

Analog - Simple PC Oscilloscope
(Using TX8 and SAR6)

February 11, 2003 Document No. 001-38004 Rev. ** 1

AN2106
Author: Mehmet Zeki SONMEZ

Associated Project: Yes
Associated Part Family: CY8C25xxx, CY8C26xxx

GET FREE SAMPLES HERE

Software Version: NA
Associated Application Notes: None

Application Note Abstract
This project illustrates how to convert analog information to digital information and then send it to the PC via RS232 using an
8-bit serial transmitter. Software is also included in the project file for data logging and drawing the incoming signal shape.
Before transmitting data to a PC we will use the PSoC® Pup hardware to understand the 8-bit serial transmitter (TX8)
operations. For more details on the SAR6 User Module, see AN2093, Keypad Scan using ADC (SAR6).

Introduction
For asynchronous serial communication, the data stream
is composed of a start bit, actual data, parity bit (optional),
and a stop bit.

Examine Figure 1 for the data 01101001 (69h) and one
parity bit:

Figure 1

Before sending the actual data, a start bit is sent to the
receiver. This informs the receiver that the next 8 bits will
be the actual data. Because the receiver and transmitter
work with the same baud rates, the receiver will know how
much time passes before the next bit comes. For example,
if the baud rate is 9600 bits per second, the receiver will
read the next bit every 1/9600 second later.

Once the receiver has the 8-bit data (69h, in our example),
the next bit will be the parity bit. The receiver will use the
parity bit if incoming data is correct or not.

The final bit will be the stop bit, which informs the receiver
that the incoming byte has finished. The receiver will not
read data until a new start bit is initiated.

Examine Figure 2 for the data 01101001 (69h) but this
time no parity bit is used:

Figure 2

8-Bit Serial Transmitter TX8
TX8 is an 8-bit serial transmitter, which is convenient for
RS232 data format. Load the data to the Accumulator A
and send it by using one command! Following are detailed
descriptions of how you can use it.

0

1

0 0

1

0

1 1

0

1

MSB

LSB

data

0

1

0 0

1

0

1 1

0 or 1 0

1

MSB
Start Bit

Stop Bit LSB

data

Stop Bit

Parity Bit

Start Bit

[+] Feedback [+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_1

AN2106

Determining Baud Rate of TX8
The clock of TX8 must be eight times the baud rate. For
example, if the baud rate of serial transmission is 9600
bps, then the input clock of the TX8 has to be 8x9600 =
76800 Hz. Using the Counter or PWM User Module as a
divider, we can get this frequency:

Input Clock of TX8 = 8 x Baud Rate

Project 1: PSoC Pup Project
For better understanding and visual perception we will use
the PSoC Pup hardware and adjust the baud rate as
minimum so we can see with our eyes what actually
happens. This project can be found in prj1_tx8_pup
directory in the project files of this Application Note.

For this particular project, we will use a 16-bit PWM and a
TX8 User Module.

Adjust Global Parameters
24V1 = 16

24V2 = 16

24V1 is now 24 MHz / 16 1.5 MHz

24V2 is now 1.5 MHz / 16 93.75 kHz

Adjust PWM16 Parameters:
Place PWM16 at DBA02 and DBA03 blocks.

 Clock = 24V2

 Enable = High

 Period = 65535

 PulseWidth = 32768

 CompareType = Less than or equal

 InterruptType = Terminal Count

 Output = Global_OUT_0

Output of PWM is now:

 24V2 / 65535

 93.75 kHz/ 65536 1.4305 Hz

This will be the input for TX8. Remember that:

 Input Clock of TX8 = 8 x Baud Rate.

 1.4305 Hz = 8 x Baud Rate.

 Baud Rate = 0.1788 bps! (This is a very slow transfer
rate but our aim is watching bits on the LEDs.)

Adjust TX8 Parameters
Place TX8 at DCA04.

 Clock = DBA03

 Output = Global_Out_4

 Parity = None

Adjust Pin Configurations
PORT2_0 = Global_Out_0 STRONG

PORT2_4 = Global_Out_4 STRONG

We will use Port2_0 for watching the clock on LED 10 of
the PSoC Pup and we will use Port2_4 for watching serial
transmission on LED 6. See AN2011, PSoC_Pup Example
Projects, for PSoC Pup hardware schematic.

For graphical view of the User Modules for this project see
Figure 3.

