
1

Features
• USB Protocol

– Based on the USB Device Firmware Upgrade (DFU) Class

– Autobaud (AT32UC3xxxxx 8-, 12- and 16-MHz Crystal on Osc0)

• In-System Programming (ISP)

– Configurable I/O Start Conditions (default is pressing the joystick on EVK1100 and

EVK1101) Protected by 8-Bit CRC

– Can Be Forced by the General-Purpose Fuses

– Read/Write Flash on-Chip Memories

– Read Device ID

– Full-Chip Erase

– Start Application Command

7745A–AVR32–07/07

AVR®32 32-bit

Microcontroller

AVR32 UC3 USB

DFU Bootloader

2

7745A–AVR32–07/07

1. Description

AT32UC3 devices are shipped with a USB bootloader.

This USB bootloader allows to perform In-System Programming (ISP) from a USB host

controller without removing the part from the system, without a pre-programmed appli-

cation and without any external programming interface other than USB.

There is one bootloader compiled for each AT32UC3x family. The hardware I/O condi-

tions used to request the start of the ISP are also specific to each family.

This document describes the USB bootloader functionalities and its usage in various

contexts.

2. Related Parts

This documentation applies to the following AT32UC3 parts:

• AT32UC3A0512

• AT32UC3A0256

• AT32UC3A0128

• AT32UC3A1512

• AT32UC3A1256

• AT32UC3A1128

• AT32UC3B0256

• AT32UC3B0128

• AT32UC3B064

• AT32UC3B1256

• AT32UC3B1128

• AT32UC3B164

The bootloader is compiled for each AT32UC3x family (AT32UC3A, AT32UC3B)

because of differences in the MCU peripheral memory map. The functionalities are the

same between families.

3. Related Items

• AT32UC3A Series Datasheet:

http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf

• AT32UC3B Series Datasheet:

http://www.atmel.com/dyn/resources/prod_documents/doc32059.pdf

• AVR32 UC3 Software Framework:

http://www.atmel.com/dyn/products/tools.asp?family_id=682#soft

• FLIP 3:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886

• AVR32 Studio:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116

3

7745A–AVR32–07/07

4. Abbreviations

• ISP: In-System Programming

• BOD: Brown-Out Detector

• USB: Universal Serial Bus

• DFU: Device Firmware Upgrade

• avr32program: AVR32 Part Programmer for JTAGICE mkII

• FLIP: Flexible In-System Programmer

5. Bootloader Environment

The bootloader manages the USB communication protocol and performs read/write

operations from/to the on-chip memories.

The bootloader is located at the beginning of the on-chip flash array where an area of up

to 64 kB can be configured to be write-protected by the internal flash controller. The

boot loader protected size must be at least the size of the boot loader. On

AT32UC3xxxxx, it is configured to 8 kB.

Figure 5-1. Physical Environment

BatchISP is the PC tool that allows to program a part using the AT32UC3 USB DFU

bootloader. It is compatible with Windows and Linux. It is integrated into AVR32Studio

thanks to a plugin.

Note that all GCC make files of the UC3 software framework have programming goals

using BatchISP.

4

7745A–AVR32–07/07

6. Inner Workings

6.1 Memory Layout

An AT32UC3 part having the bootloader programmed resets as any other part at

80000000h. Bootloader execution begins here. The bootloader first performs the boot

process to know whether it should start the USB DFU ISP or the application. If the

tested conditions indicate that the USB DFU ISP should be started, then execution con-

tinues in the bootloader area, i.e. between 80000000h and 80002000h, else the

bootloader launches the application at 80002000h.

The conditions tested by the boot process are configured by the general-purpose fuse

bits located outside of the MCU address space and by a 32-bit configuration word

located at the end of the flash User page.

Figure 6-1. AT32UC3A0512 Non-Volatile Memory Layout with USB DFU Bootloader

6.2 Configuration

The bootloader has a configuration which determines the behavior of the boot process

and of the ISP. This configuration is non-volatile and is stored on the one hand in the 32

general-purpose fuse bits and on the other hand in the flash User page (see Figure 6-1).

