

AN111

© Copyright CSR 2001

CSR

 Unit 400 Cambridge Science Park
Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875

 Tel: +44 (0)1223 692000
 Fax: +44 (0)1223 692001

www.csr.com

BlueCore

ABCSP Overview

AN111

November 2001

ABCSP Overview

AN111

© Copyright CSR 2001

Page 2 of 16

BlueCore
TM

Introduction .. 3
Conditions of Use ... 4
Basic Structure ... 5
Receive Path... 6
Transmission Path.. 8
Events... 10
BCSP Link Establishment ... 11
Timed Events.. 11
Dynamic Memory Allocation ... 12
Library Initialisation .. 12
Scheduling.. 12
BCSP Specification Violations.. 13

ABCSP Overview

AN111

© Copyright CSR 2001

Page 3 of 16

BlueCore
TM

Another BCSP Stack (ABCSP)
Introduction

BCSP is a proprietary UART protocol used on CSR’s BlueCore Bluetooth chips. It can be
considered an alternative to the two UART host transports defined in the Bluetooth 1.1
Specification.

CSR publishes the source code of an implementation of a BCSP host stack used in all of CSR’s
host programs: demos, configuration tools and test tools. This stack has served this role well, but
some BlueCore users have commented that it consumes too much RAM for use in small,
embedded applications. In particular, the stack has its own scheduler based on longjmp(),
and this tends to consume a significant amount of the host’s main C runtime stack.

This document describes an alternative BCSP stack written for embedded Bluetooth hosts with
limited supplies of RAM. Where the original BCSP stack promotes portability and configurability,
abcsp (“another BCSP” stack) requires complex integration with its host environment, and is
biased to minimise its consumption of the host’s resources.

For more information about BCSP, please refer to CSR’s documentation on BCSP.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 4 of 16

BlueCore
TM

Conditions of Use

The abcsp stack is provided as C source code and may be freely used for BlueCore chip
applications. It is expected that users will change the code for their own applications.

CSR provides no formal support for the code. There is no intention to extend the code with a set
of platform-specific #define porting options. However, CSR appreciates bug reports and
suggestions for code improvements.

The code has been tested with CSR’s Casira hardware. It has also been used in an embedded
application by one of CSR’s customers. However, the code has not been used as heavily or
extensively as the first CSR BCSP stack. As such, the following standard statement of quality and
fitness for purpose applies:

Use of the software is at your own risk. This software is provided "as is," and CSR
cautions users to determine its suitability for themselves. CSR makes no warranty or
representation whatsoever of merchantability or fitness of the product for any particular
purpose or use. In no event shall CSR be liable for any consequential, incidental or
special damages whatsoever arising out of the use of or inability to use this software,
even if the user has advised CSR of the possibility of such damages.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 5 of 16

BlueCore
TM

Basic Structure

This section gives an overview of the abcsp stack. The figure below shows the stack’s main
external interfaces:

abcsp library

abcsp_sendmsg()

abcsp_pumptxmsgs() ABCSP_DELIVERMSG()

ABCSP_UART_SENDBYTES() abcsp_uart_deliverbytes()

abcsp_init()

The abcsp code’s primary task is to translate between higher layer format messages (HCI ACL,
HCI SCO, HCI CMD/EVT etc.) and the corresponding BCSP wire (UART) format messages.

The abcsp library must first be initialised by a call to abcsp_init().

Transmit path:

To send a message, higher layer code calls abcsp_sendmsg(); this places the
message into a queue within the library. The higher layer code then repeatedly calls
abcsp_pumptxmsgs() to translate the message into its BCSP wire format and push
these bytes out of the bottom of the library via ABCSP_UART_SENDBYTES().

Receive path:

For inbound messages the UART driver code passes BCSP wire format bytes into the
library via calls to abcsp_uart_deliverbytes(). When the library has all of the
bytes to form a complete higher layer message it calls ABCSP_DELIVERMSG() to
pass this to higher layer code.

