
7817A–AVR32–08/08

32-bit
Microcontroller

Application Note
AVR32709: AVR32 UC3 Audio Decoder Over USB
on AT32UC3A0512 or AT32UC3A1512

Features
• Software MP3 Decoder
• FAT File System
• Music played over USB (USB Host mass storage class)
• Standalone - Low Memory Footprint (Code & RAM)
• Audio output over I2S using SSC controller
• Local Control with Joystick

1. Introduction
This application note will help the reader to use the AVR32® UC3 Audio Decoder over
USB software. This software includes a software MP3 decoder, a file system, and a
USB Host mass storage class support.

The solution presented here in this application is based on Atmel AVR32 UC3A0/A1
microcontroller.

For more information about the AVR32 architecture, please refer to the appropriate
documents available from http://www.atmel.com/avr32.

2. License
The MP3 decoder MAD is distributed under the terms of the GPL. Its redistribution is
not generally restricted, as long as the terms of the GPL are followed. This means
MAD can be incorporated into other software as long as that software is also distrib-
uted under the GPL. (Should this be undesirable, alternate arrangements may be
possible by contacting Underbit.)

© Underbit Technologies, Inc. <support@underbit.com>

For more information about codec licensing, please read the application note
AVR32722: How to licence audio and video codecs.

3. Requirements
The software provided with this application note requires several components:

• A computer running Microsoft® Windows® 2000/XP/Vista or Linux®

• AVR32Studio and the GNU toolchain (GCC) or IAR Embedded Workbench for
AVR32 compiler.

• A JTAGICE mkII or AVROne! debugger

http://www.atmel.com/avr32

4. Theory of Operation

4.1 Overview
Today, embedded MP3 decoders are everywhere for consumers listening to audio content on
mobile devices.

4.1.1 MP3
MPEG-1 Audio Layer 3, more commonly referred to as MP3, is a digital audio encoding format
using a form of lossy data compression. Several bit rates are specified in the MPEG-1 Layer 3
standard: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256 and 320 Kbit/s, and the avail-
able sampling frequencies are 32, 44.1 and 48 KHz. A sample rate of 44.1 KHz is almost always
used. 128 Kbit/s bitrate files are slowly being replaced with higher bitrates like 192 Kbit/s, with
some being encoded up to MP3's maximum of 320 Kbit/s.

A tag in a compressed audio file is a section of the file that contains metadata such as the title,
artist, album, track number or other information about the file's contents.

The chosen MP3 decoder here is MAD (libmad), a high-quality MPEG audio decoder. It currently
supports MPEG-1 and the MPEG-2 extension to Lower Sampling Frequencies, as well as the
so-called MPEG 2.5 format. All three audio layers (Layer I, Layer II, and Layer III a.k.a. MP3) are
fully implemented. MAD does not yet support MPEG-2 multichannel audio (although it should be
backward compatible with such streams).

4.2 Block diagram
The following block diagram describes the UC3 interfacing the USB stick and output the audio
stream from the key to the external DAC. The user can control the player using a keypad, run-
ning a customisable Human-Machine Interface (HMI).

Figure 4-1. Block diagram

4.3 Software architecture
The following figure shows the basic software architecture of the application:

DACSSC/I2SUSB

keypad

LCD

AT32UC3A0512 (512K flash, 64 K RAM)
2
7817A–AVR32–08/08

AVR32709

AVR32709
Figure 4-2. Software architecture

The application does not require any operating system to run. The main() function is in charge of
calling the software «tasks» (using a scheduler) that make audio decoding, HMI, and USB man-
agement possible. There are 4 tasks:

• The communication task (shown in bold on the graph) contains the HMI of the application.
This task holds the real intelligence of the user application and interfaces directly with
the Audio Interface. This is the task that the user should modify for his own
application.

• The Codec Task: This task is in charge of the Audio Decoding management.
• The USB task: This task handles the USB stack and events.
• The Host Mass Storage task: This task will check for new devices connection and initialize

them using the USB Mass Storage class.
The main loop of the application is a simple free-running task scheduler:

while (TRUE)
 {
 usb_task();
 host_mass_storage_task();
 com_task();
 codec_task();
 }

Note that the Audio Interface can also support iPod® audio decoding through the USB Audio
class. Please refer to the «AVR32730: AVR32 UC3 iPod Support Over USB on
AT32UC3A0512» application note for more information.

Mass Storage
Audio interface

ai_usb_ms.c

Audio Interface
audio_interface.c

USB Host
task

usb_host_task.c

Audio Player application
main.c

DRIVERS
usart.c spi.c twi.c ssc_i2s.c flashc.c pm.c gpio.c

USB Task
usb_task.c

communication task
HMI

joystick_com_task.c

Host Mass
Storage Task

host_mass_storage_task.c

iPod Audio
Interface

not delivered

FAT
SERVICES/FAT/*.

