
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13259 Rev. *B Revised October 2, 2007

1. USBFS Bootloader

Copyright © 2007. Cypress Semiconductor. All Rights Reserved.

Note. Expect an expansion of Flash and RAM when adding additional interfaces, HID classes, and other
USBFS extensions. When the bootloader is in actual operation it makes use of a large amount of RAM to
download program data but then frees it up upon exit. Since operation of the bootloader precludes
application operation, this RAM requirement is essentially invisible. ROM/Flash usage includes a complete
USB interface. Additional code used for the bootloader function is only an additional 2K-bytes above the
normal requirement of about 1.9K bytes of code used by USB itself.

Features and Overview
• Flexible memory map
• Device reprogramming without engineering tools
• Product resident reprogramability
• Communication interface integrated to minimize code overhead
• Field deployment of firmware upgrades
• USB Full Speed device interface driver
• Support for interrupt and control transfer types
• Setup wizard for easy and accurate descriptor generation
• Runtime support for descriptor set selection
• Optional USB string descriptors
• Optional USB HID class support

USBFS Bootloader Data Sheet

BootLdrUSBFS vX.Y

Resources
PSoC® Blocks API Memory (Bytes) Pins (from

Single Port)Digital Analog CT Analog SC Flash RAM
CY8C24x94, CY8CLED04,
CY7C64215 HID support

0 0 0 4982 46 2

CY8C24x94, CY8CLED04 0 0 0 4516-4982 46 2

USB

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_1

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 2 of 49

USBFS Device Block Diagrams

Functional Description
The USB bootloader supports a fully functional device reprogramming ability with built in error detection
and an industry standard communication interface.
Multiple USB device descriptors are co-resident in the system to allow a running device to be commanded
to self reconfigure and reprogram. Core USB functions are maintained during the reconfiguration to
support host communication while program data is being transferred and stored. At the end of the
reconfiguration process the device resets itself, verifies the new program, and automatically executes it.
The USBFS User Module provides:

• A USB full speed Chapter 9 compliant device framework.
• A low level driver for the control endpoint that decodes and dispatches requests from the USB host.
• A USBFS Setup Wizard to enable easy descriptor construction.
You have the option of constructing an HID based device or a generic USB Device. Make your choice
when you select the USBFS User Module. If you want to change your choice after initial selection, you
must delete the existing instance of the USBFS User Module and then add a new instance.
The bootloader portion of the user module provides a method to organize the memory map and major
code functional blocks into areas that are compatible with device reprogramming. The memory
organization of the project will be considerably different from that of a conventional PSoC Designer
project. Modifications to the memory map are necessary to meet the minimum device functionality
requirements while the device application is being reprogrammed. Effectively, a project incorporating a
bootloader contains two independent programs supporting different functions. A map of the memory is
shown below.
Once a project incorporating a bootloader is deployed, the memory locations highlighted in red are never
reprogrammed. The application code and the checksums may be altered by running the bootloader. With
the exception of the first two blocks of program space, you can move the other major functional groups of
code to locations you determine.
In addition to the parameters that are adjusted within the user module, two other important features are
provided. A built in set of tools can be accessed by right-clicking on the bootloader icon in the device
manager view. Additionally a host application (including source code) is provided along with instructions
on how to set it up and use it on a system to demonstrate bootloader capability.

D-
D+

Simple USB Application

VCC
D -
D+

GND

VCC

U
S
B

24Ohm

24Ohm

CY8C24x94
CY7C64215

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_2

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 3 of 49

Further information about USB, including specifications, resources examples, and forums regarding use of
USB can be found at www.usb.org.

Quick Start

• Review this data sheet. A successful implementation of a bootloader project requires an understand-
ing of this information.

• Add the user module to a project.
• Place the user module, selecting either a HID or NON-HID class application.
• Right-click on the user module icon. Select Boot Loader Tools. Select Get Files. When finished, the

boot.tpl, custom.lkp, and flashsecurity.example files should be in the project root directory.
• Right-click on the user module icon. Select Device: Application USB Setup Wizard… Verify that

there is at least one string in the Strings area. There should be one present by default, if not add at
least a one character string. select OK.

• Right-click on the user module icon. Select Device: Bootloader USB Setup Wizard… It is not neces-
sary to make any modifications. Select OK.

• From the Project > Settings > Linker dialog box, set the Relocatable code start address to 0x13c0
to avoid attempting to create application code in the bootloader ROM area. If these settings leave
unused ROM areas the settings can be optimized later. The linker gives rather un-helpful messages
when it encounters memory overlap errors. Initial project development will be less frustrating in the
long run if linker problems can be kept to a minimum.

• Generate source code and compile the project.
• Review the output file <project>.mp to and <project>.hex to see how the project has been built.
• After creating a project that compiles without errors go to the Sample Firmware Code section. Modify

and adapt the code provided in the sample.

Theory of Operation
Creating a project with a bootloader requires several non-standard modifications to the PSoC Designer
standard model. To facilitate this, the bootloader user module provides customized files and specialized
tools to assist you in bootloader project development. The special tools are accessed by switching to the
Device Editor view and right-clicking the USBFS Bootloader User Module icon. In addition to the tools and
files provided as part of the user module, a host application example is provided as part of the user
module installation that can demonstrate basic capability of the bootloader. This PC based application and
source code for Microsoft Visual Studio® 2005 is contained in a .zip file in the installation directory of this
user module.

<install_path>\Cypress MicroSystems\PSoC Designer\Examples\BootLdrUS-
BFS\USB_BootLoaderHostApp/…

Use of this application requires installation and limited customization of a generic USB driver capable of
supporting the host demonstration application. This file is supplied as part of the installation and may be
registered upon initial operation of a bootloader device. Use windows manual installation method to
specify the location of the driver contained in the “\USB driver” directory of the location specified above.
The included driver.inf file should be modified to corrrectly specify the VID and PID of your chosen
bootloader device. Note that this change must be made in two locations within the driver.inf file, one
location is near the top of the file and the second is near the bottom.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_3

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 4 of 49

USBFS Bootloader Memory Organization

Non-upgradable
Bootloader Section
(except checksums)

Interrupt Vectors
(non-relocatable)

Application

Field Reprogrammable

Entire Program
Memory Space

Bootloader Code

Bootloader Checksum Block

First Programm Address of
Application

(Specified in parameters)

Interrupt Vectors
(relocatable)

Boot.asm / Configuration code

__Start:
(Application Checksum Verification)

Bootloader Checksum Function

Bootloader Start

Bootloader Entry API
(never returns)

Field Reprogrammable
(at Constant Location)

Bootloader Memory
Organization

Non-upgradable
(Always blocks 0-1)

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_4

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 5 of 49

Overview
PSoC Designer makes use of standardized files, built in data about the part family, and attributes of
specific devices to create compilable projects and correct API definitions. A project with a bootloader
requires a memory map that is considerably different from that of a standard PSoC Designer™ project.
Selection of the memory areas represents a core design decision that will be maintained throughout the
life of the design. While a project without the requirements of a bootloader simply allows the compiler and
linker to allocate RAM and ROM, a bootloader must group RAM and ROM in specific areas so that the
program will not crash while a new application is being loaded.
In the memory layout above there are four key areas of ROM that are managed:

• The first is blocks 0 and 1 of ROM. These blocks contain critical interrupt vectors and restart vectors.
Since it is nearly impossible to control read access to these blocks by any operating device, they are
never erased and re-programmed. The first two blocks of ROM should not be modified and cannot be
placed in any other location.

• The second area of memory to be defined is the area containing the bootloader code itself. This area
may be placed at different ROM locations but once the project or device containing the bootloader is
deployed, this area is not re-programmable and cannot be field upgraded.

• The third memory area is the application area. The application area contains a set of interrupt vectors
that are reprogrammable with the condition that they are never accessed when they are being re-writ-
ten. Consider the problems that a program might encounter if executing code were to be changed dur-
ing execution. This requirement can easily be met by turning off all application interrupts during
bootload. This is automatically done when the bootloader is started. In addition to interrupt vectors, the
application area also contains most of the device bootcode and all of the foreground runtime applica-
tion.

• The fourth area of ROM defined is the checksum area. This area contains important data that the boot-
loader software uses to download and verify the foreground application. The checksum area contains
the start address and size in blocks of the foreground application. The first two bytes of the checksum
block are a checksum of the checksum block itself and the last two bytes are the checksum of the runt-
ime application. The structure of the checksum block contains space for you to define your own data in
addition to that used by the bootloader. This structure is exposed as a C-structure definition and may
be modified as long as data used by the bootloader utility is not changed or repositioned within the
block.

If your application has some code that must always be operational, including during a bootload process,
the design of the Bootloader User Module can allow sufficient customization to accommodate this. The
best way to accomplish this is to add this code to the bootloader ROM area using the assembler AREA
directive. Any RAM used by your code during the bootload process needs to be added to the RAM area
defined for the bootloader.

Definition of Memory Areas in the User Module Parameters
The parameters available in the USBFS Bootloader User Module allow you to customize where major
program elements are placed in ROM. The defaults in the user module should provide a working initial
setup. You should use these settings until a complete project is successfully compiled. Once you have a
compiled project, you can look at the program memory map and .hex output file to determine how to
optimize your program structure. If you reconfigure the parameters and accidentally create memory area
conflicts it may be difficult to determine the correct locations without a valid memory map to look at.

Bootloader Utility
The bootloader user module provides a complete utility that coexists with a your foreground application.
When the device is started or reset, the bootloader utility is always invoked. Once invoked at system

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_5

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 6 of 49

startup the bootloader will validate the foreground application by calculating a checksum on the
foreground application ROM area. The calculated checksum will be compared to the one stored in the
checksum block (which is created with the application). If the two checksums are equal, the bootloader
utility will allow the foreground application to execute. If the two checksums are not equal, the bootloader
enters a wait loop and waits for a host application to download a valid application. It also enables its own
USB susbsystem to allow the host to transmit data. When the host system observes this interface is
enabled, it may choose to execute its own set of applications. Although a default USB descriptor is
provided that will run successfully with the examples provided, you may choose to alter any of the
parameters on the host or PSoC device. Source code for VisualStudio 2005 is included for the host
application. An example application and source code is provided in the installation directory for this user
module:

<install_path>\Cypress MicroSystems\PSoC Designer\Examples\BootLdrUS-
BFS\USB_BootloaderHostApp\

Bootloader Tools
Several tools are available from the shortcut menu and are accessed by right-clicking on the user module
icon.
Special versions of boot.tpl and custom.lkp can be placed in the project or removed. From the main menu
select Tools > Restore Default Boot files. If you remove the USBFS Bootloader User Module, the option to
restore the default boot files moves to the File menu in PSoC Designer.
Generate Checksum – Once your project builds correctly you can use the bootloader tools to create and
auto-validate checksums. Upon entry into the bootloader tools selection screen, project code is generated
and a complete compile of the entire project is executed. Then a checksum calculation is performed on the
resulting hex file which is compared to a checksum stored by the user module. If the checksums do not
match, a message is displayed. You can recalculate and store a new checksum if you wish. If build or
compile errors occur in the automated generate and build invoked by the Bootloader Tools, and no hex file
is successfully created, an error will be reported but no error debug information will be displayed in the
build dialog of PSoC Designer. Error reporting is suppressed when the generate and build is invoked from
the automation interface. To debug build errors it will be necessary to use the conventional build and
generate process external to the bootloader tools menu.
Generate dld file – This tool item will derive a download file from the hex project output file. This file
contains only the hex blocks that will be reprogrammed by the bootloader including the checksum block.
The Host Demonstration application is capable of reading this file and downloading it to a working project
incorporating a bootloader. This download file can be deployed to a field application to upgrade a PSoC
device.

