF and the user code starts executing the first
time.

3. Check if the BM flag is set.

4. Start sending the 64-byte Flash image data.

5. Read back the Error Code register to find the status of
the completed operation.

6. Repeat steps 4 and 5 until all the Flash image data
and Flash checksum data is sent.

7. Send the Bootload Complete command.

8. Read Error Code register and check if BCOK flag is
set.

If BCOK flag is set, it means that the bootloader has
completed successfully. The bootloader then resets and
the user code starts.

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation number and
revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer and enCoRe are trademarks of Cypress
Semiconductor Corp. All trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

December 4, 2007 Document No. 001-17190 Rev. *A 11

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-17190_pdf_p_11

	Application Note Abstract
	Introduction
	Bootloader Operation
	Memory Map
	Bootloader Descriptors
	Application Descriptors
	USB Interrupt Vectors
	Sequence of Operation
	10-Byte Bootloader Key
	64-Byte Data Packet
	Error Code Register
	Important Functions

	Flow Charts
	Reset Operation
	bootLoaderStart
	bootProcessFlashPage

	Allocation of RAM and Location of USB APIs
	USB Interface
	Creating a Project with USB Bootloader
	Program Flow for Host Device to Download Data to User Module