Codec
Task

codec_task_xxx.c

Audio Decoding

WMA
decoding

not delivered

MP3
decoding
SERVICES/AUDIO/

MP3
3
7817A–AVR32–08/08

5. Audio Interface API
In the following, we will consider that the audio player API can support multiple formats like
WMA or MP3.

5.1 Overview
The Audio Interface (AI) manages disk navigation, audio navigation and audio control (see
below). Thus, the user does not have to directly interface with the File System and audio control
APIs. This greatly simplifies the software architecture.

The Audio Interface can be used in 2 different ways:

• Using “asynchronous” functions, which result/effect may not be produced in one single
iteration. Using these functions usually leads to the use of state-machines in the user
firmware (since one must wait for the completion of a command before launching a new one),
and has the advantage of reducing the risks of audio underrun. Asynchronous functions
always have the “ai_async” prefix.

• Using “synchronous” functions, which are executed immediately. This drastically simplifies
the user firmware architecture (no use of state-machines since the synchronous AI functions
are immediately executed) but *may* produce audio underrun since the execution time of
these functions may be too long. Synchronous functions just have the “ai_” prefix.

All functions of the Audio Interface have a synchronous and asynchronous interface. For exam-
ple, the command which returns the number of drives is:

• ai_async_nav_drive_nb() in the asynchronous interface.
• ai_nav_drive_nb() in the synchronous interface.

Using asynchronous functions shall be the preferred solution in order to avoid audio
underruns.

From now on, until the end of the document, we will always use the synchronous name of the AI
functions.

5.2 Audio Interface Architecture
The AI commands to interface the audio player are divided into three categories:

• Disk navigation (Disk Nav) to browse into the tree architectures of the USB device.
• Audio navigation (Audio Nav) to manage a list of playable songs.
• Audio Control (Audio CTRL) to control the audio stream (play/pause/fast forward/...).
4
7817A–AVR32–08/08

AVR32709

AVR32709
Figure 5-1. Audio Player Navigators Overview

5.2.1 Disk Navigator: “browse into the tree architectures of the mass storage device”
The “Disk Navigator” is similar to a file explorer. It is used to navigate in the tree architectures of
the connected USB device. It will hide all files whose extension differs from *.mp3, *.wma or
*.m3u. Note that the file extension filtering is selectable: the user tells to the Audio Interface
which kind of files it shall manage. Thus, new file format support (e.g. WAV, AAC, or other) is
open.

The “Disk Navigator” is totally independent from the “Audio Navigator”.

The commands associated with this module are used to navigate into the disks/directories and
to synchronize the selected file/folder with the “Audio Nav” module. This synchronization is
made with these two commands ai_nav_getplayfile and ai_audio_nav_playfile. See “Disk
Navigation” on page 8. for a complete list of commands.

5.2.2 Audio Navigator: “manage a list of playable songs”
The “Audio Navigator” deals with a list of files. This list is defined once a ai_audio_nav_playfile
command is executed. This command sets the list of files to be played according to the current
selection in the “Disk Navigator“ and to the “Audio Navigator” ai_audio_nav_expmode_set
option.

When the ai_audio_nav_playfile command is executed:

• if the “Disk Navigator” is currently pointing on a playlist (*.m3u), then only the files of this
playlist will be included in the “Audio Navigator” file list.

• if the “Disk Navigator” is currently pointing on a disk or a file, then the file list will depend on
the audio explorator mode (set by the ai_audio_nav_expmode_set command):

GETPLAYFILE

PLAYFILE Audio
CTRL

Audio Nav Disk Nav

Navigators
5
7817A–AVR32–08/08

Table 5-1. ai_audio_nav_expmode_set command behavior

• if the “Disk Navigator” is currently pointing on a folder, the audio navigator will not enter into it.
It will look for the first file that is in the current directory and build its file list according to the
previous rules.

• if the “Disk Navigator” is not pointing on any files or folders (which is the case after a mount or
a goto), a directory or a playlist is selected, then it will select the first file of the file list.

Note that the playing order can be changed at compilation time by enabling a define. This is fully
explained in Section 5.9.3 “Example 3 - Change the playing order” on page 15.

Once the file list is set, two main commands are available to navigate into it:

• ai_audio_nav_next (select next file) and
• ai_audio_nav_previous (select previous file).

Options can also be defined to the “Audio Navigator” (to change the repeat mode, enable/dis-
able the shuffle mode).

To synchronize back the “Disk Navigator” with the “Audio Navigator”, i.e. make the “Disk Naviga-
tor” selecting the file played by the “Audio Navigator”, the command ai_nav_getplayfile can be
used. See “Audio Navigation” on page 10. for a complete list of commands.

5.2.3 Audio Control: “control the audio stream (play/pause/fast forward/...)”
This module controls the audio stream of the selected file (selected by the “Audio Navigator”).
Commands like play/pause/stop/fast forward/fast rewind… are available. See “Audio Control” on
page 12. for a complete list of commands.