Checksum Semiautomatic Generation
Once your project can be built and compiled without errors, the application checksum must be generated.
The application checksum is created using one of the utilities available by right-clicking on the Bootloader
User Module Icon in the Device Editor view and selecting Bootloader Tools. An application checksum
(previously calculated or default) is stored as a hidden user module parameter, as soon as the Bootloader
Tools menu page is invoked, any previous checksum is validated against the one calculated on the current
output\<prj_name>.hex file. Necessarily, the checksum cannot be generated prior to a successful compile.
Once a checksum is created, it must be integrated into the compiled files. This requires a second compile.
Last, to validate the block of code that the checksum is stored in, a checksum on that block itself is
provided. This requires a third compile. Multiple compiles are required because the built-in checksum
parameters are pre-compile elements that can only be calculated post-compile.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_6

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 7 of 49

Special Files Provided
Two important files are provided by accessing the Bootloader Tools menu and selecting Get Files. A
device specific boot.tpl file is placed in the main project directory along with a file called custom.lkp and a
pre-defined flashsecurity.txt file. A brief description of the purpose of each file follows: The original version
of each of these files is placed in the project backup directory.
Boot.tpl. – This file contains a relocatable and non-relocatable definition of interrupt vector tables and
device specific boot setup that is specified in a relocatable area of ROM rather than the fixed location
specified in the standard boot.tpl file.
Custom.lkp – When source generation takes place, the custom.lkp file is populated with auto-generated
ROM areas for major code blocks as defined in the user module parameters. Do not modify the code
blocks in the custom.lkp file, named:

• -bSSCParmBlk – Contains specified critical RAM used during flash operations.
• -bBootloader
• -bBLChecksum
• -bUserAPP – Changes to any of the last three lines will result in an error dialog indicating the inability

of the project to detect the correct custom.lkp file.
During code generation each of the last three lines of the custom.lkp file are re-written under control of the
code generation software. Changes made within or below the last three lines will either cause an error or
simply be lost. Changes may be made to the rest of the custom.lkp file. For the purposes of debugging
the memory allocation of the project, it is possible to comment out all three lines mentioned above by
inserting a semicolon in the first space. This will allow the linker to place code automatically and may be
helpful in determining application code size requirements.
Flashsecurity.example – This is a default file that is laid out according to the default memory map specified
by the default User Module parameters. For final project creation this file may need to be modified by hand
according the final memory may and application size for the deployed device and firmware. Note that this
file is NOT directly used by PSoC Designer. If for some reason the project is updated or tagged for out of
data files, the flashsecurity file is not overwritten. The provided file, flashsecurity.example, may be edited
and renamed as necessary.
Flashsecurity.txt – This is a default file provided by PSoC Designer. The data in this file is added to the
.hex file and instructs the device how to manage access to the internal ROM memory. If memory blocks
are protected from write access, the bootloader will not work. Since read and write protection is built into
the programmed PSoC this file must be correctly configured before the first deployment of the bootloader.

USB Descriptors
The standard USBFS user module incorporates a tool to develop the USB descriptor used in the runtime
application. The Bootloader adds an additional tool to allow development or modification of the default
USB_Bootloader descriptor. These two descriptors are stored in different areas of ROM. The descriptor for
the foreground application may be upgraded with the application. The USB_Bootloader descriptor is part
of the bootloader ROM area and cannot be upgraded in the field. To maintain core functionality, key USB
code is also placed in the bootloader ROM area. Again, this is to overcome the problem of executing code
that is being re-written (never a good programming practice).

USB Compliance for Self Powered Devices
In the USB Compliance Checklist there is a question that reads, “Is the device’s pull-up active only when
VBUS is high?”

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_7

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 8 of 49

The question lists Section 7.1.5 in the Universal Serial Bus Specification Revision 2.0 as a reference. This
section reads, in part, “The voltage source on the pull-up resistor must be derived from or controlled by the
power supplied on the USB cable such that when VBUS is removed, the pull-up resistor does not supply
current on the data line to which it is attached.”
If the device that you are creating will be self-powered, you must connect a GPIO pin to VBUS through a
resistive network and write firmware to monitor the status of the GPIO. Application Note AN15813,
Monitoring the EZ-USB FX2LP VBUS, explains the necessary hardware and software components
required. Use the USB IO Control Register 1 (USBIO_CNTL1) to control the D+ and D- pins.

Bootloader VID and PID
For final deployment of a USB device, a Vendor ID and Product ID must be assigned. These are assigned
by the USB standards organization upon request by USB developers. For development purposes, any VID
and PID that does not conflict with existing VIDs and PIDs on a host may be used to debug a project.
However for the purposes of project release or deployment developers may not use VIDs and PID's
assigned to Cypress or Cypress Microsystems.

Block Entry of Parameters
All memory parameters are entered in the bootloader in blocks numbered from 0x00 through 0xFF for 16K
devices; 0x00 through 0x7F for 8K devices; and 0x00 through 0x1FF for 32K devices. Although this is not
the most convenient format to enter memory addressees, it does prevent accidental assignment of partial
block addresses to different sections of the memory map. The PSoC devices in question are only capable
of storing 64byte flash blocks (128byte for the 20x45) and this is a simple way to maintain the boundaries
between different sections of the project code correctly.

Host Application Debugging
An application with a bootloader built in may be difficult to debug. Because of this there are additional
adjustments that can be made within the bootloader user module files. These are contained in the file
BootLdrUSBFS_Bt_loader.inc. There is a section containing the following equates:

BOOT_TIMEOUT: EQU 40 ;set to zero to make timeout infinite
CHECKSUM_ON_CKSUMBLK: EQU 1 ;Apply a checksum to the checksum block

;(adds compile steps and code to verify)

The BOOT_TIMEOUT equate allows a user to lengthen, shorten, or make infinite, code that will timeout if
no communication is received from a host once a user command calls the bootloader. This may be useful
when developing or debugging the host application.
The second equate controls the use of the checksum inside the checksum block. If this equate is set to 0,
no verification is done on the checksum contained inside the checksum block. A checksum verification is
still performed on the entire user application area as defined in the user module parameters.

Timing
The USBFS User Module supports USB 2.0 full speed operation on the CY8C24x94 and CY7C64215
devices.

[+] Feedback [+] Feedback

http://www.cypress.com/design/AN15813
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_8
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_8

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 9 of 49

USBFS Setup Wizard
The USBFS Bootloader User Module does not use the PSoC Designer parameter grid display for
personalization. Instead, it uses a form driven USBFS Setup Wizard to define the USB descriptors for the
application. From the descriptors, the wizard personalizes the user module.
The user module is driven by information generated by the USBFS Setup Wizard. This wizard facilitates
the construction of the USB descriptors and integrates the information generated into the driver firmware
used for device enumeration. The USBFS Bootloader User Module does not function without first running
the wizard, selecting the appropriate attributes, and generating code.

Parameters
The USBFS Bootloader consists of a bootloader utility integrated with a fully functional USBFS user
module.
Parameters defined for the bootloader allow the developer to define where major program blocks will be
located when the program is compiled and linked.

TWO_Block Relocatable_Interrupt_Table
Two blocks of the ROM area are used to define a set of interrupt tables that match the ones that are
always present in blocks 0 and 1 of PSoC ROM. These tables must remain located at the same point in
memory since the block 0 and 1 interrupt tables are re-directed here. These relocatable tables point to
relocatable interrupt vectors for the application program.
This parameter is also used by the Bootloader Tools to determine what blocks of code to process for a .dld
file and what blocks of code to calculate checksums on. This variable is propagated into the checksum
block for use when the bootloader utility automatically verifies the application checksum.
The default for this value is located immediately after the Bootloader application at block 0x4B/0x12C0.

ApplicationCode_Start_Block
This is the first block of code assigned to the user application. This code will be bootloadable. This
parameter is also used by the Bootloader Tools to determine what blocks of code to process for a .dld file
and what blocks of code to calculate checksums on. This variable is propagated into the checksum block
for use when the bootloader utility automatically verifies the application checksum.
The default value is 0x4D/0x1340.

Last_Application_Block
This is the last block of code assigned to the user application. This parameter is also used by the
bootloader tools to determine what blocks of code to process for a <prj_name>.dld file and what blocks of
code to calculate checksums on. This variable is propagated into the checksum block (after conversion to
an absolute address) for use when the bootloader utility automatically verifies the application checksum.
Once the application is completed this value may be reduced to save processing time during the
checksum operation and to avoid bootloading empty blocks of ROM. If an upgraded application grows,
this value may be increased to accommodate the larger code space requirement up to the limit of the
available ROM space
The default value is 0xFE/0x3F80.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_9
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_9

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 10 of 49

Application_Checksum_Block
This is the location of the Checksum storage block. This block may be rewritten if the application changes
but its location may not be moved without re-deploying the bootloader.
This block may not be placed within the application area since doing so would require that the application
be linked "around" the checksum block, which is beyond the capability of the current linker. For this reason
this block should be placed as far away from the application as possible where it will not be "in the way".
Possible locations are: a single block between the bootloader and the application or at one of the last
blocks of ROM.
The default value is 0xFF/0x3FC0.

Bootloader_Start_Block
This is the first block of the bootloader utility. Ordinarily this location never needs to be altered. In certain
cases though, moving it may be necessary to maintain compatibility with a currently implemented custom
bootloader.
The default value is 0x2/0x0080.

Bootloader_Size
This is the size in blocks for the bootloader application. Normally this size will not require adjustment. If a
user wished to add code to the bootloader he or she could increase this size to accommodate the extra
code. Other blocks below would have to be similarly adjusted.
The default value is 0x4A blocks in length.

Bootloader_Key
This is the key value prepended to the transactions sent to the bootloader application representing an
extra verification step to make sure the bootloader upgrade utility is not accidentally.
The default value "0001020304050607".

Flash_Program_Temperature_Deg_C
This is the typical programming temperature expected when the device is re-programmed. Programming
the device at different temperature than that specified in this parameter may adversely effect program
retention.
Matching the program temperature parameter to the actual temperature during bootload impacts memory
retention and maximum number of write cycles. PSoC implements a stronger flash write at colder
temperatures. Bootloading at significantly lower temperatures than the parameter setting may result in
reduced memory retention. For this reason, you should take precautions to ensure that the bootloader is
never operated more than 20 degrees C from the value in this parameter. Refer to the Cypress device
specification for more information.