See the AT32UC3 datasheets referred to by Section 3 for further information about the

general-purpose fuse bits and the flash User page.

6.2.1 General-Purpose Fuse Bits

The AT32UC3 have 32 general-purpose fuse bits. When these bits are erased, they are

at 1.

Application

Bootloader
Reset vector is

@ 80000000h

Application is

@ 80002000h

8 kB

504 kB

Flash User Page

Free Flash Space

User page is

@ 80800000h

512-kB

Flash

Array

512 B

32-bit bootloader

configuration word is

@ 808001FCh

32 GP Fuse

Bits

MCU Address Space

5

7745A–AVR32–07/07

Both AT32UC3A and AT32UC3B devices are shipped with the general-purpose fuses

set to FC07FFFFh, i.e. BOD is enabled by the bootloader and the USB DFU ISP is

forced.

Table 6-1. Functions of the General-Purpose Fuses

General-Purpose

Fuse Number Name Description

15:0 LOCK Flash region lock bits. There is one bit per flash

region. A value of 1 means the region is

unlocked.

16 EPFL External privileged fetch lock. It is used to

prevent the CPU from fetching instructions from

external memories when in privileged mode. A

value of 1 means the external privileged fetch is

unlocked.

19:17 BOOTPROT Used to set the size of the bootloader protected

area. See Table 6-2.

Be careful when setting these bits as reducing

the bootloader protected size will allow the

corruption or the destruction of the bootloader.

Note that a JTAGICE mkII is required to

reprogram the bootloader.

25:20 BODLEVEL Brown-out detector trigger level. The higher the

value, the higher the BOD threshold level.

DO NOT ACTIVATE THE BOD WITH A

THRESHOLD ABOVE THE POWER SUPPLY

VOLTAGE OR THE PART WILL BECOME

UNUSABLE.

26 BODHYST Enables the BOD hysteresis when at 1.

28:27 BODEN Hardware BOD enable state. See Table 6-3.

29 ISP_BOD_EN Tells the ISP to enable by software the BOD

when at 1. Not all values can be set when using

the ISP. See Table 6-3.

30 ISP_IO_COND_EN When at 1, tells the boot process to use the ISP

configuration in the flash User page to determine

the I/O conditions to test to know which of the

USB DFU ISP and the application to start. See

Table 6-4.

Setting this bit to 0 allows the application to save

a GPIO pin and to free the last word of the User

page, but the ISP is then unreachable except if

the programmed application sets the

ISP_FORCE GP fuse bit to 1. This behavior can

be useful when extending Atmel’s bootloader

with an applicative bootloader (see Section

7.5.3.3).

31 ISP_FORCE When at 1, tells the boot process to start the

USB DFU ISP without testing any other

condition.

6

7745A–AVR32–07/07

Note that the general-purpose fuse bits 29 to 31 are meaningless for the MCU hard-

ware. They are only interpreted by the bootloader and can be freely used by the

application if the bootloader is removed.

The general-purpose fuse bits can be changed in one of the following ways:

• With JTAGICE mkII, use the avr32program writefuses command (see avr32program

help writefuses), or execute ‘Program Fuses...’ on the JTAGICE mkII AVR32 target

in AVR32 Studio.

• With ISP, use the CONFIGURATION memory with BatchISP (see Section 7.3.2), or

execute ‘Program Fuses...’ on the appropriate ISP AVR32 target in AVR32 Studio

(see Section 7.4.2).

• From the running embedded application, use the WGPB, EGPB, PGPFB and

EAGPF FLASHC commands. See the AT32UC3 datasheets referred to by Section 3

for further information and take care of the Lock errors that can occur with these

commands.