Except for the library's initialisation call, abcsp_init(), the code blocks implementing the
transmit and receive paths are largely independent.

In the diagram, function names in lower case are part of the library code. Function names in
upper case are macros within the code. The external environment must implement these
according to definitions given in abcsp source header files.

The library contains no internal scheduler; it depends on the function calls described above to
drive the code. The transmit path is driven ("down") by calls to abcsp_sendmsg() and
abcsp_pumptxmsgs(); these result in calls to ABCSP_UART_SENDBYTES(). Similarly, the
receive path is driven ("up") by calls to abcsp_uart_deliverbytes(), resulting in calls to
ABCSP_UART_SENDBYTES().

A key point about scheduling: the paths' two output functions, ABCSP_UART_SENDBYTES()
and ABCSP_DELIVERMSG(), have no means of detecting failure to deliver their payloads.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 6 of 16

BlueCore
TM

Consequently the surrounding code must not call abcsp_sendmsg(),
abcsp_pumptxmsgs() or abcsp_uart_deliverbytes(), unless it knows the
corresponding output function can accept data. A fuller view of the abcsp library’s environment is:

abcsp Library

Higher Layers

UART Drivers

Scheduling
Controls

UART

An associated point: a call to one of the abcsp library’s input functions makes, at most, one call to
the corresponding output function, thus the surrounding code only needs to be sure that the
output function can accept one payload.

Receive Path

The previous section above gave a rather simple description of the library’s receive path. The
diagram below gives more detail, but this still is not the full story:

abcsp library

receive path

ABCSP_DELIVERMSG()

abcsp_uart_deliverbytes()

ABCSP_RXMSG_WRITE()

ABCSP_RXMSG_GETBUF()

ABCSP_RXMSG_CREATE()

ABCSP_RXMSG_COMPLETE()

ABCSP_RXMSG_DESTROY()

The UART driver code calls:

unsigned abcsp_uart_deliverbytes(char *buf, unsigned n);

This passes the “n” bytes in the buffer “buf” into the abcsp library and returns the number of
bytes consumed from the buffer. The library attempts to build a higher layer message from the
bytes. It may do this in just one call to abcsp_uart_deliverbytes(), or it may take
several calls. However, eventually a call is (normally) made to:

void ABCSP_DELIVERMSG(ABCSP_RXMSG *msg, unsigned chan,
 unsigned rel);

ABCSP Overview

AN111

© Copyright CSR 2001

Page 7 of 16

BlueCore
TM

This delivers the message “msg” on BCSP channel “chan” to the higher layers of code. If “rel”
is 0, the message was received on an unreliable BCSP channel, else it was received on a reliable
channel.

Key point: ABCSP_DELIVERMSG() has no means of refusing the message. Thus the UART
driver code must not call abcsp_uart_deliverbytes() unless it is sure that
ABCSP_DELIVERMSG() can accept a message. However, the abcsp library guarantees to make
at most one call to ABCSP_DELIVERMSG() for each call to
abcsp_uart_deliverbytes(). This gives external code fairly fine control over the library’s
use of resources. (A similar pattern is used on the transmit path.)

As noted in the introduction, functions named in lower case are provided by the abcsp library,
however, upper case names must be provided by the external code. Thus
abcsp_uart_deliverbytes() is part of the abcsp code, but ABCSP_DELIVERMSG() is
#defined as a macro in an abcsp code header file and its implementation must be provided by
code external to the abcsp library itself.

The two functions also illustrate the abcsp code’s convention of using basic C types wherever
possible: “unsigned”, rather than more informative “uint16” and “bool” types. This
convention is used on the code’s external interfaces to attempt to improve the code’s portability.

The patent exception is the type ABCSP_RXMSG*. This is really just a #define for a void*.
The abcsp library code deals with higher layer message references, allowing external code to
manage these messages’ (buffer) structure. This approach requires the five other function calls
shown in the diagram:

• ABCSP_RXMSG_CREATE() creates a new higher layer message, returning the
corresponding ABCSP_RXMSG* reference.