ICE_Debug_Flash_DISABLE
This parameter is used to overcome an anomaly in the debug behavior of the ICE when executing an SSC
while the USB resource is turned on and operating. Whenever an SSC operation is called (and it is during
a flash write), the USB SIE will be disabled. Disabling flash write allows an application to be completely
tested without actually writing code to flash.
The default value is "Flash Write DISABLE".

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_10
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_10

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 11 of 49

BootLdrUSBFS_ver
This is the version of the bootloader. It is currently unused by internal firmware but is available as part of
the Checksum block. It may be set by the user and used to verify the correct version of bootloader
executable code.

Common Problems

Internal use of the Watch Dog Timer
Coordination with the watchdog timer is linked to the global parameter WATCHDOG_ENABLE, contained
in the file globalparams.inc.If the project uses a watchdog timer, conditionally compiles code linked to the
global parameter and automatically pets the watchdog during bootload checksum and download
operations. CPU clock speed will effect how fast the watchdog timer is updated. A practial minimum
setting for the watchdog timer is about 0.125 seconds.

Improper Settings in Flashsecurity.txt
The default settings for this file are set when the project is created. An example configuration is provided
in the file “Flashsecurity.example”. Flashsecurity.example is provided with the BootLoader Tools - Get
Files user module menu item. The map must allow flash write at all the locations that will eventually be
bootloaded. One strategy would be to make all blocks writeable. Another would be to take a moment to
layout your memory map now and edit this file accordingly. No matter which strategy is chosen, taking
action at the beginning of the project will be quicker than debugging it later. It is your responsibility to write
protect the areas of code used by the bootloader executable. Failure to correctly map flash security can be
a contributing factor in a broken system and an extremely difficult debug task.

Incorrect Relocatable Code Start Address (Linker Parameter)
Since the memory map for a bootloader project is considerably different than that for a conventional
project, the relocatable code start address will usually need to be altered. This is a comon source of the
errors generated by the linker when it attempts to write more than one block code to the same address.
This parameter can be changes in the Relocate code start address filed in the Project > Settings > Linker
tab. Calculate the absolute hex start address to be a little bigger than the highest block used by the
bootloader code, or to occupy an un-used area of ROM. For the USB version of the bootloader, setting this
value to 0x1440 should be adequate (if the default values fo the other parameters are used).

Memory Overlap
To correct the relocatable code start address (see above), use a leading semi-colon to comment out the
last three lines of the custom.lkp file, and attempt to build the file again and examine the resulting memory
map. Memory overlap problems are difficult to diagnose since they prevent output files from being
generated. Modifying the custom.lkp file may allow the linker to place object blocks which will then provide
a starting point for correcting the memory overlap root cause.

Power Stability
Power Stability. Power noise, glitches, brownout, slow power ramp, and poor connections can cause
difficult to diagnose problems with flash programming. Program execution is rapid in comparison to power
ramps and in some cases a part may still have power levels changing when flash programming is taking
place. One example is some sort of status write to flash at power up. You should take care to evaluate
your use model and the potential for changing power supply conditions during flash operations. Poor
power stability may contribute to nonfunctional parts and may cause poor flash retention.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_11
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_11

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 12 of 49

Downloading a New File Causes the Device to Stop Working
It is possible to construct applications with no facility to enter the bootloader utility. It is especially easy to
do this unintentionally. For example, a main{} function with a simple while(1); loop will never return and
never enter the bootloader. Therefore, it cannot be reprogrammed once it begins executing (as long as it
has a correct checksum). There are multiple strategies to address this problem, but no default method is
included in this user module. A few suggestions are:
1. Apply a reset condition that allows a period of time when the bootloader is enabled when the device

first powers up. By setting timeout parameters, the device could be configured to enter the bootloader
upon reset and exiting to the foreground application when the timeout expires.

2. Set a test at some point in the code that will cause the device to enter the bootloader. This could be a
switch closure or holding a port pin low/high.

3. Using built-in USB capabilities such as feature reports or a spare endpoint, define USB communication
that can be sent to the device to instruct it to enter bootload mode. When this command is sent, the
device will drop off the USB bus briefly, and when it returns it shold enumerate as a bootloader.

4. Make use of the watch dog timer to reset the device if it is not serviced regularly. This could be com-
bined with one of the above strategies to allow a WDT interrupt to initiate a bootloadable state. Upon
reset from a watch dog timer, monitor a status bit associated with the watchdog timer to determine if
this is the cause of the reset condition. See the Technical Reference Manual for additional information.

5. Two projects have been developed and the bootloader in each is different in some subtle way. Keep in
mind that bootloading implies that programming part of a device is taking place. This implies that the
implementation of the bootloader for each of two mutually re-programmable applications must be iden-
tical. All bootloader parameters should be identical, relocatable code start addresses should be identi-
cal (this is different from first application block). Debug strategies for this problem include comparison
of the two hex files in question paying particular attention to the areas of hex code used by the boot-
loader. Another method is to compare the <project>.lst files. The bootloader makes use of some redi-
rect vectors to allow certain application address parameters to change. All of these jump vectors must
match for an application and a bootloader. Once a bootloader is deployed to a field application there is
no way to alter the code within it. A future application must still ‘agree’ about where mutually used jump
vectors are stored.

Application Programming Interface
A discussion of the APIs for the bootloader and the USB functionality contained within the bootloader
follows. The Bootloader contains a very limited set of APIs since the main purpose of the Bootloader is to
completely remove and replace the user application. Since the Bootloader is not reprogrammed.

Bootloader APIs

ENTER_BOOTLOADER()

GenericBootloaderEntry
Description:

Enters the bootloader application, and returns after timeout (if a timeout is defined) if no bootloader
host begins to talk to the device. A generic parameter is defined that resides at a fixed address for the
life of the deployed part. This function could also be implemented by a direct call to the known hex
address of this function.
This function executes a ljmp to the GenericBootloaderEntry and resides at 0x7C.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_12
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_12

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 13 of 49

C Prototype:
void ENTER_BOOTLOADER(void)

Assembly:
call ENTER_BOOTLOADER ; Call the Start Function

Alternately:
GenericHardDefinition: equ (0x7C)
call GenericHardDefinition ; Call the Start Function

Parameters:
None

GenericApplicationStart
Description:

Enters the application at the beginning of boot.asm. Similar to a warm boot.
C Prototype:

void GenericApplicationStart(void)

Assembly:
call GenericApplicationStart ; Call the Start Function

Parameters:
None

bootLoaderVerify
Description:

Performs a checksum verification of the application storage area. If checksum verification fails, the
bootloader is entered and this function never returns. Otherwise the foreground application is exe-
cuted starting with boot.asm

C Prototype:
void bootLoaderVerify(void)

Assembly:
call bootLoaderVerify ; Call the Start Function

Parameters:
None.

USBFS APIs
The application programming interface (API) routines in this section allow programmatic control of the
USBFS User Module. The sections that follow describe descriptor generation and integration, and list the
basic and device specific API functions. As a developer you need a basic understanding of the USB
protocol and familiarity with the USB 2.0 specification, especially Chapter 9, USB Device Framework.
The USBFS User Module supports control, interrupt, bulk, and isochronous transfers. Some functions, or
groups of functions, such as LoadInEP and EnableOutEP, are designed for use with bulk and interrupt
endpoints. Other functions, such as USBFS_LoadINISOCEP, are designed for use with Isochronous
endpoints. Refer to the Technical Reference Manual (TRM) for more information on how to do these
transfer types.
Note In all user module APIs, the values of the A and X registesr may be altered by calling an API func-

tion. It is the responsibility of the calling function to preserve the values of A and X prior to the call
if those values are required after the call. This “registers are volatile” policy was selected for effi-

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_13
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_13

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 14 of 49

ciency reasons. The C compiler automatically takes care of this requirement. Assembly language
programmers must ensure their code observes the policy, too. Though some user module API
function may leave A and X unchanged, there is no guarantee they will do so in the future.

Note The API routines for the USB user modules are not reentrant. Because they depend on internal
global variables in RAM, executing these routines from an interrupt is not supported by the API
supplied with this user module. If this is a requirement for a design, contact the local Cypress Field
Application Engineer.

Function Description
void USBFS_Start(BYTE bDevice, BYTE
bMode)

Activate the user module for use with the device and spe-
cific voltage mode.

void USBFS_Stop(void) Disable user module.
BYTE USBFS_bCheckActivity(void) Checks and clears the USB bus activity flag. Returns 1 if the

USB was active since the last check, otherwise returns 0.
BYTE USBFS_bGetConfiguration(void) Returns the currently assigned configuration. Returns 0 if

the device is not configured.
BYTE USBFS_bGetEPState(BYTE bEP-
Number)

Returns the current state of the specified USBFS endpoint.
2 = NO_EVENT_ALLOWED
1 = EVENT PENDING
0 = NO_EVENT_PENDING

BYTE USBFS_bGetEPAckState(BYTE
bEPNumber)

Identifies whether ACK was set by returning a nonzero
value.

BYTE USBFS_wGetEPCount(BYTE bEP-
Number)

Returns the current byte count from the specified USBFS
endpoint.

void USBFS_LoadInEP(BYTE bEPNum-
ber, BYTE *pData, WORD wLength, BYTE
bToggle)

Loads and enables the specified USBFS endpoint for an IN
transfer.

void USB_LoadInISOCEP(BYTE bEPNum-
ber, BYTE *pData, WORD wLength, BYTE
bToggle)
BYTE USBFS_bReadOutEP(BYTE bEP-
Number, BYTE *pData, WORD wLength)

Reads the specified number of bytes from the endpoint
RAM and places it in the RAM array pointed to by pSrc. The
function returns the number of bytes sent by the host.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_14
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_14

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 15 of 49

BootLdrUSBFS _Start (user defined application device)

BootLdrUSBFS _Start (bootloader device) 0xFF
Description:

Performs all required initialization for USBFS User Module. Either the foreground USB device or the
bootloader specific USB device may be started using this command. Only one USB device configura-
tion may be active at any time. To start the bootloader device set the value of bDevice to -1 (0xFF).