Table 6-2. Bootloader Area Specified by BOOTPROT

BOOTPROT

Pages

Protected

by

BOOTPROT Size of Protected Memory

7 None 0 byte

6 0-1 1024 bytes

5 0-3 2048 bytes

4 0-7 4096 bytes

3 0-15 8192 bytes (default value used by the bootloader)

2 0-31 16384 bytes

1 0-63 32768 bytes

0 0-127 65536 bytes

Table 6-3. BOD Activation Settings

ISP_BOD_EN BODEN

DescriptionGP 29 GP 28 GP 27

0 0 0 BOD disabled.

x 0 1 BOD enabled by hardware, BOD reset enabled.

DO NOT USE WITH THE ISP OR THE BOOT PROCESS

WILL BEHAVE ABNORMALLY BECAUSE OF

CORRUPTED RESET CAUSES.

0 1 0 BOD enabled by hardware, BOD reset replaced by BOD

interrupt.

0 1 1 BOD disabled.

1 x x BOD enabled with reset by the ISP using the BODLEVEL

and BODHYST settings from the GP fuses.
except 01b

7

7745A–AVR32–07/07

6.2.2 Flash User Page

The bootloader uses the flash User page to store the I/O conditions that determine

which of the USB DFU ISP and the application to start at the end of the boot process.

The default value of the bootloader flash User page configuration word is 929E1424h for

AT32UC3Axxxx and 929E0D6Bh for AT32UC3Bxxxx, i.e. the ISP will be activated when

the joystick is pressed on EVK1100 or EVK1101 at reset.

The user can use the SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/isp_cfg.sh script from the

UC3 software framework (see Section 3) to get the value of the bootloader configuration

word from ISP_IO_COND_PIN and ISP_IO_COND_LEVEL. The usage of this script is

described therein.

6.3 Boot Process

After reset, the boot process starts at 80000000h:

• BOD is enabled with reset if the ISP_BOD_EN GP fuse bit is 1.

• If the ISP_FORCE GP fuse bit is 1, the USB DFU ISP is immediately started.

• If the ISP_FORCE GP fuse bit is 0:

– If external events (power-on reset, external reset, OCD reset, JTAG reset or

JTAG hardware reset) are among the reset causes, the boot process checks

if the ISP_IO_COND_EN GP fuse bit is 1, and if so it launches the USB DFU

ISP or the application according to the ISP I/O configuration specified by the

User page. If ISP_IO_COND_EN is 0, the application is launched.

Table 6-4. Bootloader Flash User Page Configuration Word

Last 32

Bits of the

Flash User

Page Name Description

7:0 ISP_CRC8 CRC8 on the bootloader User page configuration

word with polynomial:

P(X) = X8+X2+X+1.

This CRC is used to check the validity of this

configuration word.

15:8 ISP_IO_COND_PIN The GPIO pin number to test during the boot

process to know which of the USB DFU ISP and the

application to start. E.g., to select PX16 (i.e. QFP144

pin 61 and the GPIO pin 88) on AT32UC3A0512,

this bit-field has to be set to 88.

Possible values are:

- 0 to 109 for AT32UC3A QFP144;

- 0 to 69 for AT32UC3A QFP100;

- 0 to 43 for AT32UC3B QFP64;

- 0 to 27 for AT32UC3B QFP48.

16 ISP_IO_COND_LEVEL Active level of ISP_IO_COND_PIN that the

bootloader will consider as a request for starting the

USB DFU ISP: 0 for GPIO low level, 1 for GPIO high

level.

31:17 ISP_BOOT_KEY Boot key = 494Fh. This key is used to identify the

word as meaningful for the bootloader.

8

7745A–AVR32–07/07

– Else, if the watchdog timer (WDT) is one of the reset causes, the boot

process launches the application. The watchdog timer is not stopped if the

application was running before reset.

– Else, i.e. if an error (BOD or CPU error) is one of the reset causes, the boot

process launches the one that was running before reset among the USB

DFU ISP and the application.

Figure 6-2. Boot Process

ISP_FORCE=1?
Yes

No

Customer Application
(@ 80002000h)

Note:

ISP_BOD_EN is GP fuse bit 29.
ISP_IO_COND_EN is GP fuse bit 30.