5.3 Features

5.3.1 Playlist
• Support playlist up to 65535 files.
• Support ASCII, UTF8 and UNICODE (UTF16LE & UTF16BE) text format.
• The navigation in the playlist is possible only in the “Audio Navigator”.

5.3.2 Navigation
• Navigation is done using the file creation order, not the alphabetic order.

Explorer mode Behavior

AUDIO_EXPLORER_MODE_DISKS Builds a file list off all playable songs of all disks, and start playing
from the selected file.

AUDIO_EXPLORER_MODE_DISK Builds a file list off all playable songs of the current disk only, and
start playing from the selected file.

AUDIO_EXPLORER_MODE_DIRONLY
Builds a file list off all playable songs that are contained in the
current directory, and start playing from the selected file. Sub
directories are ignored.

AUDIO_EXPLORER_MODE_DIRSUB
Builds a file list off all playable songs that are contained in the
current directory and its sub-directories, and start playing from the
selected file.
6
7817A–AVR32–08/08

AVR32709

AVR32709
5.3.3 File system
• FAT 12/16/32.
• There is no limitation in the firmware for the supported number of files and directories. The

only limitation is due to the FAT file system:
– for FAT12/16 root directory only: up to 256 files (short names),
– for FAT12/16/32 up to 65535 files (short names) per directory.

5.4 Limitations

5.4.1 RAM
• The default software configuration of the project is designed to run on the UC3A0512 (64K of

RAM).
• Depending on the RAM settings, the audio player may not be able to provide a track or

metadata info (e.g. author) while playing another track. This may happen for example if the
HEAP, which is used to supply buffers during audio decoding, becomes too small. This
prevents the audio interface from allocating a new buffer which will contain the wanted
metadata information.

5.4.2 Speed
Speed navigation (such as file browsing) in directories may be affected if:

• A High-bitrate file is played at the same time.
• Directories have many files.
• The playlist includes many files.
7
7817A–AVR32–08/08

5.5 Disk Navigation
The exploration is based on a selector displacement. The file list is the list of the files in the cur-
rent directory according to the extension filter (. mp3, . wma, .m3u)

The “file list”:

• is updated when you exit or enter a directory or a disk.
• starts with the directories then the files.
• is sorted in the creation order.

Table 5-2. Disk Navigator Commands

Command Name Input
Output

Description
Return Extra result

ai_get_product_id Product ID Returns the product identifier (USB PID) of the connected
device (if available).

ai_get_vendor_id Vendor ID Returns the vendor identifier (USB VID) of the connected
device (if available).

ai_get_serial_number
Length of the
serial number in
bytes

Serial number Returns the serial number of the connected device (if
available).

ai_nav_drive_nb Number of drive Returns the number of disks available.

ai_nav_drive_set Drive
number True or false

Selects the disk but does not mount it: (0 for drive 0, 1 for
drive 1...).
Returns false in case of error.

ai_nav_drive_get Drive number Returns the selected disk number.

ai_nav_drive_mount True or false Mounts the selected disk.
Returns false in case of error.

ai_nav_drive_total_space Capacity of the
drive Returns the total space, in bytes, available on the device.

ai_nav_drive_free_space Free space on
the drive Returns the free space, in bytes, available on the device.

ai_nav_dir_root True or false Initializes the file list on the root directory.
Return false in case of error.

ai_nav_dir_cd True or false Enters in the current directory selected in file list.
Return false in case of error.

ai_nav_dir_gotoparent True or false

Exits current directory and goes to parent directory. Then
selects the folder from which it just exits, rather than
selecting the first file of the parent directory. This
simplifies navigation since the user firmware does not
have to memorize this information.
Returns false in case of error.

ai_nav_file_isdir True or false Returns true if the selected file is a directory, otherwise
returns false.

ai_nav_file_goto
Position
in file list

True or false
Goes to a position in file list (0 for position 0, 1 for position
1...).
Returns false in case of error.

ai_nav_file_pos File position
Returns the file position of the selected file in the current
directory.
Returns FS_NO_SEL if no file is selected.
8
7817A–AVR32–08/08

AVR32709

AVR32709
ai_nav_file_nb Number of audio
files

Returns the number of audio files in the file list. Audio
files are all the files which extensions matches *.mp3 or
*.wma. There is a specific command for playlist files, see
below.

ai_nav_dir_nb Number of
directories Returns the number of directories in the file list.

ai_nav_playlist_nb Number of
playlists

Returns the number of playlists in the file list.
The playlists are all the files matching with the extension
*.m3u.

ai_nav_dir_name Length of the
string in bytes UNICODE name Returns the name of the current directory.

ai_nav_file_name Length of the
string in bytes UNICODE name Returns the name of the selected file.

ai_nav_file_info_type File type Returns the type of file selected (MP3, WMA, ...).