C Prototype:
void USBFS_Start(BYTE bDevice, BYTE bMode)

Assembly:
mov A, 0xFF ; The bootloader device descriptor
mov A, 0 ; Select application device descriptor
mov X, USBFS_5V_OPERATION ; Select the Voltage level
call USBFS_Start ; Call the Start Function

void USB_EnableOutEP(BYTE bEPNum-
ber)

Enables the specified USB endpoint to accept OUT trans-
fers

void USB_EnableOutISOCEP(BYTE bEP-
Number)
void USBFS_DisableOutEP(BYTE bEP-
Number)

Disables the specified USB endpoint to NAK OUT transfers

USBFS_Force(BYTE bState) Forces a J, K, or SE0 State on the USB D+/D- pins. Nor-
mally used for remote wakeup.
bState Parameters are:

USB_FORCE_SE0 0xC0
USB_FORCE_J 0xA0
USB_FORCE_K 0x80
USB_FORCE_NONE 0x00

Note. When using this API Function and GPIO pins from
Port 1 (P1.2-P1.7), the application uses the
Port_1_Data_SHADE shadow register to ensure consistent
data handling. From assembly language, access the
Port_1_Data_SHADE RAM location directly. From C lan-
guage, include an extern reference:

extern BYTE Port_1_Data_SHADE;

Function Description
BYTE USBFS_UpdateHIDTimer(BYTE
bInterface)

Updates the HID Report timer for the
specified interface and returns 1 if the
timer expired and 0 if not. If the timer
expired, it reloads the timer.

BYTE USBFS_bGetProtocol(BYTE
bInterface)

Returns the protocol for the specified
interface

Function Description

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_15
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_15

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 16 of 49

Parameters:
Register A: Contains the device number from the desired device descriptor set entered with the
USBFS Setup Wizard.
Register X: Contains the operating voltage at which the chip runs. This determines whether the voltage
regulator is enabled for 5V operation or the if pass through mode is used for 3.3V operation. Symbolic
names are provided in C and assembly, and their associated values are given in the following table.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. Currently only
the IDX_PP and the CUR_PP page pointer registers are modified.

BootLdrUSBFS _Stop
Description:

Performs all necessary shutdown task required for the USBFS User Module.
C Prototype:

void BootLdrUSBFS_Stop(void)

Assembly:
call BootLdrUSBFS_Stop

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. Currently only
the CUR_PP page pointer register is modified.

BootLdrUSBFS _bCheckActivity
Description:

Checks for USBFS Bus Activity.
C Prototype:

BYTE BootLdrUSBFS_bCheckActivity(void)

Assembly:
call BootLdrUSBFS_bCheckActivity

Parameters:
None

Return Value:
Returns 1 in A if the USB was active since the last check, otherwise returns 0.

Mask Value Description
USBFS_3V_OPERATION 0x02 Disable voltage regulator and pass-

through vcc for pull-up
USBFS_5V_OPERATION 0x03 Enable voltage regulator and use regu-

lator for pull-up

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_16
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_16

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 17 of 49

Side Effects:
The A and X registers may be modified by this or future implementations of this function.

BootLdrUSBFS _bGetConfiguration
Description:

Gets the current configuration of the USB device.
C Prototype:

BYTE BootLdrUSBFS_bGetConfiguration(void)

Assembly:
call USBFS_bGetConfiguration

Parameters:
None

Return Value:
Returns the currently assigned configuration in A. Returns 0 if the device is not configured.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory modellarge memory model. When necessary, it
is the responsibility of the calling function to preserve the values across calls to fastcall16 functions.
Currently only the CUR_PP page pointer register is modified.

BootLdrUSBFS _bGetEPState
Description:

Gets the endpoint state for the specified endpoint. The endpoint state describes, from the perspective
of the foreground application, the endpoint status. The endpoint has one of three states, two of the
states mean different things for IN and OUT endpoints. The table below outlines the possible states
and their meaning for IN and OUT endpoints.

C Prototype:
BYTE BootLdrUSBFS_bGetEPState(BYTE bEPNumber)

Assembly:
MOV A, 1 ; Select endpoint 1
call BootLdrUSBFS_bGetEPState

Parameters:
Register A contains the endpoint number.

Return Value:
Returns the current state of the specified USBFS endpoint. Symbolic names provided in C and assem-
bly, and their associated values are given in the following table. Use these constants whenever the
user writes code to change the state of the endpoints such as ISR code to handle data sent or

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_17
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_17

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 18 of 49

received.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP page pointer register is modified.

BootLdrUSBFS _bGetEPAckState
Description:

Determines whether or not an ACK transaction occurred on this endpoint by reading the ACK bit in the
control register of the endpoint. This function does not clear the ACK bit.

C Prototype:
BYTE BootLdrUSBFS_bGetEPState(BYTE bEPNumber)

Assembly:
MOV A, 1 ; Select endpoint 1
call BootLdrUSBFS_bGetEPState

Parameters:
Register A contains the endpoint number.

Return Value:
If an ACKed transaction occurred then this function returns a non-zero value. Otherwise a zero is
returned.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BootLdrUSBFS _wGetEPCount
Description:

This functions returns the value of the endpoint count register. The Serial Interface Engine (SIE)
includes two bytes of checksum data in the count. This function subtracts two from the count before

State Value Description
NO_EVENT_PENDING 0x00 Indicates that the endpoint is awaiting

SIE action
EVENT_PENDING 0x01 Indicates that the endpoint is awaiting

CPU action
NO_EVENT_ALLOWED 0x02 Indicates that the endpoint is locked

from access
IN_BUFFER_FULL 0x00 The IN enpoint is loaded and the mode

is set to ACK IN
IN_BUFFER_EMPTY 0x01 An IN transaction occurred and more

data can be loaded
OUT_BUFFER_EMPTY 0x00 The OUT endpoint is set to ACK OUT

and is waiting for data
OUT_BUFFER_FULL 0x01 An OUT transaction has occurred and

data can be read

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_18
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_18

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 19 of 49

returning the value. Call this function only for OUT endpoints after a call to USB_GetEPState returns
EVENT_PENDING.

C Prototype:
WORD BootLdrUSBFS_wGetEPCount(BYTEbEPNumber)

Assembly:
MOV A, 1 ; Select endpoint 1
call BootLdrUSBFS_bGetEPCount

Parameters:
Register A contains the endpoint number.

Return Value:
Returns the current byte count from the specified USBFS endpoint in A and X.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BootLdrUSBFS _LoadInEP

BootLdrUSBFS _LoadInISOCEP
Description:

Loads and enables the specified USB endpoint for an IN interrupt or bulk transfer (.._LoadInEP) and
isochronous transfer (..._LoadInISOCEP).

C Prototype:
void BootLdrUSBFS_LoadInEP(BYTE bEPNumber, BYTE * pData, WORD wLength, BYTE
bToggle)
void BootLdrUSBFS_LoadInISOCEP(BYTE bEPNumber, BYTE * pData, WORD wLength,
BYTE bToggle)

Assembly:
mov A, USBFS_TOGGLE
push A
mov A, 0
push A
mov A, 32
push A
mov A, >pData
push A
mov A, <pData
push A
mov A, 1
push A
call BootLdrUSBFS_LoadInEP

Parameters:
bEPNumber – The endpoint Number between one and four.
pData – A pointer to a data array. Data for the endpoint is loaded from the data array specified by
pData.
wLength – The number of bytes to transfer from the array as a result of an IN request. Valid values are
between 0 and 256.
bToggle – A flag indicating whether or not the Data Toggle bit is toggled before setting it in the count
register. For IN transactions toggle the data bit after every successful data transmission. This makes

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_19
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_19

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 20 of 49

certain that the same packet is not repeated or lost. Symbolic names for the flag are provided in C and
assembly:

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BootLdrUSBFS _bReadOutEP
Description:

Moves the specified number of bytes from endpoint RAM to data RAM. The number of bytes actually
transferred from endpoint RAM to data RAM is the lesser of the actual number of bytes sent by the
host and the number of bytes requested by the wCount argument.

C Prototype:
BYTE BootLdrUSBFS_bReadOutEP(BYTE bEPNumber, BYTE * pData, WORD wLength)

Assembly:
mov A, 0
push A
mov A, 32
push A
mov A, >pData
push A
mov A, <pData
push A
mov A, 1
push A
call BootLdrUSBFS_bReadOutEP

Parameters:
bEPNumber – The endpoint Number between one and four.
pData – The endpoint space is loaded from a data array specified by this pointer.
wLength – The number of bytes to transfer from the array and then send as a result of an IN request.
Valid values are between 0 and 256. The function moves less than that if the number of bytes sent by
the host are less requested.

Return Value:
Returns the number of bytes sent by the host to the USB device. This could be more or less than the
number of bytes requested.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the

Mask Value Description
USB_NO_TOGGLE 0x00 The Data Toggle does not change
USB_TOGGLE 0x01 The Data bit is toggled before transmis-

sion

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_20
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_20

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 21 of 49

IDX_PP and the CUR_PP page pointer registers are modified.

BootLdrUSBFS _EnableOutEP

USBFS_EnableOutISOCEP
Description:

Enables the specified endpoint for OUT Bulk or Interrupt transfers (..._EnableOutEP) and Isochronous
transfers (..._EnableOutISOCEP). Do not call these functions for IN endpoints.

C Prototype:
void USBFS_EnableOutEP(BYTE bEPNumber)
void USBFS_EnableOutISOCEP(BYTE bEPNumber)

Assembly:
MOV A, 1
call USBFS_EnableOutEP

Parameters:
Register A contains the endpoint number.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. Currently only
the IDX_PP page pointer register is modified.

BootLdrUSBFS _DisableOutEP
Description:
Disables the specified USBFS OUT endpoint. Do not call this function for IN endpoints.
C Prototype:

void BootLdrUSBFS_DisableEP(BYTE bEPNumber)

Assembly:
MOV A, 1 ; Select endpoint 1
call BootLdrUSBFS_DisableEP

Parameters:
Register A contains the endpoint number.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BootLdrUSBFS _Force
Description:

Forces a USB J, K, or SE0 state on the D+/D- lines. This function provides the necessary mechanism
for a USB device application to perform USB remote wakeup functionality. For more information, refer
to the USB 2.0 Specification for details on Suspend and Resume functionality.

C Prototype:
void BootLdrUSBFS_Force(BYTE bState)

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_21
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_21

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 22 of 49

Assembly:
mov A, BootLdrUSB_FORCE_K
call BootLdrUSBFS_Force

Parameters:
bState is byte indicating which among four bus states to enable. Symbolic names provided in C and
assembly, and their associated values are listed here:.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BootLdrUSBFS _UpdateHIDTimer
Description:

Updates the HID Report Idle timer and returns the expiry status. Reloads the timer if it expires.
C Prototype:

BYTE BootLdrUSBFS_UpdateHIDTimer(BYTE bInterface)

Assembly:
MOV A, 1 ; Select interface 1
call BootLdrUSBFS_UpdateHIDTimer

Parameters:
Register A contains the interface number.

Return Value:
The state of the HID timer is returned in A. Symbolic names provided in C and assembly, and their
associated values are given here:

Side Effects:
The A and X registers may be modified by this or future implementations of this function.

BootLdrUSBFS _bGetProtocol
Description:

Returns the HID protocol value for the selected interface.