• ABCSP_RXMSG_GETBUF() takes the message reference as an argument, and asks the
external code for access to a buffer in the message. The external code chooses the size of
the buffer, i.e., knowledge of how the message’s bulk storage is structured is delegated to the
external code. This approach allows the use of lots of modest buffers to form a single large
BCSP message, an approach that significantly aids embedded systems where RAM is in
short supply. Experience (on BlueCore01) shows that using lots of small blocks of RAM
makes much better use of limited memory than requiring a few larger blocks.)

• ABCSP_RXMSG_WRITE() tells the external code how much of the buffer obtained by a
preceding ABCSP_RXMSG_GETBUF() call has been consumed.

• ABCSP_RXMSG_COMPLETE() tells the external code that the message is complete, and
thus that no more calls will be made to ABCSP_RXMSG_GETBUF() or
ABCSP_RXMSG_WRITE().

• ABCSP_RXMSG_DESTROY() destroys a message. This is invoked if the abcsp library
encounters in irrecoverable error when constructing the message, e.g., a CRC failure.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 8 of 16

BlueCore
TM

• The abcsp code’s normal usage pattern is thus something like:

One or more calls to abcsp_uart_deliverbytes() provoke:

Call to ABCSP_RXMSG_CREATE() to create a fresh higher layer message.

while the higher layer message is incomplete:

Call ABCSP_RXMSG_GETBUF() to obtain a byte buffer.

Write to the byte buffer.

Call BCSP_RXMSG_WRITE() to inform external code how much of
the buffer has been consumed.

Call ABCSP_RXMSG_COMPLETE() to mark the higher layers message as
complete.

Call ABCSP_DELIVERMSG() to pass the message (reference) to higher layer
code.

At any time, the receive path uses these (external/macro) functions to construct (at most) one
message.

Not all BCSP messages result in calls to these functions, notably BCSP Link Establishment and
“ACK” messages.

Transmission Path

Higher layer code passes a message into the stack using the function:

unsigned abcsp_sendmsg(ABCSP_TXMSG *msg, unsigned chan,
 unsigned rel);

This pushes the message “msg” into the top of the stack, requiring it to be transmitted on BCSP
channel “chan” (acceptable values 2 to 15). If “rel” is zero then it is passed on the unreliable
channel “chan”, else it is passed on the reliable channel “chan”. The function returns 1 if
message has been accepted, else it returns 0.

In a manner similar to the Receive Path, the type ABCSP_TXMSG* is really just a void* and is
treated as an opaque message reference by the abcsp code.

The call to abcsp_sendmsg() places a message (reference) into a queue with the abcsp
library, but it requires one or more calls to:

unsigned abcsp_pumptxmsgs(void);

to convert the message into its wire format, eventually making a call to:

void ABCSP_UART_SENDBYTES(char *buf, unsigned n);

to pass a byte buffer to the UART. The following diagram gives a fuller picture of the transmit
path:

ABCSP Overview

AN111

© Copyright CSR 2001

Page 9 of 16

BlueCore
TM

abcsp library
transmit path

abcsp_sendmsg()

ABCSP_UART_GETTXBUF()

abcsp_pumptxmsgs()

ABCSP_UART_SENDBYTES()

ABCSP_TXMSG_GETBUF()

ABCSP_TXMSG_LENGTH()

ABCSP_TXMSG_INIT_READ()

ABCSP_TXMSG_TAKEN()

ABCSP_TXMSG_DONE()

The transmit path does not contain an internal buffer in which to build the UART byte stream.
Instead it asks the external UART driver code to provide a buffer with the
ABCSP_UART_GETTXBUF() call. It then writes to the buffer, then finally returns the same
buffer to the UART driver via a call to ABCSP_UART_SENDBYTES(). This approach gives
external code fairly fine control over the library’s use of transmit UART buffer memory.