Here is the main.asm file:

include "m8c.inc"
include "TX8_1.inc"

export _main

_main
//Place a breakpoint here

:

 call TX8_1_Start
 call PWM16_1_Start

 mov A,47h
 call TX8_1_SendData
 ret

February 11, 2003 Document No. 001-38004 Rev. ** 2

[+] Feedback [+] Feedback

http://www.cypressmicro.com/support/appnotes/an2011.pdf
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_2

AN2106

Figure 3

Now place a breakpoint to the first line after _main and
run your project step by step. While you pass call
PWM16_1_Start, the LED on the Pup will flash (that is the
clock of the TX8). Now run again and observe the LEDs
for the transmitting data (47h).

Note LED 6 (output of TX) changes in every eight clocks.

TX output LED will be ON in the first 16-clock period (LED
10 will flash 16 times). Then logic 0 comes (start bit), after
that the data and finally the stop bit will come. Note that
the first bit of the data sent is the least significant bit.
Observe the diagram in Figure 4.

Figure 4

nth

Clock
Led 6
TX Output

1 -
1 -
0 – Start Bit

1 – Bit 0 (LSB)
1 – Bit 1
1 – Bit 2
0 – Bit 3

0 – Bit 4
0 – Bit 5
1 – Bit 6
0 – Bit 7(MSB)

1 – Stop Bit

 7h

 4h

 47h

0
8
16

24
32
40
48

56
64
72
80

88

February 11, 2003 Document No. 001-38004 Rev. ** 3

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_3

AN2106

Project 2: Sending Data to PC
We will use the datalogger software that is included in the
project file to see the data received from PSoC.

Before we start our project we have to determine the rules
for serial communication. We will use the following rules:

 Baud Rate: 300 bps

 8 Data Bit

 1 Stop Bit

 No Parity

Both the transmitter (PSoC) and the receiver (PC) must
obey these rules. Otherwise, data cannot be transmitted
correctly.

For a 300 bps baud rate we need 8x300 bps = 2400 Hz for
input clock of TX8.

This time an 8-bit PWM is enough for getting 2400 Hz. We
will divide 93750 kHz by 39 to get 2400 Hz. Placement of
the User Modules is shown in Figure 5. Here are the
parameters:

Adjust Global Parameters
24V1 = 16

24V2 = 16

24V1 is now 24 MHz / 16 1.5 MHz

24V2 is now 1.5 MHz / 16 93.75 kHz

Adjust PWM8 Parameters
Place PWM8 at DBA03.

 Clock = 24V2

 Enable = High

 Period = 38

 PulseWidth = 19

 CompareType = Less than or equal

 InterruptType = Terminal Count

 Output = None

Output of PWM is now:

 24V2 / 39

 93.75 kHz / 39 2403.8 Hz

This will be the input of TX8. Remember that:

 Input Clock of TX8 = 8 x Baud Rate.

 2403.8 Hz = 8 x Baud Rate.

 Baud Rate = 300 bps.

Adjust TX8 Parameters
Place TX8 at DCA04.

 Clock = DBA03

 Output = Global_Out_4

 Parity = None

Adjust Pin Configurations
PORT1_4 = Global_Out_4 STRONG

(Pin17 for 26443)

Now we will send “I LOVE PSoC” to the PC. ASCII
Character Map can be found in the Appendix.

I 49h

Space A0h

L 4Ch

O 4Fh

V 56h

E 45h

Space A0h

P 50h

S 53h

o 6Fh

C 43h

Space A0h

A table can be formed in order to simplify the assembler
code.

Mytable:

db 49h , A0h , 4Ch , 4Fh , 56h , 45h , A0h , 50h , 53h ,
6Fh , 43h , A0h

We use the following code to check if the byte is sent:

call TX8_1_SendData ;Send A to
receiver
TXnotready:
call bTX8_1_ReadTxStatus
and A, TX8_TX_COMPLETE
jz TXnotready

February 11, 2003 Document No. 001-38004 Rev. ** 4

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_4

AN2106

February 11, 2003 Document No. 001-38004 Rev. ** 5

You can do this: When a series of bytes is sending to the receiver it is
necessary to check if the current byte has been sent to the
receiver. In other words, if TX8 is completed the
transmission for the current byte. Otherwise, if you do not
check for the completion, then TX8 will not work correctly.