State Value Description
USB_FORCE_SE0 0xC0 Force a Single Ended 0 onto the D+/D-

lines
USB_FORCE_J 0xA0 Force a J State onto the D+/D- lines
USB_FORCE_K 0x80 Force a K State onto the D+/D- lines
USB_FORCE_NONE 0x00 Return bus to SIE control

State Value Description
USB_IDLE_TIMER_EXPIRED 0x01 The timer expired.
USB_IDLE_TIMER_RUNNING 0x02 The timer is running.
USB_IDLE_TIMER_IDEFINITE 0x00 Returned if the report is sent when data

or state changes.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_22
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_22

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 23 of 49

C Prototype:
BYTE BootLdrUSBFS_bGetProtocol(BYTE bInterface)

Assembly:
MOV A, 1 ; Select interface 1
call BootLdrUSBFS_bGetProtocol

Parameters:
bInterface contains the interface number.

Return Value:
Register A contains the protocol value.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

Sample Code
For both the C and assembly language example projects configure the bootloader user module as shown
below.

Make sure the correct pin is configured as a pull down to recognize the switch closure to enter the
bootloader.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_23
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_23

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 24 of 49

Make sure the code start address is set correctly.

Make sure that before you attempt to bootload an application you modify the flashsecurity.txt file to make
the application, checksum, and relocatable interrupt vector areas writeable.

Please note that the included Host PC example project expect to see a VID of 04b4 and a PID of E006.
These are Cypress owned IDs and may be used for local debug but may not be released for production.
Below is an implementation of the USB Bootloader User Module written in C.

//
//emulate a mouse that causes the cursor to move in a square
//

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_24
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_24

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 25 of 49

signed char bXInc = 0; // X-Step Size
signed char bYInc = 0; // Y-Step Size

#define USB_INIT 0 // Initialized state
#define USB_UNCONFIG 1 // Unconfigured state
#define USB_CONFIG 2 // Configured state

// Mouse movemet states
#define MOUSE_DOWN 0
#define MOUSE_LEFT 1
#define MOUSE_UP 2
#define MOUSE_RIGHT 3

#define POSMASK 0x03 // Mouse position state mask
#define BOX_SIZE 32 // Transfers per side of the box
#define bCursorStep 4 // Step size

BYTE bConfigState = 0; // Configuration state
BYTE bDirState = 0; // Mouse diretion state

BYTE abMouseData[3] = {0,0,0}; // Endpoint 1, mouse packet array
BYTE bButton; // Used for button
BYTE boxLoop = 0; // Box loop counter

const char abDirection[4][6] = {"DOWN "};
extern const USB_pAppChkSumBlk;
WORD blversion;
void main()
{

M8C_EnableGInt; //Enable Global Interrupts
USB_Start(0, USB_5V_OPERATION); //Start USB Operation usgin device 0

PRT1DR = 0;

while(1) { // Main loop
 if(PRT1DR & 0x80) {
 USB_Stop();
 while(PRT1DR & 0x80);
 USB_EnterBootloader();
 }
 switch(bConfigState) { // Check state
 case USB_INIT: // Initialize state
 bConfigState = USB_UNCONFIG;

 break;

 case USB_UNCONFIG: // Unconfigured state
 if(USB_bGetConfiguration() != 0) { // Check if configuration set
 bConfigState = USB_CONFIG;

 USB_LoadInEP(1, abMouseData, 3, USB_NO_TOGGLE); // Load a dummy
mouse packet

 }
 break;

 case USB_CONFIG: // Configured state

time to move the mouse
 if(USB_bGetEPAckState(1) != 0) {

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_25
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_25

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 26 of 49

 boxLoop++;
 if(boxLoop > BOX_SIZE) { // Change mouse direc-

tion every 32 packets
 boxLoop = 0;
 bDirState++; // Advance box state
 bDirState &= POSMASK;

 }

 switch(bDirState) { // Determine current

direction state

 case MOUSE_DOWN: // Down
 bXInc = 0;
 bYInc = bCursorStep;
 //asm("nop");
 break;

 case MOUSE_LEFT: // Left
 bXInc = -bCursorStep;
 bYInc = 0;
 break;

 case MOUSE_UP: // up
 bXInc = 0;
 bYInc = -bCursorStep;
 break;

 case MOUSE_RIGHT: // Right
 bXInc = bCursorStep;
 bYInc = 0;
 break;

 }
 abMouseData[1] = bXInc; // Load the packet

array
 abMouseData[2] = bYInc;
 abMouseData[0] = 0; // No buttons pressed
 USB_LoadInEP(1, abMouseData, 3, USB_TOGGLE); // Load and cock

Endpoint1

 } // End if Endpoint ready
 break;

 } // End Switch
} // End While

}
Below is an implementation of the USB Bootloader User Module written in assembly code.
The assembly code illustrated here shows you how to use the BootLdrUSBFS User Module in a simple
HID application. Once connected to a PC host the device enumerates as a 3 button mouse. When the
code is run the mouse cursor zigzags from right to left. This code illustrates the how the BootLdrUSBFS
Setup Wizard configures the user module. This project is identical to that in the USBFS user module with
the addition of a bootloader.

;---
; Assembly main line
;---

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_26
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_26

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 27 of 49

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export _main
export i
export abMouseData

area bss(RAM) // inform assembler that variables follow
abMouseData: blk 3 // USBFS data variable
i: blk 1 // count variable

area text(ROM,REL) // inform assembler that program code follows

_main:
OR F,1
; Start USBFS Operation using device 0
PUSH X
MOV X,3
MOV A,0
LCALL USBFS_Start
POP X

; Wait for Device to enumerate
.no_device:
PUSH X
LCALL USBFS_bGetConfiguration
POP X
CMP A,0
JZ .no_device
; Enumeration is completed load endpoint 1. Do not toggle the first time
; USBFS_LoadInEP(1, abMouseData, 3, USB_TOGGLE);
PUSH X
MOV A,1
PUSH A
MOV A,0
PUSH A
MOV A,3
PUSH A
MOV A,>abMouseData
PUSH A
MOV A,<abMouseData
PUSH A
MOV A,1
PUSH A
LCALL USBFS_LoadInEP
ADD SP,250
POP X

.endless_loop:

;implement bootloader entry
mov reg[PRT1DR], 0 ;load reg[PRT1DR] with 0
; if(PRT1DR & 0x80) {
; USB_Stop();
; while(PRT1DR & 0x80);

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_27
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_27

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 28 of 49

; USBFS_EnterBootloader();
; }
push A
mov A, reg[PRT1DR]
and A, 0x80
jz .Exit_BOOTLOAD_TEST
;**** IMPORTANT, configure prt0.7 as a stdcpu/pulldown IMPORTANT

;if PRT1DR.7 is pulled high, (configure for a pull down, set data to zero)
; wait for the port pin to be released (back to zero) to debounce
; immeciately un-enumerate by releasing the D+ pullup
lcall USBFS_Stop
.wait_for_bit_low:
tst reg[PRT1DR], 0x80
jnz .wait_for_bit_low
; once it goes low enter the bootloader
pop A
ljmp USBFS_EnterBootloader ;;never returns
halt

.Exit_BOOTLOAD_TEST:
pop A

;;; mouse operations

PUSH X
MOV A,1
LCALL USBFS_bGetEPAckState
POP X
CMP A,0
JZ .endless_loop
; ACK has occurred, load the endpoint and toggle the data bit
; USBFS_LoadInEP(1, abMouseData, 3, USBFS_TOGGLE);
PUSH X
MOV A,1
PUSH A
MOV A,0
PUSH A
MOV A,3
PUSH A
MOV A,>abMouseData
PUSH A
MOV A,<abMouseData
PUSH A
MOV A,1
PUSH A
LCALL USBFS_LoadInEP
ADD SP,250
POP X

; When our count hits 128
CMP [i],128
JNZ .move_left
; Start moving the mouse to the right
MOV [abMouseData+1],5
JMP .increment_i
; When our counts hits 255

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_28
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_28

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 29 of 49

.move_left:
CMP [i],255
JNZ .increment_i
; Start moving the mouse to the left
MOV [abMouseData+1],251

.increment_i:
INC [i]

JMP .endless_loop

.terminate:
jmp .terminate

USBFS Setup Corresponding to the Example Code
1. Create a new project with a base part supported by the BootLdrUSBFS User Module (such as

CY8C24894).
2. For the purpose of the examples above, the user module has been renamed “USB” in the first C-based

example and “USBFS” in the assembly based example. Both examples use the BootLdrUSBFS user
module.

3. In the Device Editor, click Protocols and add the BootLdrUSBFS User Module by double-clicking the
BootLdrUSBFS icon or right-clicking and choosing Select.

4. Select the Human Interface Device (HID) radio button.
Optional step: rename the user module from BootLdrUSBFS_1 to USBFS to match the sample code
by right-clicking the module and selecting Rename.

5. Right-click the USBFS User Module icon in the Device Editor to open the “Device: Application USB
Setup Wizard”.
• Click the Import HID Report Template operation and make the name Import HID Report Template

italics to show that it is a label.
• Select the 3 button mouse template.
• Click the Apply operation on the right side of the template.
• Select the Add String operation to add Manufacturer and Product strings.
• Edit the device attributes: Vendor ID, Product ID, and select strings.
• Edit the interface attributes: select HID for the Class field.
• Edit the HID class descriptor: select the 3 button mouse for the HID Report field.

6. Click OK to save the USB descriptor information.
7. Right click the USBFS User Module icon in the Device Editor to open the “Device: BootLoader USB

Setup Wizard”.
8. Enter the correct VID (Vendor ID) and PID (Product ID) into the wizard. Note that the VID and PID for

the application and the bootloader cannot be identical.
9. Click OK to save the USB BootLoader descriptor information.
10. Generate the Application.
11. Copy the Sample code and paste it in the main.c.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_29
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_29

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 30 of 49

12. Do a Rebuild all.

Descriptor Data
USB user module descriptor root Device name

Device descriptor Device
Device attributes

Vendor ID Use company VID
Product ID Use product PID

Device release (bcdDevice) 0000
Device class Defined in interface descriptor

Subclass No subclass
Manufacturer string My company

Product string My mouse
Serial number string No string

Configuration descriptor Configuration
Configuration attributes

Configuration string No string
Max power 100

Device power Bus powered
Remote wakeup Disabled

Interface descriptor Interface
Interface attributes

Interface string No string
Class HID

Subclass No subclass
HID class descriptor

Descriptor type Report
Country code Not supported

HID report 3-button mouse
Endpoint descriptor ENDPOINT_NAME
Endpoint attributes
Endpoint number 1

Direction IN
Transfer type INT

Interval 10
Max packet size 8
String/LANGID

String descriptors USBFS
LANGID
String My company

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_30
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_30

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 31 of 49

String My mouse
Descriptor

HID report descriptor root USBFS
HID report descriptor USBFS

Descriptor Data

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_31
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_31

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 32 of 49

USB Standard Device Requests
The following section describes the requests supported by the USB User Module. If a request is not
supported the USB User Module normally responds with a STALL, indicating a Request Error.