ISP_FORCE is GP fuse bit 31.

ISP_IO_COND_EN=1?

Reset Vector

(@ 80000000h)

Bootloader

(@ 80000000h)
ISP_FORCE=1 on DFU

Reset Cause:
POR or EXT or OCD or

JTAG or JTAG HW?

Disable WDT

Set ISP RAM Key

ISP RAM Key
Set?

Disable WDT

Clear ISP RAM Key

Yes

No

SW Reset CPU Regs

Reset Cause:
WDT?

No Yes

No

ISP RAM Key

Set?

NoYes
Yes

ISP User Page Cfg OK?
(CRC8, Boot Key, Pin)

No

Yes

ISP I/O Condition Active?

No

Yes

NoYes

ISP_FORCE=0

Start Customer

Application?

Yes

No

Reset

Requested?

NoYes

Jump

WDT Reset

ISP_BOD_EN=1?

Enable BOD with reset

Yes
No

9

7745A–AVR32–07/07

Note:

• The ISP_FORCE GP fuse bit is set to 1 by the ISP on each ISP command received

and it is set to 0 by the ISP when a request to start the application is received. That

means that after a command has been sent using BatchISP, the user will not be able

to start his application until he has issued a START operation to BatchISP. This

behavior ensures the consistency of programmed data thanks to a non-volatile

programming session.

• If the ISP_FORCE GP fuse bit is 0 and the user has set the ISP_IO_COND_EN GP

fuse bit to 0, the ISP will no longer be reachable, except if the programmed

application sets the ISP_FORCE GP fuse bit to 1.

• If the ISP_IO_COND_EN GP fuse bit is 1, but the bootloader configuration word is

corrupted (wrong CRC8) or has an invalid boot key or GPIO pin, the USB DFU ISP

is systematically launched to allow the user to correct this value.

• Figure 6-2 mentions the ISP RAM key. It is a specific value written in the first word of

the INTRAM by the bootloader. This key is manipulated only by the boot process for

its internal behavior to know whether it is a warm boot following the execution of the

USB DFU ISP. All the user has to know about this key is that setting the first word of

the INTRAM to 4953504Bh (“ISPK”) will alter the behavior of the bootloader after a

subsequent reset, so it is recommended that applications leave the first word of the

INTRAM unused thanks to an appropriate linker script (the C99 standard requires

that a null pointer compares unequal to a pointer to any object or function).

• See the AT32UC3 datasheets referred to by Section 3 for a detailed description of

the MCU reset causes.

From the application point of view, if all the rules described in this document are fol-

lowed, the state of the MCU when the application begins to execute at 80002000h will

be the same as after the last MCU hardware reset that occurred (whatever its causes)

except that:

• The Cycle Counter system register will have counted a few cycles.

• The Brown-Out Detector may be activated, according to Figure 6-2.

• The Power Manager registers may indicate some activity for Osc0 or PLL0 if the

application is launched from the ISP without reset.

• The USB register bit-fields that are not reset when disabling the USB macro may not

contain their respective reset values if the application is launched from the ISP

without reset.

10

7745A–AVR32–07/07

7. Using the Bootloader

7.1 Reprogramming the Bootloader

By default, all parts are shipped with the bootloader, so there is no need to program it,

except if it has been erased with the JTAGICE mkII using a JTAG Chip Erase command

(avr32program chiperase) or if the user wants to program a previous version.

Any of the released bootloaders can be programmed with the part connected to a

JTAGICE mkII using its JTAG interface. The SERVICES/USB/CLASS/DFU/EXAM-

PLES/ISP/AT32UC3x/Releases/ folder of the UC3 software framework contains a

subfolder for each released version of the ISP. Each subfolder contains the released

ISP in an at32uc3x-isp-x.x.x.hex file which can be programmed under a Linux or Cyg-

win shell using the program_at32uc3x-isp-x.x.x.sh script. E.g., to program the version

1.0.0 of the AT32UC3A ISP, simply execute ./program_at32uc3a-isp-1.0.0.sh in the

SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3A/Releases/AT32UC3A-ISP-1.0.0/ folder.