mov A,10h
call TX8_1_SendData ;Send A to
receiver
TXnotready:
call bTX8_1_ReadTxStatus You cannot do this:
and A,TX8_TX_COMPLETE

mov A,10h jz TXnotready
call TX8_1_SendData ;Send A to
receiver

mov A,20h
call TX8_1_SendData ;Send A to
receiver mov A,20h

call TX8_1_SendData ;Send A to
receiver

20h will probably not transmit so we have to add a check
progress to code.

include "tx8_1.inc"
include "pwm8_1.inc"
include "m8c.inc"
export _main
_main:

temp: equ 00h ;[temp] or [00] will store number n(nth element of the table)

call PWM8_1_Start
call TX8_1_Start

send_table:

mov [temp],0 ;First element of the table will be loaded in to accumulator A

send_next_byte:

mov A,[00] ;Load the element number of the table to A
index MyTable ;Retrieve the relevant element from the table to accumulator A
call TX8_1_SendData ;Send the accumulator A value to PC

TXnotready: ;Check if the byte is sent to the receiver?
call bTX8_1_ReadTxStatus
and A, TX8_TX_COMPLETE
jz TXnotready ;No it is still sending , check again if progress is complete

;Data(1 Byte)is sent now. Check if we are at the end of the Table?
;If no Retrieve the next element of the Mytable and send it to PC

cmp [00],11 ;Are we at the end of the Mytable?
jz send_table ;Yes send the whole table to PC again

;No there are still some elements which should be sent
;Then send the next element to PC

inc [00]
jmp send_next_byte

MyTable:
 db 49h,A0h,4Ch,4Fh,56h,45h,A0h,50h,53h,6Fh,43h,A0h ;data sent to TX
; I spc L O V E spc P S o C space

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_5

AN2106

Figure 5

Now configure your hardware according to Schematic 1,
which is at the end of this Application Note. Then run your
project at the same time with datalogger software.

Select which COM port you use and set the baud rate as
300 bps. Then click on the ‘Open Port ‘ button.

You will see the incoming data from PSoC in the box in
the software as shown in Figure 6:

Figure 6

Note When you click on ‘Open Port’, a file is created at
C:\psocdata.txt. When you click on ‘Close Port’ the
content of the memo box is stored to C:\psocdata.txt.
You can use this file in your particular projects.

Project 3: Simple PC Oscilloscope
Implementing the hardware of this PC-based oscilloscope
is very easy. All we do is sample the analog signal and
convert it to digital, finally sending the digital code to the
PC. The software datalogger gets the digital code and
draws the approximate incoming signal shape. Because
datalogger software stores the incoming data in file
C:\psocdata.txt you can use this file to design your
own software.

The Idea
SAR6 (ADC) gets the analog signal from Port_0_2 by
using a buffer (PGA, gain=1) and then converts the analog
signal to digital code. These digital code bytes are stored
into the RAM area of the PSoC and placed in addresses
from 0x02 to 0xEF.

Once the RAM area is filled (when the last data is stored
to EFh), all stored bytes are sent to the PC at 111111 bps.
Because this takes some time, PSoC cannot perform the
analog to digital conversion and will miss some signals
when it is sending data to the PC. Thus, the drawn signal
in the datalogger is intermittent. By using an appropriate
algorithm on the PC side, you can improve the signal
shape (for periodic signals) and add zoom-in, zoom-out
properties.

Here are the parameters for this project:

Adjust Global Parameters
24V1 = 3

24V2 = 9

Ref Mux = (Vcc/2)±(Vcc/2)

All other global parameters are default values. You can
check them in the prj_3_pc_osc files.

24V1 is now 24 MHz / 3 8 MHz

24V2 is now 8 MHz / 9 888.888 kHz

Adjust TX8 Parameters
Place TX8 at DCA04.

 Clock = 24V2

 Output = Global_out_4

 Parity = None

 InterruptAPI = Disable

888.888 kHz / 8 = 111111 bps (Baud Rate)

Adjust PGA Parameters
Place PGA at ACA03.

 Gain = 1

 Input = AnalogColumn_InputMUX_3

 Select Port_0_2 in AlnMux_3

 Reference = AGND

 AnalogBus = Disable

February 11, 2003 Document No. 001-38004 Rev. ** 6

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_6

AN2106

February 11, 2003 Document No. 001-38004 Rev. ** 7

Adjust SAR6 Parameters We send a sign, which is the ASCII character 2 (decimal
code of ‘2 ‘is 50), after each array of bytes (data in RAM
[0x02-0xEF]) is sent to the PC. So the PC knows that
there will be a delay for the next-coming bytes when it
receives the sign. Because of this, the graph drawn is
intermittent.