ai_nav_file_info_version Version number
Returns the version of the metadata storage method used
for the selected audio file if available, otherwise, returns
0.

ai_nav_file_info_title Length of the
string in bytes UNICODE title Returns the title of the selected audio file if available,

otherwise, returns an empty string.

ai_nav_file_info_artist Length of the
string in bytes UNICODE artist Returns the artist’s name of the selected audio file if

available, otherwise, returns an empty string.

ai_nav_file_info_album Length of the
string in bytes UNICODE album Returns the album’s name of the selected audio file if

available, otherwise, returns an empty string.

ai_nav_file_info_year Year Returns the year of the selected audio file if available,
otherwise, returns 0.

ai_nav_file_info_track Length of the
string in bytes UNICODE info Returns the track information of the selected audio file if

available, otherwise, returns an empty string.

ai_nav_file_info_genre Length of the
string in bytes UNICODE genre Returns the genre of the selected audio file if available,

otherwise, returns an empty string.

ai_nav_file_info_duration Duration of the
track

Returns the total time of the selected audio file in
milliseconds if available, otherwise, returns 0.

ai_nav_getplayfile True or false

Selects the file selected by the audio navigator.
This command is the only link between these two
navigators.
Return false in case of error.

Table 5-2. Disk Navigator Commands

Command Name Input
Output

Description
Return Extra result
9
7817A–AVR32–08/08

5.6 Audio Navigation
This navigator sets the list of files to be played. It can be seen as a «playlist».
Before accessing this navigator, an ai_audio_nav_playfile command must be issued.

Table 5-3. Audio Navigator Commands

Command Name Input
Output

Description
Return Extra result

ai_audio_nav_playfile True or false

This command sets the audio file list according to the
current mode of the audio navigator and plays the file
selected in the disk navigator.
In other words, it synchronizes the audio navigator with
the disk navigator and plays the selected file from the
disk navigator.
This commands does not change the current options
(repeat/random/expmode).
It is the opposite of the command ai_nav_getplayfile.
Return false in case of error.

ai_audio_context_save Structure
Context

- True or false
- The length of
the structure
in bytes

Gives complete audio context (player state, play time,
repeat, random, file played, explorer mode).

ai_audio_context_restore Structure
Context True or false Restores an audio context (eventually restart playing).

ai_audio_nav_next True or false
Jump to next audio file available in the list.
The next song file is chosen according to the current
options (repeat/random/mode).

ai_audio_nav_previous True or false
Jumps to previous audio file available in the list.
The next song file is chosen according to the current
options (repeat/random/mode).

ai_audio_nav_eof_occur True or false
This routine must be called once a track ends.
It will choose, according to the options
(repeat/random/expmode), the next file to play.

ai_audio_nav_nb

Number of
audio files
present in the
list

Returns the number of audio files present in the list.

ai_audio_nav_getpos File position Returns the file position of the selected file in the list.

ai_audio_nav_setpos File position True or false Goes to a position in the list.

ai_audio_nav_repeat_get Ai_repeat_mo
de

Returns the current repeat mode (no repeat, repeat
single, repeat folder, repeat all).

ai_audio_nav_repeat_set Ai_repeat_m
ode

Sets the current repeat mode (no repeat, repeat single,
repeat folder, repeat all).

ai_audio_nav_shuffle_get Ai_shuffle_mo
de

Returns the current shuffle mode (no shuffle, shuffle
folder, shuffle all).

ai_audio_nav_shuffle_set Ai_shuffle_m
ode

Sets the current shuffle mode (no shuffle, shuffle folder,
shuffle all).

ai_audio_nav_expmode_get Ai_explorer_
mode

Returns the current explorer mode (all disks, one disk,
directory only, directory + sub directories).

ai_audio_nav_expmode_set Ai_explorer_
mode

Sets the current explorer mode (all disks, one disk,
directory only, directory + sub directories).
This mode cannot be changed while an audio file is
being played.
10
7817A–AVR32–08/08

AVR32709

AVR32709
5.6.1 Types used by the interface

5.6.1.1 Ai_repeat_mode
Defines the repeat modes:

• AUDIO_REPEAT_OFF: no repeat.
• AUDIO_REPEAT_TRACK: repeat the current track.
• AUDIO_REPEAT_FOLDER: repeat the current folder.
• AUDIO_REPEAT_ALL: repeat the list of files.

5.6.1.2 Ai_shuffle_mode
Defines the shuffle/random mode:

• AUDIO_SHUFFLE_OFF: no shuffle.
• AUDIO_SHUFFLE_FOLDER: shuffle into the current folder.
• AUDIO_SHUFFLE_ALL: shuffle into the list of files.