The steps performed by the programming scripts are (commands are given for the ver-

sion 1.0.0 of the AT32UC3A ISP):

• Issue a JTAG Chip Erase command to make sure the part is unprotected and free to

use:

avr32program chiperase

• Program the bootloader:

avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -O0x80000000 -

Fbin at32uc3a-isp-1.0.0.bin

• Program the bootloader configuration word in the User page:

avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -O0x808001FC -

Fbin at32uc3a-isp_cfg-1.0.0.bin

• Write the general-purpose fuses with their default value used by the ISP:

avr32program writefuses -finternal@0x80000000,512Kb gp=0xFC07FFFF

In order to work, the ISP requires that either an external clock or a crystal is mounted on

Osc0. The supported frequencies are 8MHz, 12MHz and 16MHz. Osc1 can be used

instead of Osc0, but in this case the user has to change the ISP_OSC preprocessor defini-

tion to 1 in SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3x/GCC/config.mk for GCC or in

the SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3x/IAR/at32uc3x-isp.eww workspace

project options for IAR. The user then has to recompile the bootloader and to program it

with a JTAGICE mkII using ‘make rebuild program run' for GCC and lauching a project

full rebuild for IAR. In both cases, the AVR32 GNU ToolChain has to be installed.

7.2 Activating the ISP

The ISP is activated according to the boot process conditions described in Figure 6-2.

ISP activation can be requested in one of the following ways:

• External point of view: Reset the part and make sure the configured hardware

conditions are true when reset is released. By default, the hardware condition is to

press the joystick on EVK1100 and EVK1101, so the user simply has to maintain the

joystick pressed while releasing the reset push-button.

• Internal point of view: The programmed application can launch the ISP by setting

the ISP_FORCE general-purpose fuse bit to 1. The next execution of the reset

vector will then systematically launch the ISP. To launch the boot process from the

application, the reset vector should be reached by using the watchdog timer reset

rather than a software jump or call to 80000000h. In the latter case, unexpected

11

7745A–AVR32–07/07

behavior could occur because the MCU reset causes are not updated and MCU

peripherals may still be active.

Once the ISP is activated, it establishes a USB connection with the connected PC. It

may take a few seconds because of the autobaud that is performed using the USB

starts of frames to determine the frequency of the clock input on Osc0. Trying to com-

municate with the ISP before it is detected by the PC OS as a USB device will fail.

7.3 BatchISP

BatchISP is a command line tool that allows to program parts containing an embedded

Atmel ISP. It comes with FLIP 3. See Section 3 for download information.

7.3.1 Installation

To install BatchISP, first install FLIP 3 using its installer, then connect a part to the PC

using a USB cable and activate the ISP as described in Section 7.2. For instance, with

the default configuration on EVK1100 or EVK1101, press the reset push-button, then

maintain the joystick pressed while releasing the reset push-button. This will open a new

hardware installation window. Choose not to connect to Windows Update for this instal-

lation and click ‘Next’:

12

7745A–AVR32–07/07

On the next screen, select “Install from a list or specific location (Advanced)” and click

‘Next’:

Then request to search in the usb folder of the FLIP installation directory as shown

below and click ‘Next’:

13

7745A–AVR32–07/07

Windows will then process the installation of the driver corresponding to the ISP of the

connected part. Once completed, click ‘Finish’:

This installation has to be done for each new part family to use. E.g., using an

AT32UC3A0512 then an AT32UC3A0256 will not require a new installation, but then

connecting an AT32UC3B0256 will.

7.3.2 Usage

To launch BatchISP, open a command prompt. Windows or Cygwin command prompt

can be used provided that the bin folder of the FLIP installation directory is in the PATH

(Windows’ or Cygwin’s) environment variable.