Place SAR6 at ASB13.

 SignalSource = ACA03

 ClockPhase = Normal
Another point is that the SAR6 produce values between
[-31 and 31] and the ASCII characters start from 33
(decimal). Datalogger software cannot understand if PSoC
is sending a value between 0 and 31 because the
mentioned range does not include ASCII characters.

Select 24V2 for AnalogColumnClock_3

Pin Configuration
Configure Port_0_2 as Analoginput HigZ

Configure Port_1_4 as Global_out_4 Strong Thus, a simple code is used to add 33 to the converted
digital code, providing that it is in the range of 0-31. See Figure 7 for User Module placement view:
For example, if the amplitude for the analog signal is 2.5
V, which is equal to the reference, the SAR6 will produce
00h. This 00h will be added with 33. Thus, 33 will
represent 00h and 34 will represent 01h, 35 will represent
02h, and so on. If the digital code that is produced is
between -31 and -1 or between E1h and FFh, it will not be
converted to another code because that code represents
the ASCII characters. ASCII characters run from 33 to
255.

Figure 7

You can find ASCII characters and their code in the
Appendix.

The detailed description can be found in the assembler
code on the next page.

After configuring the hardware, as seen in Schematic 2 at
the end of this Application Note, run the datalogger
software and run your project. Configure the COM port
and adjust the baud rate to 111111 bps. Then click on
‘Open Port’ to retrieve data. Note that the analog signal is
measured by port_0_2 and must be between 0 V-5 V. The
best graph can be obtained near 1 kHz frequencies. See
Figure 8 for a screenshot of the datalogger software
measuring a 1 kHz square wave.

As a reminder, the captured data with ASCII character ’2’s
decimal value = 50 (showing new array of bytes) is stored
to C:\psocdata.txt file. You can write your own
software or use this software for your serial
communication projects.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_7

AN2106

include "SAR6_1.inc"
include "PGA_1.inc"
include "TX8_1.inc"
include "m8c.inc"
export _main
area bss(RAM)
 buffer: BLK F0h ;Captured data is stored in this RAM block
area text(ROM,REL)
_main:
temp: equ 00h
 mov A,PGA_1_HIGHPOWER
 call PGA_1_Start
 call TX8_1_Start
 mov A,SAR6_1_HIGHPOWER
 call SAR6_1_Start
sampleagain:
 mov X,01h ;Ram[01] will hold the 50-->ASCII character '2'. This is a sign that
 mov [x],50 ;informs the PC a new array of bytes is coming. PC will draw the graph
 ;after a little interval.
 inc x ;Ready for writing data to RAM[02]
 store:
 call SAR6_1_GetSample ;This will get the output byte of SAR6 to A
 mov [temp],A ;Retrieved data is stored to temporary RAM area
 sub A,32 ; ;Is the retrieved data between 0 and 31?
 jnc goon ;No it is not, then this is an ASCII character, no problem.
 add [temp],33 ;Yes, the retrieved data is between 0 and 31. Then add 33 to this
data
 ;so we can make it an ASCII character

goon:
 mov A,[temp] ;Captured data is loaded to A again.
 mov [X],A ;Store the retrieved byte to the RAM location
 inc X ;Ready for next byte
 mov A,X ;Load Index register to A
 cmp A,F0h ;Check if the RAM is full of retrieved data?
 jnz store ;No we have empty RAM areas which should be filled with retrieved bytes

;RAM area[02-EF] is filled with digital codes of analog signal
;Now it is time to send these bytes to PC
;PSoC will miss some of data while it is sending the stored bytes

 mov X,00h ;Index register shows RAM[00]
send:
 inc X ;Go to the next RAM address. Note that RAM[01] includes a sign
 ;which means it is the beginning of a new array of bytes.
 mov A,X
 cmp A,F0h ;Check if PSoC has completed the process(serial transmission of bytes)
 jz sampleagain ;If yes, then sample and store the next bytes for incoming signal

mov A,[X] ;If the process is not finished yet then load the byte which will be sent
call TX8_1_SendData ;send the byte to receiver

isitready: ;Check if the serial transmission of the current byte is finished?
 call bTX8_1_ReadTxStatus
 and A, TX8_TX_COMPLETE
 jz isitready ;If PSoC still sending the current byte then wait until it is
ready for next byte

jmp send ;Send the next byte to the PC

 ret

February 11, 2003 Document No. 001-38004 Rev. ** 8

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_8
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_8

AN2106

Figure 8

Schematic 1 (Sending Data to PC)

February 11, 2003 Document No. 001-38004 Rev. ** 9

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_9
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_9

AN2106

Schematic 2 (PC Oscilloscope)

The schematics are almost the same. The only difference is in Schematic 2 (PC Oscilloscope) pin 25 (port_0_2) is configured
as analog input so we can capture the analog signals.

