   Table of Contents

1. DEFINITIONS

2. TRANSMISSION MEDIUM LEVEL PROTOCOL

3. MESSAGE BLOCK LEVEL PROTOCOL

4. FILE LEVEL PROTOCOL

5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY

6. PROGRAMMING TIPS.

-------- 1. DEFINITIONS.

  <soh> 01H   <eot> 04H   <ack> 06H   <nak> 15H   <can> 18H

-------- 2. TRANSMISSION MEDIUM LEVEL PROTOCOL

Asynchronous, 8 data bits, no parity, one stop bit.

    The protocol imposes no restrictions on the contents of the

data being transmitted.  No control characters are looked for

in the 128-byte data messages.
Absolutely any kind of data may

be sent - binary, ASCII, etc.  The protocol has not formally

been adopted to a 7-bit environment for the transmission of

ASCII-only (or unpacked-hex) data , although it could be simply

by having both ends agree to AND the protocol-dependent data

with 7F hex before validating it.  I specifically am referring

to the checksum, and the block numbers and their ones-

complement.

    Those wishing to maintain compatibility of the CP/M file

structure, i.e. to allow modemming ASCII files to or from CP/M

systems should follow this data format:

  * ASCII tabs used (09H); tabs set every 8.

  * Lines terminated by CR/LF (0DH 0AH)

  * End-of-file indicated by ^Z, 1AH.  (one or more)

  * Data is variable length, i.e. should be considered a

    continuous stream of data bytes, broken into 128-byte

    chunks purely for the purpose of transmission.

  * A CP/M "peculiarity": If the data ends exactly on a

    128-byte boundary, i.e. CR in 127, and LF in 128, a

    subsequent sector containing the ^Z EOF character(s)

    is optional, but is preferred.  Some utilities or

    user programs still do not handle EOF without ^Zs.

  * The last block sent is no different from others, i.e.

    there is no "short block".

-------- 3. MESSAGE BLOCK LEVEL PROTOCOL

 Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><cksum>

    in which:

<SOH>
    = 01 hex

<blk #>     = binary number, starts at 01 increments by 1, and


      wraps 0FFH to 00H (not to 01)

<255-blk #> = blk # after going thru 8080 "CMA" instr, i.e.


      each bit complemented in the 8-bit block number.


      Formally, this is the "ones complement".

<cksum>     = the sum of the data bytes only.  Toss any carry.

-------- 4. FILE LEVEL PROTOCOL

---- 4A. COMMON TO BOTH SENDER AND RECEIVER:

    All errors are retried 10 times.

    Some versions of the protocol use <can>, ASCII ^X, to

cancel transmission.  This was never adopted as a standard, as

having a single "abort" character makes the transmission

susceptible to false termination due to an <ack> <nak> or <soh>

being corrupted into a <can> and cancelling transmission.

    The protocol may be considered "receiver driven", that is,

the sender need not automatically re-transmit, although it does

in the current implementations.

---- 4B. RECEIVE PROGRAM CONSIDERATIONS:

    The receiver has a 10-second timeout.  It sends a <nak>

every time it times out.  The receiver's first timeout, which

sends a <nak>, signals the transmitter to start.  Optionally,

the receiver could send a <nak> immediately, in case the sender

was ready.  This would save the initial 10 second timeout.

However, the receiver MUST continue to timeout every 10 seconds

in case the sender wasn't ready.

    Once into a receiving a block, the receiver goes into a

one-second timeout for each character and the checksum.  If the

receiver wishes to <nak> a block for any reason (invalid

header, timeout receiving data), it must wait for the line to

clear.
See "programming tips" for ideas

    Synchronizing:  If a valid block number is received, it

will be: 1) the expected one, in which case everything is fine;

or 2) a repeat of the previously received block.  This should

be considered OK, and only indicates that the receivers <ack>

got glitched, and the sender re-transmitted; 3) any other block

number indicates a fatal loss of synchronization, such as the

rare case of the sender getting a line-glitch that looked like

an <ack>.  Abort the transmission, sending a <can>

---- 4C. SENDING PROGRAM CONSIDERATIONS.

