

Gyro sensor MEV series

Sensor Products Eng. Sec. I Sensor Products Dept. Murata MFG., Co. LTD. Mar 2008

Structure of MEV-50A

Schematic Structure of MEMS Element

External structure

External electrodes

All Rights Reserved, Copyright Murata Manufacturing Co., Ltd.

Electrical characteristics

Unless otherwise specified, ambient temperature Ta = 25+/-5°C, Vcc = 5.0 VDC Use the load resistor of 100k ohm or more, connecting to the sensor output terminal.

Item	Symbol	Condition	MIN.	STD.	MAX.	Unit
Zero point output	Vo	at -40~85°C	2.20	2.50	2.80	v
Scale factor	Sv	at -40~85°C	23.25	25.0	26.75	mV/(deg/s)
Maximum output voltage			Vcc-0.3			v
Minimum output voltage					0.3	v
Linearity-error			-0.5		0.5	%FS
Output noise					10	mVp-p
Startup time		(see Note1)			1	s
Start up drift		1s ~ 5minutes	-0.4		0.4	deg/s
		1s ~ 15minutes	-0.8		0.8	deg/s
Temp. drift		at -40 ~ 85°C			6	deg/s
Temp. drift gradient		at -40 ~ 85°C	-0.5 -1.0		0.5 1.0	(deg/s)/2°C (deg/s)/8°C
Temp. coefficient Scale factor		reference : Ta at -40 ~ 85°C	-4		4	%
Frequency response (Frequency vs. Gain)		gain at 7Hz	-4.0		-1.0	dB
Cross axis sensitivity		on each X,Y axis	-5		5	%
Ratiometric for zero point output	Rvo	at 4.75~5.25V (Note2)	0.8		1.2	
Ratiometric for scale factor	Rsv	at 4.75~5.25V (Note3)	0.8		1.2	
Acceleration sensitivity under the vibrational condition (Note 4)		at 10~2,000Hz, 21.56m/s^2 (2.2G) X, Y, Z axis	-1		1	deg/s

Vcc variation = (5.25-4.75) / 5.0 = 0.1 (Note 4) Measurement errors, such as output noise, a

(Note 4) Measurement errors, such as output noise, angular velocity unexpectedly generated by vibration machine, should not be considered to be acceleration sensitivity. Only DC voltage level, which does not contain the measurement errors, should be measured in this specification.

(Note1) After the power on, monitor a time that zero point output has been within +/-12.5mV against

zero point output value of being steady.

(Note2) Ratiometric of zero point output (Rvo) is prescribed as follow formula, Rvo = Vo variation / Vcc variation Vo variation = {Vo(5.25)-Vo(4.75)} / V0(5.0) Vcc variation = (5.25-4.75) / 5.0 = 0.1 (Note3) Ratiometric of scale factor (Rsv) is prescribed as follow formula, Rsv = Sv variation / Vcc variation Sv variation = {Sv(5.25)-Sv(4.75)} / V0(5.0)

All Rights Reserved, Copyright@ Murata Manufacturing Co., Ltd.

Max. angular velocity

Item	MIN	TYP	MAX	Unit	Conditions
Operating range of angular velocity	-70		70	deg/s	
Supply voltage	4.75	5.00	5.25	V	•
Current consumption			8	mA	see Note 2
Operating temp. range	-40		85	°C	

(Note 2) Non-load condition to the sensor output.

Operating range of angular velocity over temperature

Vcc	Saturation	nofoutput	Zero point output		Scale factor	Max angular velocity	
	LOW	HIGH	LOW	HIGH	MAX.	CCW	CW
5.250	0.300	4.950	2.310	2.940	28.088	-71.6	71.6
5.000	0.300	4.700	2.200	2.800	26.750	-71.0	71.0
4.750	0.300	4.450	2.090	2.660	25.413	-70.4	70.4
[V]	[V]	[V]	[V]	[V]	[mV/(deg/s)]	[deg/s]	[deg/s]

ex. Vcc=5V CCW = (0.300-2.200)*1000/26.75 = -71.0deg/s

Confidential

Characteristics (Temperature stability) market in Electronics

Note) Reference only

Confidential

Characteristics (Start up stability)

Note) Reference only

Confidential Characteristics (Output Noise, Over all)

	Temperature drift	Variation of scale factor	Start up drift	Start up time	Output noise
	deg/s	%	deg/s	sec	mVp−p
AVG	0.60	0.53	0.12	0.27	3.92
σ	0.27	0.21	0.03	0.06	0.41
max	1.42	1.17	0.20	0.38	5.28
min	0.26	0.21	0.06	0.06	3.08

	Tem. drift Gradient deg/s/2°C	Tem. drift Gradient deg/s/8°C
AVG	0.13	0.20
σ	0.01	0.05
max	0.15	0.34
min	0.12	0.13

N=37

Temperature Rang: -40 to 85 degC

Recommendable external circuit information

RL and R must be placed to the Vout terminal as closely as possible.

C1, C2:

C1 and/or C2 is for noise elimination purpose on a power supply line used in the system. Please choose appropriate value for that.

RL:

RL must be used as a load resistor of 100k ohm (or over).

Cs:

Please do NOT connect a parallel capacitor "Cs" to the VOUT terminal of gyro. In case Cs is necessarily used, please make sure that the total capacitance never exceed 15pF, that may include stray capacitance possibly appeared on a signal line in between VOUT and A/D converter.

R:

The stray capacitance might relatively increase, as the line-distance in between VOUT and A/D gets longer. If it will be totally 15pF or over, a series resistor "R" should be used to effectively reduce such a stray capacitance. R should better be mounted as closely as possible to VOUT, and must be one thousandth or less of input impedance of A/D. For the reference, R=2k ohm is recommended.

C3:

C3 may be used to eliminate a high frequency noise, but please note that a low-pass filter, which is made by a combination of R and C3, causes phase delay, in other words, delay on response characteristic.

Thank you very much for your attention!