February 11, 2003 Document No. 001-38004 Rev. ** 10

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_10
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_10

AN2106

Appendix. ASCII Character Map

Decimal Character Binary Hex Decimal Character Binary Hex
33 ! 100001 21 91 [1011011 5B
34 " 100010 22 92 \ 1011100 5C
35 # 100011 23 93] 1011101 5D
36 $ 100100 24 94 ^ 1011110 5E
37 % 100101 25 95 _ 1011111 5F
38 & 100110 26 96 ` 1100000 60
39 ' 100111 27 97 a 1100001 61
40 (101000 28 98 b 1100010 62
41) 101001 29 99 c 1100011 63
42 * 101010 2A 100 d 1100100 64
43 + 101011 2B 101 e 1100101 65
44 , 101100 2C 102 f 1100110 66
45 - 101101 2D 103 g 1100111 67
46 . 101110 2E 104 h 1101000 68
47 / 101111 2F 105 i 1101001 69
48 0 110000 30 106 j 1101010 6A
49 1 110001 31 107 k 1101011 6B
50 2 110010 32 108 l 1101100 6C
51 3 110011 33 109 m 1101101 6D
52 4 110100 34 110 n 1101110 6E
53 5 110101 35 111 o 1101111 6F
54 6 110110 36 112 p 1110000 70
55 7 110111 37 113 q 1110001 71
56 8 111000 38 114 r 1110010 72
57 9 111001 39 115 s 1110011 73
58 : 111010 3A 116 t 1110100 74
59 ; 111011 3B 117 u 1110101 75
60 < 111100 3C 118 v 1110110 76
61 = 111101 3D 119 w 1110111 77
62 > 111110 3E 120 x 1111000 78
63 ? 111111 3F 121 y 1111001 79
64 @ 1000000 40 122 z 1111010 7A
65 A 1000001 41 123 { 1111011 7B
66 B 1000010 42 124 | 1111100 7C
67 C 1000011 43 125 } 1111101 7D
68 D 1000100 44 126 ~ 1111110 7E
69 E 1000101 45 127 • 1111111 7F
70 F 1000110 46 128 • 10000000 80
71 G 1000111 47 129 • 10000001 81
72 H 1001000 48 130 • 10000010 82
73 I 1001001 49 131 • 10000011 83
74 J 1001010 4A 132 • 10000100 84
75 K 1001011 4B 133 • 10000101 85
76 L 1001100 4C 134 • 10000110 86
77 M 1001101 4D 135 • 10000111 87
78 N 1001110 4E 136 • 10001000 88
79 O 1001111 4F 137 • 10001001 89
80 P 1010000 50 138 • 10001010 8A
81 Q 1010001 51 139 • 10001011 8B
82 R 1010010 52 140 • 10001100 8C
83 S 1010011 53 141 • 10001101 8D
84 T 1010100 54 142 • 10001110 8E
85 U 1010101 55 143 • 10001111 8F
86 V 1010110 56 144 • 10010000 90
87 W 1010111 57 145 • 10010001 91
88 X 1011000 58 146 • 10010010 92
89 Y 1011001 59 147 • 10010011 93
90 Z 1011010 5A 148 • 10010100 94

February 11, 2003 Document No. 001-38004 Rev. ** 11

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_11
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_11