The five transmit message handling functions are similar in style to those used by the receive
path. However, these are used to access a message already prepared by higher layer code (and
passed into the abcsp library via abcsp_sendmsg()), whereas the receive path’s functions are
used to create a higher layer message.

• ABCSP_TXMSG_INIT_READ() takes a message reference parameter from a
abcsp_sendmsg() call and tells external code that it is about to start to reading from it

• ABCSP_TXMSG_LENGTH()asks how many payload bytes are in a message

• ABCSP_TXMSG_GETBUF() obtains access information for a raw byte buffer in a transmit
message. The external code provides the address of a buffer and tells the abcsp library how
long the buffer is. This mirrors ABCSP_RXMSG_GETBUF(), allowing the external code to hold
a single large BCSP message payload as a sequence of smaller message fragments

• ABCSP_TXMSG_TAKEN() tells external code how many bytes have been consumed from
the buffer obtained by the preceding call to ABCSP_TXMSG_GETBUF()

ABCSP_TXMSG_DONE() tells external code that it has finished all work with a message. For an
unreliable BCSP message (SCO), this means that the message has been sent. For a reliable
BCSP message, this means that the message has been sent to the peer and that the peer has
returned acknowledgement of its reception. This can be used as the basis of a “recorded delivery”
mechanism.

This last point hints at why the transmit path is significantly more complex than the receive path.
The abcsp_sendmsg() function places a (reliable) message into a queue then makes calls to
abcsp_pumptxmsgs() to translate messages (plural) to wire format. Then, when the receive
path tells the transmit path that reliable messages have been acknowledged, the messages have
to be removed from the reliable message queue and corresponding calls made to
ABCSP_TXMSG_DONE().

For reliable messages the queue behind abcsp_sendmsg() can grow to a fixed (#defined)
maximum length that matches the BCSP transmit window size. Thus the queue is used to hold all
messages that are either in the BCSP transmit window (sent, but not acknowledged), or which are

ABCSP Overview

AN111

© Copyright CSR 2001

Page 10 of 16

BlueCore
TM

due to be added to the window. This means that a call to abcsp_sendmsg() may refuse to
take a message, so higher layer code must be able to handle a refusal.

For unreliable messages (SCO) the queue will hold only one message. If the queue is empty
when an unreliable message is passed into abcsp_sendmsg(), it is placed in the queue.
Unreliable messages have high priority, so it is probable that the message will be transmitted
next. (BCSP Link Establishment messages have higher priority, so this does not always hold
true.)

If an unreliable message is submitted to abcsp_sendmsg() when there is already a message
in the queue, the new message discards and replaces the existing message. This reflects the
unreliable channel’s bias in favour of supporting SCO (voice), where data freshness is important.

The abcsp code’s normal usage pattern of the message access functions is something like:

 One call to abcsp_sendmsg() to queue a (reliable) message.

 One or more calls to abcsp_pumptxmsgs() provoke:

Call to ABCSP_TXMSG_INIT_READ() to tell the message manager that
abcsp is about to start reading a message. Typically this sets/rewinds its read
pointer to zero.

Each call to abcsp_pumptxmsgs() provokes something like:

Call ABCSP_TXMSG_GETBUF() to obtain a byte buffer.

Call ABCSP_UART_GETTXBUF() to obtain a UART byte buffer.

Read from the higher layer message’s byte buffer, translate to wire
format and write to the UART byte buffer.

When the UART byte buffer is full, or when the source buffer has been
drained, call ABCSP_RXMSG_TAKEN() to inform external code how
much of the buffer has been consumed and call
ABCSP_UART_SENDBYTES() to stoke the UART.

When the peer BCSP stack acknowledges reception of the reliable message, call
ABCSP_RXMSG_DONE() to report that the abcsp library is no longer interested in the
message.

This is a much simplified description of how the transmit path works; this is given simply to
illustrate how the five ABCSP_TXMSG_*() functions are used.