Standard Device Request USB User Module Support Description

USB 2.0
Spec

Section
CLEAR_FEATURE Device: 9.4.1

Interface: : Not supported.
Endpoint

GET_CONFIGURATION Returns the current device configuration value. 9.4.2
GET_DESCRIPTOR Returns the specified descriptor. 9.4.3
GET_INTERFACE Returns the selected alternate interface setting for the specified inter-

face.
9.4.4

GET_STATUS Device: 9.4.5
Interface:
Endpoint:

SET_ADDRESS Sets the device address for all future device accesses. 9.4.6
SET_CONFIGURATION Sets the device configuration. 9.4.7
SET_DESCRIPTOR This optional request is not supported. 9.4.8
SET_FEATURE Device:

DEVICE_REMOTE_WAKEUP support is selected by the
bRemoteWakeUp User Module Parameter.
TEST_MODE is not supported.

9.4.9

Interface: Not supported.
Endpoint: The specified endpoint is halted.

SET_INTERFACE Not supported. 9.4.10
SYNCH_FRAME Not supported. Future implementations of the User Module will add

support to this request to enable Isochronous transfers with repeat-
ing frame patterns.

9.4.11

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_32
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_32

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 33 of 49

HID Class Request

USB Standard Device Requests
This section describes the requests supported by the USBFS user module. If a request is not supported
the USBFS user module normally responds with a STALL, indicating a request error.

Class Request USB User Module Support Description

Device Class
Definition for
HID - Section

GET_REPORT Allows the host to receive a report by way of the Control pipe. 7.2.1
GET_IDLE Reads the current idle rate for a particular Input report. 7.2.3
GET_PROTOCOL Reads which protocol is currently active (either the boot or the report

protocol).
7.2.5

SET_REPORT Allows the host to send a report to the device, possibly setting the
state of input, output, or feature controls.

7.2.2

SET_IDLE Silences a particular report on the Interrupt In pipe until a new event
occurs or the specified amount of time passes.

7.2.4

SET_PROTOCOL Switches between the boot protocol and the report protocol (or vice
versa).

7.2.6

Standard Device Request USB User Module Support Description

USB 2.0
Spec

Section
CLEAR_FEATURE Device: 9.4.1

Interface: not supported.
Endpoint

GET_CONFIGURATION Returns the current device configuration value. 9.4.2
GET_DESCRIPTOR Returns the specified descriptor. 9.4.3
GET_INTERFACE Returns the selected alternate interface setting for the specified inter-

face.
9.4.4

GET_STATUS Device: 9.4.5
Interface:
Endpoint:

SET_ADDRESS Sets the device address for all future device accesses. 9.4.6
SET_CONFIGURATION Sets the device configuration. 9.4.7
SET_DESCRIPTOR This optional request is not supported. 9.4.8

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_33
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_33

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 34 of 49

SET_FEATURE Device:
DEVICE_REMOTE_WAKEUP support is selected by the
bRemoteWakeUp User Module Parameter.
TEST_MODE is not supported.

9.4.9

Interface: Not supported.
Endpoint: The specified endpoint is halted.

SET_INTERFACE Not supported. 9.4.10
SYNCH_FRAME Not supported. Future implementations of the User Module will add

support to this request to enable Isochronous transfers with repeat-
ing frame patterns.

9.4.11

Standard Device Request USB User Module Support Description

USB 2.0
Spec

Section

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_34
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_34

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 35 of 49

HID Class Request

USBFS Setup Wizard
This section details all the USBFS descriptors provided by the USBFS user module. The descriptions
include the descriptor format and how user module parameters map into the descriptor data.
The USBFS Setup Wizard is a tool provided by Cypress to assist engineers in the designing of USB
devices. The setup wizard displays the device descriptor tree; when expanded the following folders that
are part of the standard USB descriptor definitions appear:

• Device attributes
• Configuration descriptor
• Interface descriptor
• HID Class descriptor
• Endpoint descriptor
• String/LANGID
• HID Descriptor
To access the setup wizard, right click the USB User Module icon in the device editor and click the USB
Setup Wizard... menu item.
When the device descriptor tree is fully expanded, you see all the setup wizard options. The left side
displays the name of the descriptor, the center displays the data, and the left displays the operation
available for a particular descriptor. In some instances, a descriptor has a pull down menu that presents
available options.

Class Request USBFS User Module Support Description

Device Class
Definition for
HID - Section

GET_REPORT Allows the host to receive a report by way of the Control pipe. 7.2.1
GET_IDLE Reads the current idle rate for a particular Input report. 7.2.3
GET_PROTOCOL Reads which protocol is currently active (either the boot or the report

protocol).
7.2.5

SET_REPORT Allows the host to send a report to the device, possibly setting the
state of input, output, or feature controls.

7.2.2

SET_IDLE Silences a particular report on the Interrupt In pipe until a new event
occurs or the specified amount of time passes.

7.2.4

SET_PROTOCOL Switches between the boot protocol and the report protocol (or vice
versa).

7.2.6

Descriptor Data Operations
USBFS user module descriptor root “Device Name” Add device

Device descriptor DEVICE_1 Remove|Add configuration
Device attributes

Vendor ID FFFF
Product ID FFFF

Device release (bcdDevice) 0000
Device class Undefined pull-down

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_35
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_35

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 36 of 49

Subclass No subclass pull down
Protocol None pull down

Manufacturer string No string pull down
Product string No string pull down

Serial number string No string pull down
Configuration descriptor CONFIG_NAME Remove|Add interface
Configuration attributes

Configuration string No string pull down
Max power 100

Device power Bus powered pull down
Remote wakeup Disabled pull down

Interface descriptor INTERFACE_NAME Remove|Add endpoint
Interface attributes

Interface string No string pull down
Class Vendor specific pull down

Subclass No subclass pull down
HID class Descriptor

Descriptor type Report pull down
Country code Not supported pull down

HID report None pull down
Endpoint descriptor ENDPOINT_NAME Remove
Endpoint attributes
Endpoint number 0

Direction IN pull down
Transfer type CNTRL pull down

Interval 10
Max packet size 8
String/LANGID

String descriptors Device name Add string
LANGID pull down
String Selected string name Remove

Descriptor
HID Descriptor Device name Import HID Report Template

Descriptor Data Operations

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_36
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_36

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 37 of 49

Understanding the USB Setup Wizard
The USB Setup Wizard window is a table that presents three major areas for programming. The first area
is the Descriptor USBFS user module, the second is the String/LANGID, and the third is the Descriptor
HID report. Use the two buttons below the table perform the selected command.
The first section presents the Descriptor. The second section presents the String/LANGID; when a string
ID is required, this area is used to input that string. To add a string for a USB device, click on the Add
String operation. The software adds a row and prompts you to Edit your string here. Type the new string
then click Save/Generate. Once the string is saved, it is available for use in the Descriptor section from
the pull down menus. If you close without saving, the string is lost.
The third area presents the HID Report Descriptor Root. From here you add or import an HID Report for
the selected device.

USB User Module Descriptor Root
The first column displays folders to expand and collapse. For the purpose of this discussion, you must fully
expand the tree that all options are visible. The setup wizard permits the entering of data into the middle
Data column; if there is a pull down menu, use it to select a different option. If there is no pull down menu,
but there is data, use the cursor to highlight and select the data, then overwrite that data with another
value or text option. All the values must meet the USB 2.0 Chapter 9 Specifications.
The first folder displayed at the top is the USB User Module Descriptor Root. It has the user module name
in the Data column (this is the user module name given to it by the software. This user module is the one
placed in the Interconnect View. The Add Device operation on the right hand column adds another USB
device complete with all the different fields required for describing it. The new USB device descriptor is
listed at the bottom after the endpoint Descriptor. Click OK to save. If you do not save the newly added
device, it is not available for use.
Device Descriptor has DEVICE_NUMBER as the Data; it may be removed or a configuration added. All
the information about a particular USB device may be entered by over writing the existing data or by using
a pull down menu.
When the input of data is complete, either by using the pull down menus or by typing alphanumeric text in
the appropriate spots, click OK to save.

USB Suspend, Resume, and Remote Wakeup
The USBFS User Module supports USB Suspend, Resume, and remote wakeup. Since these features are
tightly coupled into the user application, the USBFS User Module provides a set of API functions.

USFS Activity Monitoring
The USBFS_bCheckActivity API function provides a means to check if any USB bus activity occurred. The
application uses the function to determine if the conditions to enter USB Suspend were met.

USBFS Suspend
Once the conditions to enter USB suspend are met, the application takes appropriate steps to reduce
current consumption to meet the suspend current requirements. To put the USB SIE and transceiver into
power down mode, the application calls the USBFS_Suspend API function and the
USBFS_bCheckActivity API to detect USB activity. This function disables the USBFS block, but maintains
the current USB address (in the USBCR register). The device uses the sleep feature to reduce power
consumption.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_37
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_37

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 38 of 49

USBFS Resume
While the device is suspended, it periodically checks to determine if the conditions to leave the suspended
state were met. One way to check resume conditions is to use the sleep timer to periodically wake the
device. If the resume conditions were met, the application calls the USBFS_Resume API function. This
function enables the USBFS SIE and Transceiver, bringing them out of power down mode. It does not
change the USB address field of the USBCR register, maintaining the USB address previously assigned
by the host.

USBFS Remote Wakeup
If the device supports remote wakeup, the application is able to determine if the host enabled remote
wakeup with the USBFS_bRWUEnabled API function. When the device is suspended and it determines
the conditions to initiate a remote wakeup are met, the application uses the USBFS_Force API function to
force the appropriate J and K states onto the USB Bus, signaling a remote wakeup.

Creating Vendor Specific Device Requests and Overriding Existing Requests
The USBFS User Module supports vendor specific device requests by providing a dispatch routine for
handling setup packet requests. You can also write your own routines that override any of the supplied
standard and class specific routines, or enable unsupported request types.

Processing of USBFS Device Requests
All control transfers, including vendor specific and overriden device requests, are composed of:

• A setup stage where request information is moved from host to device.
• A data stage consisting of zero or more data transactions with data send in the direction specified in

the setup stage.
• A status stage that concludes the transfer.
In the USBFS User Module, all control transfers are handled by the endpoint 0 Interrupt Service Routine
(USBFS_EP0_ISR).
The endpoint 0 Interrupt Service Routine transfers control of all setup packets to the dispatch routine,
which routes the request to the appropriate handler based upon the bmRequestType field. The handler
initializes specific user module data structures and transfers control back to the endpoint 0 ISR. A handler
for vendor specific or override device request is provided by the application. The user module handles the
data and status stages of the transfer without any involvement of the user application. Upon completion of
the transfer, the user module updates a completion status block. The status block is monitored by the
application to determine if the vendor specific device request is complete.
All setup packets enter the USBFS_EP0_ISR, which routes the setup packet to the
USBFS_bmRequestType_Dispatch routine. From here all the standard device requests as well as the
vendor specific device requests are dispatched. The device request handlers must prepare the application
to receive data for control writes or prepare the data for transmission to the host for control reads. For no-
data control transfers, the handler extracts information from the setup packet itself.
The USBFS User Module processes the data and status stages exactly the same way for all requests. For
data stages, the data is copied to or from the control endpoint buffer (registers EP0DATA0-EP0DATA7)
depending upon the direction of the transaction.