When running BatchISP on AT32UC3xxxxx, the target part has to be specified with -

device at32uc3xxxxx and the communication port with -hardware usb. Commands can

then be placed after -operation. These commands are executed in order. BatchISP

options can be placed in a text file invoked using -cmdfile rather than on the command

line.

BatchISP works with an internal ISP buffer per target memory. These ISP buffers can be

filled from several sources. All target operations (program, verify, read) are performed

using these buffers.

A typical BatchISP command line programming an application will look like this:
batchisp -device at32uc3a0512 -hardware usb -operation erase f memory flash

blankcheck loadbuffer uc3a0512-usart_example.elf program verify start reset 0

14

7745A–AVR32–07/07

Figure 7-1. Typical BatchISP Command Line

For each operation, BatchISP displays the result.

BatchISP main commands available on AT32UC3xxxxx are:

• ASSERT { PASS | FAIL } changes the displayed results of the following operations

according to the expected behavior.

• ONFAIL { ASK | ABORT | RETRY | IGNORE } changes the interactive behavior of

BatchISP in case of failure.

• WAIT <Nsec> inserts a pause between two ISP operations.

• ECHO <comment> displays a message.

• ERASE F erases internal flash contents, except the bootloader.

• MEMORY { FLASH | SECURITY | CONFIGURATION | BOOTLOADER | SIGNATURE | USER }

selects a target memory on which to apply the following operations.

• ADDRANGE <addrMin> <addrMax> selects in the current target memory an address

range on which to apply the following operations.

• BLANKCHECK checks that the selected address range is erased.

• FILLBUFFER <data> fills the ISP buffer with a byte value.

• LOADBUFFER { <in_elffile> | <in_hexfile> } loads the ISP buffer from an input file.

• PROGRAM programs the selected address range with the ISP buffer.

• VERIFY verifies that the selected address range has the same contents as the ISP

buffer.

• READ reads the selected address range to the ISP buffer.

• SAVEBUFFER <out_hexfile> { HEX386 | HEX86 } saves the ISP buffer to an output file.

• START { RESET | NORESET } 0 starts the execution of the programmed application

with an optional hardware reset of the target.

The AT32UC3xxxxx memories made available by BatchISP are:

• FLASH: This memory is the internal flash array of the target, including the bootloader

protected area. E.g. on AT32UC3A0512 (512-kB internal flash), addresses from 0 to

0x7FFFF can be accessed in this memory.

• SECURITY: This memory contains only one byte. The least significant bit of this byte

reflects the value of the target Security bit which can only be set to 1. Once set, the

only accepted commands will be ERASE and START. After an ERASE command, all

commands are accepted until the end of the non-volatile ISP session, even if the

Security bit is set.

15

7745A–AVR32–07/07

• CONFIGURATION: This memory contains one byte per target general-purpose fuse bit.

The least significant bit of each byte reflects the value of the corresponding GP fuse

bit.

• BOOTLOADER: This memory contains three bytes concerning the ISP: the ISP version

in BCD format without the major version number (always 1), the ISP ID0 and the

ISP ID1.

• SIGNATURE: This memory contains four bytes concerning the part: the product

manufacturer ID, the product family ID, the product ID and the product revision.

• USER: This memory is the internal flash User page of the target, with addresses from

0 to 0x1FF.

For further details about BatchISP commands, launch batchisp -h or see the help files

installed with FLIP (file:///C:\Program%20Files\Atmel\Flip%203.2.0\help\index.htm).

7.4 AVR32 Studio

AVR32 Studio is an integrated development environment for AVR32. It integrates a plu-

gin giving access to BatchISP features. See Section 3 for download information.

AVR32 Studio bootloader support may not yet be released at the time this docu-

ment is published. See AVR32 Studio release notes for details.

7.4.1 Creating an AVR32 Target for BatchISP

In order to use the BatchISP plugin, an AVR32 target has to be created and configured

for each part to use.