Events

Two function calls allow the abcsp library code to send alerts to the external code:

void ABCSP_REQ_PUMPTXMSGS(void);
void ABCSP_EVENT(unsigned e);

The first reports to the external code that there is work pending that requires a call to be made to
abcsp_pumptxmsgs() when convenient. For example, if the receive path accepts a reliable
BCSP message, it (sets an internal flag and) calls ABCSP_REQ_PUMPTXMSGS() to ask the
external code to call abcsp_pumptxmsgs() to send acknowledgement of the message back
to the peer.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 11 of 16

BlueCore
TM

The ABCSP_REQ_PUMPTXMSGS() call must not be wired directly to a call into
abcsp_pumptxmsgs(). Rather, it is expected that the ABCSP_REQ_PUMPTXMSGS() will
set an external flag that external code, then the external code will use the flag to schedule a call
abcsp_pumptxmsgs()after the current abcsp function call has returned. If a direct wiring is
made then the code will probably go re-entrant and bomb.

The second function, ABCSP_EVENT(), is scattered liberally throughout the abcsp code to
report significant events to the external environment: achieving SLIP sync, achieving BCSP Link
Establishment sync etc. There is no need to act on any of these messages. Indeed the macro can
be #defined to be nothing and all of the alerts will drop harmlessly from the code. The only
event that can be of operational importance to the external code is BCSP Link Establishment loss.
This indicates that the peer BCSP stack has been restarted, for which the only reasonable
response is to restart the local BCSP stack.

BCSP Link Establishment

The receive path of the library includes an implementation of the BCSP Link Establishment entity.
This prevents bulk BCSP traffic from flowing until it is sure that both sides of the BCSP link have
initialised themselves. It also allows the local BCSP stack to determine that the peer BCSP stack
has restarted.

This collects some messages from the peer on the receive path. It also requests the transmit path
to send some messages to the peer (via internal signalling and calls to
ABCSP_REQ_PUMPTXMSGS()).

The Link Establishment implementation is isolated to a single file, and it would be simple to
remove it from the source, if required. This might be the case where it was decided that a system
did not need to use BCSP-LE at all (unwise) or where BCSP-LE was implemented in higher layer
code (unlikely).

Timed Events

The abcsp library makes use of three timed events; two for the BCSP Link Establishment entity,
and one to provoke retransmission of BCSP reliable messages.

For each timer the abcsp code has three functions. Here are the functions for the BCSP-LE Tshy
timer:

void ABCSP_START_TSHY_TIMER(void);

void ABCSP_CANCEL_TSHY_TIMER(void);

void abcsp_tshy_timed_event(void);

The abcsp code calls ABCSP_START_TSHY_TIMER() to request it to start an external Tshy
timer. If the timer expires it should call abcsp_tshy_timed_event(). Alternatively, if the
abcsp code decides that the timed event should be prevented from occurring then it calls
ABCSP_CANCEL_TSHY_TIMER().

There are similar sets of three calls for BCSP-LE Tconf and BCSP reliable packet retransmission.

The abcsp code itself is not concerned by how the timed events are implemented; presumably
these will be based on the external code’s timed event support. Also, the abcsp code does not
specify the timed events’ periods, so the library needs no concept of how time values are
described in the external code. However, the timers’ recommended periods are as follows:

ABCSP Overview

AN111

© Copyright CSR 2001

Page 12 of 16

BlueCore
TM

BCSP Link Establishment Tshy 1 second

BCSP Link Establishment Tconf 1 second

BCSP Reliable Message Retransmit 0.25 seconds

Dynamic Memory Allocation

The abcsp library makes very limited use of pool/heap memory. At the time of writing this
document pool/heap memory is only used to encapsulate message references in the transmit
path’s two message queues. The library does not allocate pool/heap memory for bulk message
storage.

External code needs to provide implementations of the following function calls:

void *ABCSP_MALLOC(unsigned n); Like malloc(n).

void *ABCSP_ZMALLOC(unsigned n); Like calloc(1, n).

void ABCSP_FREE(void *p); Like free(p).