5.6.1.3 Ai_explorer_mode
Defines the explorer mode (see Section 5.9.3 “Example 3 - Change the playing order” on page
15 for more information.

ai_audio_nav_getname Length of the
string in bytes

UNICODE
name Returns the name of selected file.

ai_audio_nav_file_info_type File type Returns the type of file selected (MP3, WMA, ...).

ai_audio_nav_file_info_version Version
number

Returns the version of the metadata storage method
used for the selected audio file if available, otherwise,
returns 0.

ai_audio_nav_file_info_title Length of the
string in bytes

UNICODE
title

Returns the title of the selected audio file if available,
otherwise, returns an empty string.

ai_audio_nav_file_info_artist Length of the
string in bytes

UNICODE
artist

Returns the artist’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_album Length of the
string in bytes

UNICODE
album

Returns the album’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_year Year Returns the year of the selected audio file if available,
otherwise, returns 0.

ai_audio_nav_file_info_track Length of the
string in bytes

UNICODE
info

Returns the track information of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_genre Length of the
string in bytes

UNICODE
genre

Returns the genre of the selected audio file if available,
otherwise, returns an empty string.

ai_audio_nav_file_info_duration Duration of
the track

Returns the total time of the selected audio file in
milliseconds if available, otherwise, returns 0.

Table 5-3. Audio Navigator Commands

Command Name Input
Output

Description
Return Extra result
11
7817A–AVR32–08/08

5.7 Audio Control
The audio controller is used to control the audio stream of the audio file selected by the audio
navigator.

5.8 Using Asynchronous or Synchronous API
Using synchronous function is straightforward. Once finished, synchronous functions returns,
with or without a result.

Using asynchronous function is more complicated: they may not produce the requested task in a
single shot. Thus these functions need some other functions to properly operate:

• void ai_async_cmd_task(void): Executes an asynchronous command. Should be
called after each asynchronous command when
the application has free time.

• Bool is_ai_async_cmd_finished (void): This function returns TRUE if the last command
is finished.

• U8 ai_async_cmd_out_status(void): Returns the status of the last executed command
(CMD_DONE, CMD_EXECUTING or
CMD_ERROR).

Table 5-4. Audio Control Commands

Command Name Input
Output

Description
Return Extra result

ai_audio_ctrl_stop True or
false Stops the audio.

ai_audio_ctrl_resume True or
false

Plays or resumes play after an ai_audio_ctrl_pause or an
ai_audio_ctrl_stop command.

ai_audio_ctrl_pause True or
false Pauses the audio.

ai_audio_ctrl_time Elapsed
time Returns the elapsed time of the audio track being played.

ai_audio_ctrl_status Status Returns the status of the audio controller (stop, play, pause, a
new audio file is being played, the current folder has changed).

ai_audio_ctrl_ffw Skip time True or
false

Fast forwards the audio until the skip time has been reached.
Then, it will continue to play the rest of the audio file.
The skip time passed in parameter is in second.

ai_audio_ctrl_frw Skip time True or
false

Fast rewinds the audio until the skip time has been reached.
Then, it will set the audio player in play mode.
The skip time passed in parameter is in second.

ai_audio_ctrl_start_ffw True or
false

Sets the audio player into fast forward mode.
Function not implemented yet.

ai_audio_ctrl_start_frw True or
false

Sets the audio player into fast rewind mode.
Function not implemented yet.

ai_audio_ctrl_stop_ffw_frw True or
false

Stops fast forwarding/rewinding and set the audio player into the
previous mode (play or pause).
Function not implemented yet.
12
7817A–AVR32–08/08

AVR32709

AVR32709
• U32 ai_async_cmd_out_u32(void): if the last executed command should return a 32-
bit result or less, this function will return this
value.

• U64 ai_async_cmd_out_u64(void): if the last executed command should return a 64-
bit result, this function will return this value.

• U16 ai_async_cmd_out_SizeArrayU8 (void): if the last executed command should return an
extra result (e.g. a song name), this function
returns the size in bytes of the extra result (no
size limit).

• U8* ai_async_cmd_out_PtrArrayU8 (void): Returns a pointer to the extra result (assuming
that the last executed command returns an extra
result). This pointer can be freed by the
application with the
ai_async_cmd_out_free_ArrayU8() function.

• void ai_async_cmd_out_free_ArrayU8 (void):This function may be called to free the
allocated buffer which holds the extra-result.
Note that the Audio Interface will automatically
do this before executing a new command that
need extra-results. This ensures that the
application will not have memory leakage.
Allowing the application calling this function will
free the extra-results sooner and improve
allocated memory usage.

The following picture shows the flow of the asynchronous function use.
13
7817A–AVR32–08/08

Figure 5-2. Asynchronous function flow

5.9 Examples
The following examples are using a disk with the following contents:

Let’s take this disk as disk number 0 for the system.

Launch an asynchronous
command (e.g.

ai_async_nav_drive_nb())

did the function
returns TRUE?

Error: the previous
command is not

completed

No

Yes

ai_async_cmd_task()

is_ai_async_cmd_
finished ?