Vendor Specific Device Request Dispatch Routines
Depending upon the application requirements, the USBFS User Module dispatches up to eight types of
vendor specific device requests based upon the bmRequestType field of the setup packet. Refer to

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_38
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_38

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 39 of 49

section 9.3 of the USB 2.0 specification for a discussion of USB device requests and the bmRequestType
field. The eight types of vendor specific device requests the USBFS User Module dispatches are listed in
the table Vendor Specific Request Dispatch Routine Names.

You must follow these steps for an application to provide an assembly language dispatch routine for the
vendor specific device request.
1. In the USBFS.inc file, enable support for the vendor specific dispatch routine. Find the dispatch routine

enable flag and set EQU to 1.
2. Write an appropriately named assembly language routine to handle the device request. Use the entry

points listed in the table above.

Override Existing Request Routines
To override a standard or class specific device request, or enable an unsupported device request, you
must do the following:
1. In the USBFS.inc file, redefine the specific device request as USB_APP_SUPPLIED.
2. Write an appropriately named assembly language function to handle the device request. The name of

the assembly language function is APP_ plus the device name.
For example, to override the supplied HID class Set Report request, USB_CB_SRC_h2d_cls_ifc_09,
enable the routine with these changes to USBFS.inc:

;@PSoC_UserCode_BODY_1@ (Do not change this line.)
 ;---
 ; Insert your custom code below this banner
 ;---
 ; NOTE: interrupt service routines must preserve
 ; the values of the A and X CPU registers.

; Enable an override of the HID class Set Report request.
USB_CB_SRC_h2d_cls_ifc_09: EQU USB_APP_SUPPLIED

 ;---
 ; Insert your custom code above this banner
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

Then, write an assembly language routine named APP_USB_CB_SRC_h2d_cls_ifc_09. Device request
names are derived from the USB bmRequestType and bRequest values (USB specification Table 9-2).

Vendor Specific Request Dispatch Routine Names

Direction Recipient Dispatch Routine Entry Point Enable Flag
Host to Device

(Control Write)

Device USB_DT_h2d_vnd_dev_Dispatch USB_CB_h2d_vnd_dev
Interface USB_DT_h2d_vnd_ifc_Dispatch USB_CB_h2d_vnd_ifc
Endpoint USB_DT_h2d_vnd_ep_Dispatch USB_CB_h2d_vnd_ep

Other USB_DT_h2d_vnd_oth_Dispatch USB_CB_h2d_vnd_oth
Device to Host

(Control Read)

Device USB_DT_d2h_vnd_dev_Dispatch USB_CB_d2h_vnd_dev
Interface USB_DT_d2h_vnd_ifc_Dispatch USB_CB_d2h_vnd_ifc
Endpoint USB_DT_d2h_vnd_ep_Dispatch USB_CB_d2h_vnd_ep

Other USB_DT_d2h_vnd_oth_Dispatch USB_CB_d2h_vnd_oth

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_39
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_39

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 40 of 49

This code is a stub for the assembly routine for the previous example:
export APP_USB_CB_SRC_h2d_cls_ifc_09
APP_USB_CB_SRC_h2d_cls_ifc_09:

;Add your code here.

; Long jump to the appropriate return entry point for your application.
LJMP USBFS_InitControlWrite

Dispatch and Override Routine Requirements.
At a minimum, the dispatch or override routine must return control back to the endpoint 0 ISR by a LJMP
to one of the endpoint 0 ISR Return Points listed in the following table. The routine may destroy the A and
X registers, but the Stack Pointer (SP) and any other relevant context must be restored prior to returning
control to the ISR.

Endpoint 0 ISR Return Points

Return Entry Point Required Data Items Description
USBFS_Not_Supported Use this return point when the request is not supported. It STALLs the request.

Data Items: None
USBFS_InitControlRead This return point is used to initiate a Control Read transfer.

USBFS_DataSource (BYTE) The data source is RAM or ROM
(USBFS_DS_RAM or
USBFS_DS_ROM). This is necessary
since different instructions are used to
move the data from the source ROMX
or MOV.

USBFS_TransferSize (WORD) The number of data bytes to transfer.
USBFS_DataPtr (WORD) RAM or ROM address of the data.
USBFS_StatusBlockPtr (WORD)
optional

Address of a status block allocated with
the USBFS_XFER_STATUS_BLOCK
macro.

USBFS_InitControlWrite This return point is used to initiate a Control Write transfer.
USBFS_DataSource (BYTE) USBFS_DS_RAM (the destination for

control writes must RAM).
USBFS_TransferSize (WORD) Size of the application buffer to receive

the data
USBFS_DataPtr (WORD) RAM address of the application buffer

to receive the data
USBFS_StatusBlockPtr (WORD)
optional

Address of a status block allocated with
the USBFS_XFER_STATUS_BLOCK
macro.

USB_InitNoDataControlTransfer This return point is used to initiate a No Data Control transfer.
USBFS_StatusBlockPtr (WORD)
optional

Address of a status block allocated with
the USBFS_XFER_STATUS_BLOCK
macro.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_40
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_40

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 41 of 49

Status Completion Block
The status completion block contains two data items, a one byte completion status code and a two byte
transfer length. The “main” application monitors the completion status to determine how to proceed.
Completion status codes are found in the following table. The transfer length is the actual number of data
bytes transferred.

Customizing the HID Class Report Storage Area
If you enable optional HID class support, the Setup Wizard creates a fixed-size report storage area for
data reports from the HID class device. It creates separate report areas for IN, OUT, and FEATURE
reports. This area is sufficient for the case where no Report ID item tags are present in the Report
descriptor and therefore only one Input, Output, and Feature report structure exists. If you want better
control over the report storage size or want to support multiple report IDs, you will need to do the following:
1. Use the wizard to specify your device description, endpoints, and HID reports then generate the appli-

cation.
2. Disable the wizard defined report storage area in USB_descr.asm.
3. Copy the wizard created code that defines the report storage area.
4. Paste it into the protected user code area in USB_descr.asm or a separate assembly language file.
5. Customize the code to define the report storage area.

Specify Your Device and Generate Application
Use the USB setup wizard to specify your device description, endpoints, and HID reports. Click the
Generate Application button in PSoC Designer.

USBFS Transfer Completion Codes

Completion Code Description
USB_XFER_IDLE

(0x00)
USB_XFER_IDLE indicates that the associated data buffer does not have valid
data and the application should not use the buffer. The actual data transfer
takes place while the completion code is USB_XFER_IDLE, although it does
not indicate a transfer is in progress.

USB_XFER_STATUS_ACK
(0x01)

USB_XFER_STATUS_ACK indicates the control transfer status stage com-
pleted successfully. At this time, the application uses the associated data buffer
and its contents.

USB_XFER_PREMATURE
(0x02)

USB_XFER_PREMATURE indicates that the control transfer was interrupted
by the SETUP of a subsequent control transfer. For control writes, the contents
of the associated data buffer contains the data up to the premature completion.

USB_XFER_ERROR
(0x03)

USB_XFER_ERROR indicates that the expected status stage token was not
received.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_41
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_41

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 42 of 49

Disable the Wizard Defined Report Storage Area
In the USB_descr.asm file, disable the wizard defined storage area by uncommenting the
WIZARD_DEFINED_REPORT_STORAGE line in the custom code area as shown.

WIZARD: equ 1
WIZARD_DEFINED_REPORT_STORAGE: equ 1
 ;---
 ;@PSoC_UserCode_BODY_1@ (Do not change this line.)
 ;---
 ; Insert your custom code below this banner
 ;---
 ; Redefine the WIZARD equate to 0 below by
 ; uncommenting the WIZARD: equ 0 line
 ; to allow your custom descriptor to take effect
 ;---

 ; WIZARD: equ 0
 WIZARD_DEFINED_REPORT_STORAGE: equ 0

;---
 ; Insert your custom code above this banner
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

Copy the Wizard Created Code
Find this code in USB_descr.asm.

;--
; HID IN Report Transfer Descriptor Table for ()
;--
IF WIZARD_DEFINED_REPORT_STORAGE
AREA func_lit (ROM,REL,CON)
.LITERAL
USB_D0_C1_I0_IN_RPTS:
 TD_START_TABLE 1 ; Only 1 Transfer Descriptor
 TD_ENTRY USB_DS_RAM, USB_HID_RPT_3_IN_RPT_SIZE,
USB_INTERFACE_0_IN_RPT_DATA, NULL_PTR
.ENDLITERAL
ENDIF ; WIZARD_DEFINED_REPORT_STORAGE

There are three sections, one each for the IN, OUT, and FEATURE reports. Copy all three sections.

Paste the Code Into the Protected User Code Area
You can paste the code into the protected user code area of USB_descr.asm shown or a separate
assembly language file.

 ;---
 ;@PSoC_UserCode_BODY_2@ (Do not change this line.)
 ;---
 ; Redefine your descriptor table below. You might
 ; cut and paste code from the WIZARD descriptor
 ; above and then make your changes.
 ;---

 ;---
 ; Insert your custom code above this banner
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)
; End of File USB_descr.asm

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_42
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_42

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 43 of 49

Customize the Code to Define the Report Storage Area
To define the report storage area, you will write your own transfer descriptor table entries. The table
contains entries to define storage space for the reqired data items. Each transfer descriptor entry in the
table creates a new Report ID. IDs are numbered consecutively, starting with zero. Report ID 0 is reserved
in the USB spec; you cannot use Report ID of 0, but the transfer descriptor entry specified for the ID 0 will
be used when no Report IDs are present in the Report descriptor. For the sake of code effeciency, you
should use Report IDs in order starting with ID 1.

The following example sets up the unused Report ID 0, and two other IN reports with different sizes. Note
Conditional assembly statements are only necessary if you place the code in the protected user code area
of USB_descr.asm.

;--
; HID IN Report Transfer Descriptor Table for ()
;--
IF WIZARD_DEFINED_REPORT_STORAGE
ELSE

_ID0_RPT_SIZE: EQU 0 ; 7 data bytes + report ID = 8 bytes (unused)
_SM_RPT_SIZE: EQU 3 ; 2 data bytes + report ID = 3 bytes
_LG_RPT_SIZE: EQU 5 ; 4 data bytes + report ID = 5 bytes

AREA data (RAM, REL, CON)

EXPORT _ID0_RPT_PTR
_ID0_RPT_PTR: BLK 0 ; Allocates space for report ID0 (unused)
EXPORT _SM_RPT_PTR
_SM_RPT_PTR: BLK 3 ; Allocates space for report ID1
EXPORT _LG_RPT_PTR
_LG_RPT_PTR: BLK 5 ; Allocates space for report ID2

AREA bss (RAM, REL, CON)

EXPORT _SM_RPT_STS_PTR
_SM_RPT_STS_PTR: USBFS_XFER_STATUS_BLOCK
EXPORT _LG_RPT_STS_PTR
_LG_RPT_STS_PTR: USBFS_XFER_STATUS_BLOCK

AREA func_lit (ROM,REL,CON)
.LITERAL

Transfer Descriptor Table Entries

Table Entry Required Data Items Description
TD_START_TABLE USBFS_NumberOfTableEntries Number of Report IDs defined. IDs are

numbered consecutively from 0. Report ID
0 is not used.