    While waiting for transmission to begin, the sender has

only a single very long timeout, say one minute.  In the

current protocol, the sender has a 10 second timeout before

retrying.  I suggest NOT doing this, and letting the protocol

be completely receiver-driven.
This will be compatible with

existing programs.

    When the sender has no more data, it sends an <eot>, and

awaits an <ack>, resending the <eot> if it doesn't get one.

Again, the protocol could be receiver-driven, with the sender

only having the high-level 1-minute timeout to abort.

-------- 5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY

Here is a sample of the data flow, sending a 3-block message.

It includes the two most common line hits - a garbaged block,

and an <ack> reply getting garbaged.  <xx> represents the

checksum byte.

SENDER




RECEIVER





times out after 10 seconds,




<---

<nak>

<soh> 01 FE -data- <xx> --->




<---

<ack>

<soh> 02 FD -data- xx
--->
(data gets line hit)




<---

<nak>

<soh> 02 FD -data- xx
--->




<---

<ack>

<soh> 03 FC -data- xx
--->

   (ack gets garbaged)  <---            <ack>

<soh> 03 FC -data- xx
--->

<ack>

<eot>


--->




<---

<ack>

-------- 6. PROGRAMMING TIPS.

* The character-receive subroutine should be called with a

parameter specifying the number of seconds to wait.  The

receiver should first call it with a time of 10, then <nak> and

try again, 10 times.

  After receiving the <soh>, the receiver should call the

character receive subroutine with a 1-second timeout, for the

remainder of the message and the <cksum>.  Since they are sent

as a continuous stream, timing out of this implies a serious

like glitch that caused, say, 127 characters to be seen instead

of 128.

* When the receiver wishes to <nak>, it should call a "PURGE"

subroutine, to wait for the line to clear.  Recall the sender

tosses any characters in its UART buffer immediately upon

completing sending a block, to ensure no glitches were mis-

interpreted.

  The most common technique is for "PURGE" to call the

character receive subroutine, specifying a 1-second timeout,

and looping back to PURGE until a timeout occurs.  The <nak> is

then sent, ensuring the other end will see it.

* You may wish to add code recommended by John Mahr to your

character receive routine - to set an error flag if the UART

shows framing error, or overrun.  This will help catch a few

more glitches - the most common of which is a hit in the high

bits of the byte in two consecutive bytes.  The <cksum> comes

out OK since counting in 1-byte produces the same result of

adding 80H + 80H as with adding 00H + 00H.

--------------------------------------------------------------

MODEM PROTOCOL OVERVIEW,  CRC OPTION ADDENDUM

1/13/85 by John Byrns.

Please pass on any reports of errors in this document or suggestions

for improvement to me via Ward's/CBBS at (312) 849-1132, or by voice

at (312) 885-1105.

Last Rev: (preliminary  1/13/85)

This document describes the changes to the Christensen Modem Protocol

that implement the CRC option. This document is an addendum to

Ward Christensen's "Modem Protocol Overview". This document and

Ward's document are both required  for a complete description of the

Modem Protocol.


Table of Contents

1.  DEFINITIONS

7.  OVERVIEW OF CRC OPTION

8.  MESSAGE BLOCK LEVEL PROTOCOL, CRC MODE

9.  CRC CALCULATION

10. FILE LEVEL PROTOCOL, CHANGES FOR COMPATIBILITY

11. DATA FLOW EXAMPLES WITH CRC OPTION

---- 1B. ADDITIONAL DEFINITIONS

<C>
43H

-------- 7. OVERVIEW OF CRC OPTION

The CRC used in the Modem Protocol is an alternate form of block check

which provides more robust error detection than the original checksum.

Andrew S. Tanenbaum says in his book, Computer Networks, that the

CRC-CCITT used by the Modem Protocol will detect all single and double

bit errors, all errors with an odd number of bits, all burst errors of

length 16 or less, 99.997% of 17-bit error bursts, and 99.998% of

18-bit and longer bursts.