Yes

No

ai_async_cmd_out_u32()
or ai_async_cmd_out_u32()

or ai_async_cmd_out_PtrArrayU8()
& ai_async_cmd_out_SizeArrayU8()

ai_async_cmd_
out_status =TRUE

No An error occured
while processing

the command

Yes

did the function execute
correctly ?

Launch execution of the
command...

...until its full completion

Take function results
14
7817A–AVR32–08/08

AVR32709

AVR32709
5.9.1 Example 1 - Play “file1.mp3”
Table 5-5. Example: play “file1.mp3”

5.9.2 Example 2 - Play while browsing
Table 5-6. Example: play while browsing

5.9.3 Example 3 - Change the playing order
The p lay ing o rde r can be changed a t compi la t ion t ime by enab l ing the
NAV_AUTO_FILE_IN_FIRST define (Section 6.5 “Project Configuration” on page 19).

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3 ai_nav_file_goto(0): goes to file position 0

4 ai_nav_file_name(): returns the name dir1

5 ai_nav_file_isdir(): returns true, the current file is a directory.

6 ai_nav_file_goto(1): goes to file position 1

7 ai_nav_file_name(): returns the name dir2

8 ai_nav_file_goto(2): goes to file position 2

9 ai_nav_file_name(): returns the name file1.mp3

10 ai_audio_nav_playfile(): plays the selected file file1.mp3

11 ai_nav_file_goto(3): goes to file position 3

12 ai_nav_file_name(): returns the name file2.wma

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3 ai_audio_nav_playfile(): plays a file. By default it will seek inside the directories to play the first
file which is “file5.wma” in our case.

4 ai_nav_getplayfile(): synchronizes the disk navigator with the audio navigator. Now the disk
navigator is pointing on the “file5.wma” file.

5 ai_nav_file_nb() + ai_nav_dir_nb() + ai_nav_playlist_nb(): gets the total number of entries
(files+folder+playlist) in the current directory (dir3).

6 ai_nav_file_goto(0): goes to file position 0

7 ai_nav_file_name(): returns the name “file5.wma“. (Notice the difference with Figure 5.9.1 -
step #4)

8 ai_nav_file_goto(1): goes to file position 1

9 ai_nav_file_name(): returns the name “file6.mp3“

10 ai_audio_ctrl_stop(): stops the audio
15
7817A–AVR32–08/08

Table 5-7. Playfile sequence

If the NAV_AUTO_FILE_IN_FIRST define is not set, the sequence will play audio files in the fol-
lowing order:

Table 5-8. Playfile sequence with NAV_AUTO_FILE_IN_FIRST undefined

Otherwise, if this define is set, the sequence will play audio files starting with files on the root:

Table 5-9. Playfile sequence with NAV_AUTO_FILE_IN_FIRST defined

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3 ai_audio_nav_playfile(): plays a file.

Order File name Parent directory path

0 file5.wma /dir1/dir3/

1 file6.mp3 /dir1/dir3/

2 file4.mp3 /dir1/

3 file7.mp3 /dir2/

4 file1.mp3 /

5 file2.wma /

6 file3.wma /

Order File name Parent directory path

0 file1.mp3 /

1 file2.wma /

2 file3.wma /

3 file4.mp3 /dir1/

4 file5.wma /dir1/dir3/

5 file6.mp3 /dir1/dir3/

6 file7.mp3 /dir2/
16
7817A–AVR32–08/08

AVR32709

AVR32709
6. Source Code Architecture

6.1 Package
The EVK1105-AUDIO-PLAYER-MASS-STORAGE-MP3-X.Y.Z.zip contains projects for
UC3A0512 RevH or later:

• EVK1105-AUDIO-PLAYER-MASS-STORAGE-X.Y.Z
Default hardware configuration of the project is to run on the EVK1105 board, although any
board can be used (refer to section 6.4.7 “Board Definition Files” on page 19).

6.2 Documentation
For full source code documentation, please refer to the auto-generated Doxygen source code
documentation found in:

• src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-STORAGE/readme.html

6.3 Projects / Compiler
The IAR™ project is located here:
- src/APPLICATIONS/EVK1105-AUDIO-PLAYER-
MASS_STORAGE/AT32UC3A0512_MP3/IAR/

The GCC makefile is located here:
- src/APPLICATIONS/EVK1105-AUDIO-PLAYER-
MASS_STORAGE/AT32UC3A0512_MP3/GCC/

The Avr32Studio project is located in the root-dir of the package:
- ./

6.4 Implementation Details

6.4.1 Main()
The main() function of the program is located in the file:

• src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-STORAGE/main.c

This function will:

• Initialize audio output - refer to section 6.4.8 “Audio Rendering Interface” on page 19
• Do the clock configuration
• Call the USB task -refer to section 6.4.5.1 “USB” on page 18
• Call the USB host Mass-Storage task. This task will check for new devices connection and

initialize them using the USB Mass Storage protocol.
• Call the communication task (HMI) - refer to 6.4.4 “HMI Communication Task Example” on

page 18.
• Call the decoder task to perform MP3 and/ or WMA decoding - refer to sections 6.4.2 “MP3”

on page 18
17
7817A–AVR32–08/08

The src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-STORAGE/ contains the following
files:

• audio_mixer.c,h: audio mixer for DAC output.
• main.c: contains the main() function.
• host_mass_storage_task.c,h: USB host mass storage task.
• joystick_com_task.c,h: HMI with simple joystick interface.
• /CONF/*.h: configuration file for audio, communication interface, memory and navigation

explorer. Please refer to section 6.5 “Project Configuration” on page 19 for more information
on the configuration files.

6.4.2 MP3
The MP3 source files are located in:

• src/SERVICES/AUDIO/MP3/LIBMAD/: AVR32 port of LibMAD MP3 decoder

A library form of the decoder is provided in /UTILS/LIBS/LIBMAD/AT32UC/.

ID3 is supported up to version 2.4. The ID3 reader source is located in:

• src/SERVICES/AUDIO/MP3/ID3/reader_id3.c,h

6.4.3 Audio Player API
The Audio Interface API is located in:

• src/SERVICES/AUDIO/AUDIO_PLAYER/audio_interface.h

The Mass Storage Audio Interface can be found in:

• src/SERVICES/AUDIO/AUDIO_PLAYER/AI_USB_MS/
– ai_usb_ms.c,h: Mass Storage Audio interface.
– host_mass_storage_task.c,h: USB host mass storage task.

Refer to Section 5. “Audio Interface API” on page 4 for more details.

6.4.4 HMI Communication Task Example
The included firmware implements an HMI example using a keypad and a SPI-driven LCD:

• src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-STORAGE/joystick_com_task.c,h:
HMI with simple keypad interface

6.4.5 AT32UC3A Drivers
The example firmware uses the AVR32 UC3 driver library available in

• src/UTILS/LIBS/DRIVERS/AT32UC3A/.

6.4.5.1 USB
The USB low level driver is located in:

• src/DRIVERS/USB/

The USB mass storage service is located in:

• src/SERVICES/USB/CLASS/MASS_STORAGE/
18
7817A–AVR32–08/08

AVR32709

AVR32709
6.4.6 FAT File System
The FAT12/16/32 files is located in the directory src/SERVICES/FAT/.

6.4.7 Board Definition Files
The application is designed to run on the EVK1105. All projects are configured with the following
define: BOARD=EVK1105. The EVK1105 definition can be found in the src/BOARDS/EVK1105
directory.

6.4.7.1 Board customization
For IAR project, open the project options (Project -> Options), choose the «C/C++ Compiler»,
then «Preprocessor». Modify the BOARD=EVK1105 definition by BOARD=USER_BOARD.

For GCC, just modify in the config.mk file (src/APPLICATIONS/EVK1105-AUDIO-PLAYER-
MASS-STORAGE/AT32UC3A0512_MP3/GCC/) the DEFS de f in i t i on w i th -D
BOARD=USER_BOARD.

For Avr32Studio, open the project properties (Project -> Properties), go in the «C/C++ build»,
then «Settings», «tool settings» and «Symbols». Modify the BOARD=EVK1105 definition by
BOARD=USER_BOARD.

6.4.8 Audio Rendering Interface
The src/COMPONENTS/AUDIO/CODEC/TLV320AIC23B/ directory contains the driver for the
external DAC TLV320AIC23B.

Audio output is using the SSC module to generate I2S frames using internal DMA to free CPU
cycles for audio decoding.

6.5 Project Configuration
The project configuration files can be found in the src/APPLICATIONS/EVK1105-AUDIO-
PLAYER-MASS-STORAGE/CONF/ directory directory.

Configuration files are not linked to IAR, GCC or Avr32Studio projects. The user can alter any of
them, then rebuild the entire project in order to reflect the new configuration.

• conf_access.h: this file contains the possible external configuration of the memory access
control. It configures the abstract layer between the memory and the application and
specifies the commands used in order to access the memory. For example, this file will define
the functions to be called for a SD/MMC memory access.

• conf_audio_mixer.h: configures all parameters relative to the audio DACs. This file is made to
support multiple configurations and can be easily upgraded to handle new DACs.

• conf_audio_player.h: this file is a set of defines that configure the general features of the
application. Following are the main parameters:

– DEFAULT_COM_TASK, defines the peripheral used to communicate to the audio
player. The current value is JOYSTICK_COM_TASK. The joystick_com_task is in
charge of the Human Machine Interface.