TD_ENTRY
USBFS_DataSource The data source is RAM or ROM

(USBFS_DS_RAM or USBFS_DS_ROM).
USBFS_TransferSize Size of the data transfer in bytes. The first

byte is the Report ID.
USBFS_DataPtr RAM or ROM address of the data transfer.
USBFS_StatusBlockPtr Address of a status block allocated with the

USBFS_XFER_STATUS_BLOCK macro.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_43
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_43

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 44 of 49

EXPORT USB_D0_C1_I0_IN_RPTS:
 TD_START_TABLE 3
 TD_ENTRY USBFS_DS_RAM, _ID0_RPT_SIZE, _ID0_RPT_PTR, NULL_PTR ; ID0
unused
 TD_ENTRY USBFS_DS_RAM, _SM_RPT_SIZE, _SM_RPT_PTR, _SM_RPT_STS_PTR ; ID1
 TD_ENTRY USBFS_DS_RAM, _LG_RPT_SIZE, _LG_RPT_PTR, _LG_RPT_STS_PTR ; ID2
.ENDLITERAL

ENDIF ; WIZARD_DEFINED_REPORT_STORAGE

Appendix
The following section contains additional information that you may find useful when creating a USB
bootloader.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_44
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_44

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 45 of 49

Bootloader USB Download Protocol
Two sample download records are shown below – the first and the last. These records consist of actual
data that would be transmitted between the USB master and a slave to be bootloaded. The format of the
records is detailed below.

The Enter Bootloader Command and the First Data Block

Packet data (BULK OUT):
FF 38 00 01 02 03 04 05 06 07 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 02 00 00 00 00 AA 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 4E 00 30 30 30
30 30 7E 30 30 7E 30 30 30 7E 30 30 30 7E 30 30
30 30 30 30 30 30 30 30 30 7E 30 30 30 28 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 00 00 4E 00 AA 00 00 20 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 30 30 30 30 7E 30 30 7E 30 30 30 7E 30 30 30
Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 4E 01 7E 30 30
30 7E 30 30 30 7E 30 30 30 7E 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 DB 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 01 00 4E 00 AA 00 00 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 30 30 30 30 7E 30 30 7E 30 30 30 7E 30 30 30

Enter bootloader FF, 38

Status response

Write block command FF, 39
First half of the data block

Status response

Status response

Write block command FF, 39
Second half of the data block

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_45
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_45

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 46 of 49

Each command to the bootloader is followed by a response from the bootloader. The following illustration
details the format of the Enter Bootloader command.

The first line begins with the bootloader command FF38, enter bootloader. This command is followed by
the bootloader key. All bootloader commands must be sent with the bootloader key. The bootloader will
ignore commands that are not sent with the proper key. You set the bootloader key with the
Bootloader_Key parameter. Other bootloader commands are:

The command is followed by a status response from the bootloader. The code sent, 0x20, indicates that
the bootloader successfully started. Other status responses are:

Command Meaning
FF38 Enter bootloader
FF39 Write block
FF3A Verify flash
FF3B Exit bootloader
FF3C Update checksum

Code Meaning
0x20 Bootload mode (Success)
0x01 Boot completed OK
0x02 Image verify error
0x04 Flash checksum error
0x08 Flash protection error
0x10 Comm checksum error
0x40 Invalid bootloader key
0x80 Invalid command error

Packet data (BULK OUT):
FF 38 00 01 02 03 04 05 06 07 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 02 00 00 00 00 AA 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Bootloader key
Bootloader
command

Status
response

Empty data

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_46
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_46

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 47 of 49

Bootloader Write Block Command
Most of the commands sent to the bootloader are write block commands. The format of each of the write
block commands is identical. Each 64-byte block is broken up into two 32-byte packets. Each command
requires a status response from the slave, so transmission of a 64-byte block is as follows:

The first line of the first packet consists of a write block command and the bootloader key followed by the
block number being transmitted. Since each block is broken in two, the block number is followed by the
block segment number, either 0x00 for the first segment or 0x01 for the second. The last three bytes of the
first line, all sixteen bytes of the second line, and the first 13 bytes of the third line represent the 32 bytes
of valid data, followed by a checksum for the segment data. The remainder of the block is empty data to
pad the segment to 64 bytes.
The status response consists of the status byte transmitted twice and 62 bytes of empty data to pad the
segment to 64 bytes.

Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 4E 00 30 30 30
30 30 7E 30 30 7E 30 30 30 7E 30 30 30 7E 30 30
30 30 30 30 30 30 30 30 30 7E 30 30 30 28 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 00 00 4E 00 AA 00 00 20 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 30 30 30 30 7E 30 30 7E 30 30 30 7E 30 30 30
Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 4E 01 7E 30 30
30 7E 30 30 30 7E 30 30 30 7E 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 DB 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 01 00 4E 00 AA 00 00 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 30 30 30 30 7E 30 30 7E 30 30 30 7E 30 30 30

Bootloader
Commands

Bootloader key

Block number

Block segment

32 bytes of
data Checksum for

this segment

Empty data

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_47
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_47

USBFS Bootloader

Document Number: 001-13259 Rev. *B Page 48 of 49

The format of the second segment of the block is exactly the same as the first. All transmitted data blocks
follow this same format except the last block. The last block contains checksums and other necessary
data for bootloader operation. The format of the last data block is shown below:

The last record contains the checksum block for this example (note the block number for this example is
0x00ff but the last block does not have to be 0x00ff).
The first line contains the bootloader write block command, the bootloader key, the block number, and
block segment just as the other records did. The next two bytes contain the checksum for the remainder of
the block, 0x0DA6 in this case. The last byte of the first line and the first byte of the second line contain the
hex address calculated from block 0x4E for the TWO_Block_Relocatable_Interrupt_Table parameter.
The second line then contains a two byte value that represents the hex address of the App_Start user
module parameter calculated from block 0x45. The next two bytes are the hex address of the App_End
user module parameter calculated from block 0xFE. This is followed by two bytes that are the application
size in blocks. The final two bytes of real data value on this line is the bootloader version number from the
BootLdrI2C_ver parameter. The remainder of the line and most of the next line is empty data space. The
checksum for the segment occupies the same place in the packet that it did for the other packets. The
remainder of the packet is empty space.

Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 FF 00 0D A6 13
80 14 40 3F 80 00 AE 03 E8 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 05 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 00 00 FF 00 AA 00 00 20 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0D A6 13 80 14 40 3F 80 00 AE 03 E8 30 30 30 30
Packet data (BULK OUT):
FF 39 00 01 02 03 04 05 06 07 00 FF 01 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 D2 27 ED 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
20 20 03 01 00 FF 00 AA 00 00 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0D A6 13 80 14 40 3F 80 00 AE 03 E8 30 30 30 30

Bootloader
Commands

Checksum for
this segment

Hex address corresponding
to TWO_Block_
Relocatable_Interrupt_Table
(wraps to next line)

Application checksum
calculated by the
bootloader

Calculated application
size in blocks

BootLdrI2C_ver
parameter

Hex address
corresponding to
App_Start

Hex address
corresponding to
App_End Checksum of the

remainder of the block

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_48
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_48

USBFS Bootloader

Document Number: 001-13259 Rev. *B Revised October 2, 2007 Page 49 of 49
© Cypress Semiconductor Corporation, 2007. The Source Code in this document is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent
protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to
copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee
product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this
Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

The second packet of the checksum block begins as all other packets but the only data that it contains is
the application checksum and the segment checksum in line three.
The checksum block is followed immediately by Bootloader Exit command:

The bootloader exit command consists of the bootloader exit command 0xFF3B, and the bootloader key.
The last packet is a final status response.

Packet data (BULK OUT):
FF 3B 00 01 02 03 04 05 06 07 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Status data (BULK IN):
21 21 03 01 00 00 00 AA 00 00 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0D A6 13 80 14 40 3F 80 00 AE 03 E8 30 30 30 30

Bootloader key
Bootloader
command

Status
response

Empty data

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_49
http://ccc01.opinionlab.com/o.asp?id=&prev=docurate_BootLdrUSBFS_pdf_p_49

	USBFS Bootloader
	Features and Overview
	Functional Description
	Quick Start
	Theory of Operation
	Overview
	Definition of Memory Areas in the User Module Parameters
	Bootloader Utility
	Bootloader Tools
	Checksum Semiautomatic Generation
	Special Files Provided
	USB Descriptors
	USB Compliance for Self Powered Devices

	Bootloader VID and PID
	Block Entry of Parameters
	Host Application Debugging

	Timing
	USBFS Setup Wizard
	Parameters
	TWO_Block Relocatable_Interrupt_Table
	ApplicationCode_Start_Block
	Last_Application_Block
	Application_Checksum_Block
	Bootloader_Start_Block
	Bootloader_Size
	Bootloader_Key
	Flash_Program_Temperature_Deg_C
	ICE_Debug_Flash_DISABLE
	BootLdrUSBFS_ver

	Common Problems
	Internal use of the Watch Dog Timer
	Improper Settings in Flashsecurity.txt
	Incorrect Relocatable Code Start Address (Linker Parameter)
	Memory Overlap
	Power Stability
	Downloading a New File Causes the Device to Stop Working

	Application Programming Interface
	Bootloader APIs
	USBFS APIs
	BootLdrUSBFS _Start (user defined application device)
	BootLdrUSBFS _Start (bootloader device) 0xFF
	BootLdrUSBFS _Stop
	BootLdrUSBFS _bCheckActivity
	BootLdrUSBFS _bGetConfiguration
	BootLdrUSBFS _bGetEPState
	BootLdrUSBFS _bGetEPAckState
	BootLdrUSBFS _wGetEPCount
	BootLdrUSBFS _LoadInEP
	BootLdrUSBFS _LoadInISOCEP
	BootLdrUSBFS _bReadOutEP
	BootLdrUSBFS _EnableOutEP
	USBFS_EnableOutISOCEP
	BootLdrUSBFS _DisableOutEP
	BootLdrUSBFS _Force
	BootLdrUSBFS _UpdateHIDTimer
	BootLdrUSBFS _bGetProtocol

	Sample Code
	USB Standard Device Requests
	HID Class Request
	USB Standard Device Requests
	HID Class Request
	USBFS Setup Wizard
	Understanding the USB Setup Wizard
	USB Suspend, Resume, and Remote Wakeup
	Creating Vendor Specific Device Requests and Overriding Existing Requests
	Customizing the HID Class Report Storage Area

	Appendix
	Bootloader USB Download Protocol