Library Initialisation

The library’s abcsp_init() must be called before any other abcsp library function. This
initialises the code’s state machines and internal variables.

The abcsp_init() function can be called at any other time to re-initialise the library. In this
case its operation is more complex, as it releases/destroys any heap/pool memory and message
references it holds. It also cancels any pending timers.

Initialisation kicks the BCSP Link Establishment engine into life.

Scheduling
The bulk of the abcsp library is driven via functions:

abcsp_pumptxmsgs()
abcsp_uart_deliverbytes()

Extra functionality is invoked by calling:

abcsp_init()
abcsp_sendmsg()
abcsp_tshy_timed_event()
abcsp_tconf_timed_event()
abcsp_bcsp_timed_event()

At the time of writing this document the abcsp library code is not thread safe. It presumes that
external code will be calling at most one of these functions at any instant.

However, it should be fairly simple to enhance the code so that the transmit and receive paths
can run on separate threads. There would need to be guards for:

• abcsp_init()initialises both transmit and receive path elements.

• RAM shared by the transmit and receive paths. This database lives in file txrx.c.

• ABCSP_EVENT() This macro is called by both sides of the abcsp library.

• ABCSP_MALLOC()etc. Currently these are only called from the transmit path, but this may
change.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 13 of 16

BlueCore
TM

BCSP Specification Violations

The abcsp library (deliberately) violates three elements of the BCSP specifications:

• The BCSP reliable message transmit specification (Sequencing Layer state machine) allows
peer failure to be detected by counting the number of times the local state machine
retransmits a message. If this exceeds a threshold, it presumes the peer has failed.

This has never been much use. Most implementations ignore the option. Also, the BCSP Link
Establishment’s ability to detect a peer restart is much more valuable.

The abcsp library does not implement this feature.

• The BCSP specification requires the MUX Layer to provide an output describing when it last
received a message from the peer. This is not implemented.

The BCSP specification requires the MUX Layer to implement a “choke”, which prevents most
traffic flowing to and from the peer. In the abcsp library this is implemented higher in the
BCSP stack than the specification requires. (It is implemented in abcsp_sendmsg(). This
is of no real consequence and will only change the stack’s behaviour when the BCSP link
fails.

ABCSP Overview

AN111

© Copyright CSR 2001

Page 14 of 16

BlueCore
TM

Definitions and Acronyms
Bluetooth

A set of technologies providing audio and data transfer over short-
range radio connections

BlueCoreTM CSR’s family of Bluetooth chips

ABCSP Another BlueCore Serial Protocol
BCSP BlueCore Serial Protocol
CSR Cambridge Silicon Radio
HCI Host Controller Interface
LE Link Establishment
SCO Synchronous Connection Orientated. Voice orientated BT packet
UART Universal Asynchronous Receive Transmit

ABCSP Overview

AN111

© Copyright CSR 2001

Page 15 of 16

BlueCore
TM

Document References
Document: Reference, date:

Core Bluetooth specification Volume 1, v1.1, dated 22 FEB 01

BCSP Overview and User Guide AN110, revision a, dated 25 OCT 01

Bluetooth™ and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and
licensed to CSR.

BlueCore is a trademark of CSR.

CSR’s products are not authorised for use in life-support or safety-critical applications

ABCSP Overview

AN111

© Copyright CSR 2001

Page 16 of 16

BlueCore
TM

Record of Changes
Date: Revision: Reason for Change:

01 NOV 01 a Original publication of this document
(original CSR reference: bc01-me-038c, 17 AUG 01).

ABCSP Overview

AN111

November 2001

	Introduction
	Conditions of Use
	Basic Structure
	Receive Path
	Transmission Path
	Events
	BCSP Link Establishment
	Timed Events
	Dynamic Memory Allocation
	Library Initialisation
	Scheduling
	BCSP Specification Violations
	Definitions and Acronyms