– DEFAULT_DACS, specifies the default audio DAC used for the audio output. Two
values are possible: AUDIO_MIXER_DAC_AIC23B for the I2S interface and
AUDIO_MIXER_DAC_PWM_DAC to use PWM channels (external low-pass filter is
required). The default configuration uses the external DAC (tlv320aic23b) mounted
on the EVK1105 board. Note that the ABDAC is not supported in the current release
of the application.
19
7817A–AVR32–08/08

• conf_explorer.h: it defines the configuration used by the FAT file system. The configuration is
also applied to the playlist handler and the file navigation. The main parameters are:

– NAV_AUTO_FILE_IN_FIRST, must be define in order to play first the files at the root
of a directory instead of the one inside the subdirectories.

– FS_NAV_AUTOMATIC_NBFILE, this flag can be set to DISABLE in order to speed
up the response of the ai_audio_nav_playfile command. On the other hand, the
three commands ai_audio_nav_getpos, ai_audio_nav_getpos and ai_audio_nav_nb
will not be available anymore. It will also affect the use of the explorer modes, if
different from “all disks” and “one disk”.

• conf_pwm_dac.h: configuration of the PWM DAC (which PWM channel is used, which pins
are concerned).

• conf_tlv320aic23b.h: configuration of the I2S DAC (which pins are used and which
configuration interface).

• conf_usb.h: configuration file used for the USB.

6.6 Compiling the application
The following steps show you how to build the embedded firmware according to your
environment

6.6.1 If you are using AVR32Studio
• Launch avr32Studio
• Create a new AVR32 C project («File» -> «new» -> «AVR32 C Project»).
• Fill-in the dialogue box with project name, set target MCU to UC3A0512 and press finish.
• Choose Import archive file («File» -> «import»…), press the “next” button.
• Select the EVK1105-AUDIO-PLAYER-MASS-STORAGE-X.Y.Z.zip archive file with the

browse button. Select «into folder», check «Overwrite existing resources without warning»
and press the “finish” button.

• The project is now available in the given project name.
• Press the build button
• Load the Code: Please refer to the application note AVR32015: AVR32 Studio getting started

6.6.2 If you are using GCC with the AVR32 GNU Toolchain
• - Open a shell, go to the src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-

STORAGE/AT32UC3A0512_MP3/GCC/ directory and type:
make rebuild program run

6.6.3 If you are using IAR Embedded Workbench® for Atmel AVR32
• - Open IAR and load the associated IAR project of this application (located in the directory

src/APPLICATIONS/EVK1105-AUDIO-PLAYER-MASS-STORAGE/AT32UC3A0512_MP3/IAR/).
• - Press the “Debug” button at the top right of the IAR interface.

The project should compile. Then the generated binary file is downloaded to the microcontroller to finally switch to
the debug mode.

• - Click on the “Go” button in the “Debug” menu or press F5.
20
7817A–AVR32–08/08

AVR32709

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in
the US and/or other countries. Other terms and product names may be trademarks of others.
7817A–AVR32–08/08

	Features
	1. Introduction
	2. License
	3. Requirements
	4. Theory of Operation
	4.1 Overview
	4.1.1 MP3

	4.2 Block diagram
	4.3 Software architecture

	5. Audio Interface API
	5.1 Overview
	5.2 Audio Interface Architecture
	5.2.1 Disk Navigator: “browse into the tree architectures of the mass storage device”
	5.2.2 Audio Navigator: “manage a list of playable songs”
	5.2.3 Audio Control: “control the audio stream (play/pause/fast forward/...)”

	5.3 Features
	5.3.1 Playlist
	5.3.2 Navigation
	5.3.3 File system

	5.4 Limitations
	5.4.1 RAM
	5.4.2 Speed

	5.5 Disk Navigation
	5.6 Audio Navigation
	5.6.1 Types used by the interface
	5.6.1.1 Ai_repeat_mode
	5.6.1.2 Ai_shuffle_mode
	5.6.1.3 Ai_explorer_mode

	5.7 Audio Control
	5.8 Using Asynchronous or Synchronous API
	5.9 Examples
	5.9.1 Example 1 - Play “file1.mp3”
	5.9.2 Example 2 - Play while browsing
	5.9.3 Example 3 - Change the playing order

	6. Source Code Architecture
	6.1 Package
	6.2 Documentation
	6.3 Projects / Compiler
	6.4 Implementation Details
	6.4.1 Main()
	6.4.2 MP3
	6.4.3 Audio Player API
	6.4.4 HMI Communication Task Example
	6.4.5 AT32UC3A Drivers
	6.4.5.1 USB

	6.4.6 FAT File System
	6.4.7 Board Definition Files
	6.4.7.1 Board customization

	6.4.8 Audio Rendering Interface

	6.5 Project Configuration
	6.6 Compiling the application
	6.6.1 If you are using AVR32Studio
	6.6.2 If you are using GCC with the AVR32 GNU Toolchain
	6.6.3 If you are using IAR Embedded Workbench® for Atmel AVR32