The changes to the Modem Protocol to replace the checksum with the CRC

are straight forward. If that were all that we did we would not be

able to communicate between a program using the old checksum protocol

and one using the new CRC protocol. An initial handshake was added to

solve this problem. The handshake allows a receiving program with CRC

capability to determine whether the sending program supports the CRC

option, and to switch it to CRC mode if it does. This handshake is

designed so that it will work properly with programs which implement

only the original protocol. A description of this handshake is

presented in section 10.

-------- 8. MESSAGE BLOCK LEVEL PROTOCOL, CRC MODE

 Each block of the transfer in CRC mode looks like:

<SOH><blk #><255-blk #><--128 data bytes--><CRC hi><CRC lo>

    in which:

<SOH>

  = 01 hex

<blk #>     = binary number, starts at 01 increments by 1, and


      wraps 0FFH to 00H (not to 01)

<255-blk #> = ones complement of blk #.

<CRC hi>    = byte containing the 8 hi order coefficients of the CRC.

<CRC lo>    = byte containing the 8 lo order coefficients of the CRC.


      See the next section for CRC calculation.

-------- 9. CRC CALCULATION

---- 9A. FORMAL DEFINITION OF THE CRC CALCULATION

To calculate the 16 bit CRC the message bits are considered to be the

coefficients of a polynomial. This message polynomial is first

multiplied by X^16 and then divided by the generator polynomial

(X^16 + X^12 + X^5 + 1) using modulo two arithemetic. The remainder

left after the division is the desired CRC. Since a message block in

the Modem Protocol is 128 bytes or 1024 bits, the message polynomial

will be of order X^1023. The hi order bit of the first byte of the

message block is the coefficient of X^1023 in the message polynomial.

The lo order bit of the last byte of the message block is the

coefficient of X^0 in the message polynomial.

---- 9B. EXAMPLE OF CRC CALCULATION WRITTEN IN C

/*

This function calculates the CRC used by the "Modem Protocol"

The first argument is a pointer to the message block. The second

argument is the number of bytes in the message block. The message

block used by the Modem Protocol contains 128 bytes.

The function return value is an integer which contains the CRC. The

lo order 16 bits of this integer are the coefficients of the CRC. The

The lo order bit is the lo order coefficient of the CRC.

*/

int calcrc(ptr, count) 
{
char *ptr; int count;
    int crc, i;

    crc = 0;

while(--count >= 0)
 {


crc = crc ^ (int)*ptr++ << 8;


for(i = 0; i < 8; ++i)


    if(crc & 0x8000)



crc = crc << 1 ^ 0x1021;


    else



crc = crc << 1;


}

    return (crc & 0xFFFF);

    }

-------- 10. FILE LEVEL PROTOCOL, CHANGES FOR COMPATIBILITY

---- 10A. COMMON TO BOTH SENDER AND RECEIVER:

The only change to the File Level Protocol for the CRC option is the

initial handshake which is used to determine if both the sending and

the receiving programs support the CRC mode. All Modem Programs should

support the checksum mode for compatibility with older versions.

A receiving program that wishes to receive in CRC mode implements the

mode setting handshake by sending a <C> in place of the initial <nak>.

If the sending program supports CRC mode it will recognize the <C> and

will set itself into CRC mode, and respond by sending the first block

as if a <nak> had been received. If the sending program does not

support CRC mode it will not respond to the <C> at all. After the

receiver has sent the <C> it will wait up to 3 seconds for the <soh>

that starts the first block. If it receives a <soh> within 3 seconds

it will assume the sender supports CRC mode and will proceed with the

file exchange in CRC mode. If no <soh> is received within 3 seconds

the receiver will switch to checksum mode, send a <nak>, and proceed

in checksum mode. If the receiver wishes to use checksum mode it

should send an initial <nak> and the sending program should respond to

the <nak> as defined in the original Modem Protocol. After the mode

has been set by the initial <C> or <nak> the protocol follows the

original Modem Protocol and is identical whether the checksum or CRC

is being used.

---- 10B. RECEIVE PROGRAM CONSIDERATIONS:

There are at least 4 things that can go wrong with the mode setting

handshake.