AN2106

February 11, 2003 Document No. 001-38004 Rev. ** 12

Decimal Character Binary Hex Decimal Character Binary Hex
149 • 10010101 95 203 Ë 11001011 CB
150 • 10010110 96 204 Ì 11001100 CC
151 • 10010111 97 205 Í 11001101 CD
152 • 10011000 98 206 Î 11001110 CE
153 • 10011001 99 207 Ï 11001111 CF
154 • 10011010 9A 208 Ğ 11010000 D0
155 • 10011011 9B 209 Ñ 11010001 D1
156 • 10011100 9C 210 Ò 11010010 D2
157 • 10011101 9D 211 Ó 11010011 D3
158 • 10011110 9E 212 Ô 11010100 D4
159 • 10011111 9F 213 Õ 11010101 D5
160 10100000 A0 214 Ö 11010110 D6
161 ¡ 10100001 A1 215 × 11010111 D7
162 ¢ 10100010 A2 216 Ø 11011000 D8
163 £ 10100011 A3 217 Ù 11011001 D9
164 ¤ 10100100 A4 218 Ú 11011010 DA
165 ¥ 10100101 A5 219 Û 11011011 DB
166 ¦ 10100110 A6 220 Ü 11011100 DC
167 § 10100111 A7 221 İ 11011101 DD
168 ¨ 10101000 A8 222 Ş 11011110 DE
169 © 10101001 A9 223 ß 11011111 DF
170 ª 10101010 AA 224 à 11100000 E0
171 « 10101011 AB 225 á 11100001 E1
172 ¬ 10101100 AC 226 â 11100010 E2
173 - 10101101 AD 227 ã 11100011 E3
174 ® 10101110 AE 228 ä 11100100 E4
175 ¯ 10101111 AF 229 å 11100101 E5
176 ° 10110000 B0 230 æ 11100110 E6
177 ± 10110001 B1 231 ç 11100111 E7
178 ² 10110010 B2 232 è 11101000 E8
179 ³ 10110011 B3 233 é 11101001 E9
180 ´ 10110100 B4 234 ê 11101010 EA
181 µ 10110101 B5 235 ë 11101011 EB
182 ¶ 10110110 B6 236 ì 11101100 EC
183 • 10110111 B7 237 í 11101101 ED
184 ¸ 10111000 B8 238 î 11101110 EE
185 ¹ 10111001 B9 239 ï 11101111 EF
186 º 10111010 BA 240 ğ 11110000 F0
187 » 10111011 BB 241 ñ 11110001 F1
188 ¼ 10111100 BC 242 ò 11110010 F2
189 ½ 10111101 BD 243 ó 11110011 F3
190 ¾ 10111110 BE 244 ô 11110100 F4
191 ¿ 10111111 BF 245 õ 11110101 F5
192 À 11000000 C0 246 ö 11110110 F6
193 Á 11000001 C1 247 ÷ 11110111 F7
194 Â 11000010 C2 248 ø 11111000 F8
195 Ã 11000011 C3 249 ù 11111001 F9
196 Ä 11000100 C4 250 ú 11111010 FA
197 Å 11000101 C5 251 û 11111011 FB
198 Æ 11000110 C6 252 ü 11111100 FC
199 Ç 11000111 C7 253 ı 11111101 FD
200 È 11001000 C8 254 ş 11111110 FE
201 É 11001001 C9 255 ÿ 11111111 FF

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_12
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_12

AN2106

About the Author
Name: Mehmet Zeki SONMEZ

Title: Yeditepe University: Electrical &
Electronics Engineering
Student & Student Assistant
(last year).

Background: M. Zeki Sonmez is interested in
design of both analog and
digital (including
microcontrollers) circuits. In the
near future his area of interest
will be RF Identification.

Contact: zeki@sonmezticaret.com or
mzsonmez@hotpop.com
http://electronicsclub.cjb.net

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2003-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

February 11, 2003 Document No. 001-38004 Rev. ** 13

[+] Feedback [+] Feedback

mailto:zeki@sonmezticaret.com
mailto:mzsonmez@hotpop.com
http://electronicsclub.cjb.net/
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-38004_pdf_p_13
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_analog___simple_pc_oscilloscope__using_tx8_and_sar6____an2106_12_pdf_p_13

	Application Note Abstract
	Introduction
	8-Bit Serial Transmitter TX8
	Determining Baud Rate of TX8

	Project 1: PSoC Pup Project
	Adjust Global Parameters
	Adjust PWM16 Parameters:
	Adjust TX8 Parameters
	Adjust Pin Configurations

	Project 2: Sending Data to PC
	Adjust Global Parameters
	Adjust PWM8 Parameters
	Adjust TX8 Parameters
	Adjust Pin Configurations

	Project 3: Simple PC Oscilloscope
	The Idea
	Adjust Global Parameters
	Adjust TX8 Parameters
	Adjust PGA Parameters
	Adjust SAR6 Parameters
	Pin Configuration

	Schematic 1 (Sending Data to PC)
	Schematic 2 (PC Oscilloscope)
	Appendix. ASCII Character Map
	About the Author