  1. the initial <C> can be garbled or lost.

  2. the initial <soh> can be garbled.

  3. the initial <C> can be changed to a <nak>.

  4. the initial <nak> from a receiver which wants to receive in

     checksum can be changed to a <C>.

The first problem can be solved if the receiver sends a second <C>

after it times out the first time. This process can be repeated

several times. It must not be repeated a too many times before sending

a <nak> and switching to checksum mode or a sending program without

CRC support may time out and abort. Repeating the <C> will also fix

the second problem if the sending program cooperates by responding as

if a <nak> were received instead of ignoring the extra <C>.

It is possible to fix problems 3 and 4 but probably not worth the

trouble since they will occur very infrequently. They could be fixed

by switching modes in either the sending or the receiving program

after a large number of successive <nak>s. This solution would risk

other problems however.

---- 10C. SENDING PROGRAM CONSIDERATIONS.

The sending program should start in the checksum mode. This will

insure compatibility with checksum only receiving programs. Anytime a

<C> is received before the first <nak> or <ack> the sending program

should set itself into CRC mode and respond as if a <nak> were

received. The sender should respond to additional <C>s as if they were

<nak>s until the first <ack> is received. This will assist the

receiving program in determining the correct mode when the <soh> is

lost or garbled. After the first <ack> is received the sending program

should ignore <C>s.

-------- 11. DATA FLOW EXAMPLES WITH CRC OPTION

---- 11A. RECEIVER HAS CRC OPTION, SENDER DOESN'T

Here is a data flow example for the case where the receiver requests

transmission in the CRC mode but the sender does not support the CRC

option. This example also includes various transmission errors.

<xx> represents the checksum byte.

SENDER




RECEIVER




<---

<C>





times out after 3 seconds,




<---

<nak>

<soh> 01 FE -data- <xx> --->




<---

<ack>

<soh> 02 FD -data- <xx> --->
(data gets line hit)




<---

<nak>

<soh> 02 FD -data- <xx> --->




<---

<ack>

<soh> 03 FC -data- <xx> --->

   (ack gets garbaged)  <---            <ack>





times out after 10 seconds,




<---

<nak>

<soh> 03 FC -data- <xx> --->




<---

<ack>

<eot>


--->




<---

<ack>

---- 11B. RECEIVER AND SENDER BOTH HAVE CRC OPTION

Here is a data flow example for the case where the receiver requests

transmission in the CRC mode and the sender supports the CRC option.

This example also includes various transmission errors.

<xxxx> represents the 2 CRC bytes.

SENDER




  RECEIVER




  <---

  <C>

<soh> 01 FE -data- <xxxx> --->




  <---

  <ack>

<soh> 02 FD -data- <xxxx> --->
  (data gets line hit)




  <---

  <nak>

<soh> 02 FD -data- <xxxx> --->




  <---

  <ack>

<soh> 03 FC -data- <xxxx> --->

   (ack gets garbaged)    <---            <ack>





  times out after 10 seconds,




  <---

  <nak>

<soh> 03 FC -data- <xxxx> --->




  <---

  <ack>

<eot>


  --->




  <---

  <ack>

--


Dave Ihnat


Analysts International Corporation


(312) 882-4673


ihnp4!aicchi!ignatz

----------XMODEM SOURCES-------

Ward's/CBBS at 312-849-1132

XMODEM-CRC document 1/13/85 by John Byrns. Voice: 312-885-1105

Dave Ihnat, Analysts International Corporation
: 312-882-4673

ihnp4!aicchi!ignatz

Protocall docs are also available from:

Chuck Forsberg WA7KGX

tektronix!reed!omen!caf  Omen Technology Inc "The High Reliability Software"

17505-V Northwest Sauvie Island Road Portland OR 97231
Voice: 503-621-3406

TeleGodzilla BBS: 621-3746 2400/1200  CIS:70007,2304  Genie:CAF

Source:TCE022

omen Any ACU 1200 1-503-621-3746 se:--se: link ord: Giznoid in:--in: uucp

omen!/usr/spool/uucppublic/FILES lists all uucp-able files, updated hourly