Launch AVR32 Studio and go to the ‘AVR32 Targets’ pane:

16

7745A–AVR32–07/07

In this pane, click the ‘Create New Target’ button:

A new AVR32 target will appear in this pane and its properties will be displayed in the

‘Properties’ pane where it can be renamed:

17

7745A–AVR32–07/07

Then go to the ‘Adapter’ tab in the ‘Properties’ pane and select ‘EVK110x’ for ‘Adapter’

and ‘usb’ for ‘Connection’:

Finally, go to the ‘Board’ tab and select ‘EVK110x’ for ‘Board’ and ‘UC3xxxxx’ for ‘MCU’:

The BatchISP AVR32 target is now ready to use.

18

7745A–AVR32–07/07

7.4.2 Usage

To issue a command to BatchISP, right-click in the ‘AVR32 Targets’ pane the AVR32

target to use and select a command:

7.5 UC3 Software Framework

7.5.1 Memory Layout

All GCC and IAR projects in the UC3 software framework are set up so that they can be

programmed with both JTAGICE mkII and BatchISP. To achieve this, a trampoline sec-

tion is placed at the reset vector (80000000h). This section simply jumps to the

beginning of the application (80002000h).

To program an application with JTAGICE mkII, the MCU flash array must first be unpro-

tected and erased, so the bootloader should be removed. When programming, the

whole binary image including the trampoline and the application, is copied to the flash

array. Consequently, when MCU execution is then started, the trampoline executes at

the reset vector at 80000000h and jumps to the application at 80002000h.

19

7745A–AVR32–07/07

Figure 7-2. Application Programming on AT32UC3A0512 with JTAGICE mkII

To program an application with BatchISP, the MCU flash array must contain the boot-

loader. When programming, BatchISP takes into consideration the whole binary image

including the trampoline and the application, but the trampoline cannot overwrite the

bootloader, so the trampoline is not programmed and a warning is issued by BatchISP

to tell the user that the binary image may contain an application linked directly at the

reset vector without trampoline. Consequently, when MCU execution is then started, the

bootloader executes at the reset vector at 80000000h and launches the application at

80002000h when the required conditions are met.

Figure 7-3. Application Programming on AT32UC3A0512 with BatchISP

Application

Trampoline
Reset vector is
@ 80000000h

Application is
@ 80002000h

8 kB

504 kB 512-kB
Flash
Array

Binary Image of
Application Linked
with Trampoline

Application

Free Flash Space

MCU Address
Space
without

Bootloader

Jump

Trampoline

Jump

Application

Trampoline
Reset vector is

@ 80000000h

Application is

@ 80002000h

8 kB

504 kB 512-kB
Flash

Array

Binary Image of

Application Linked

with Trampoline

Application

Bootloader

Free Flash Space

MCU Address

Space

with Bootloader

Jump

20

7745A–AVR32–07/07

7.5.2 Usage

To use JTAGICE mkII (without bootloader), first unprotect and erase the MCU flash

array with avr32program chiperase if needed. Then, an application can be programmed

and run by issuing make program run for a GCC project and by starting a debug session

for an IAR project.

An application can be programmed and run with BatchISP (with bootloader) by issuing

make isp program run for a GCC project. As to IAR projects, which are configured to use

JTAGICE mkII by default, rebuild all after having set the following post-build command

line in the project options (replace at32uc3a0512 by the appropriate part name):
batchisp -device at32uc3a0512 -hardware usb -operation erase f memory flash

blankcheck loadbuffer $TARGET_BPATH$.hex program verify start reset 0

21

7745A–AVR32–07/07

This requires the generation of an Intel HEX extra output file:

Once an application has been programmed using BatchISP, it can still be debugged

with JTAGICE mkII in the usual way. This is especially interesting for large applications

22

7745A–AVR32–07/07

because BatchISP programs faster than JTAGICE mkII. Under IAR, this will require to

suppress JTAGICE mkII download in the project options:

In this case, if IAR project options request JTAGICE mkII download verification, an

expected warning will be issued by IAR because it will see the bootloader in the part at

the location of the trampoline in the binary image.

7.5.3 Project Customization

7.5.3.1 Adding or Removing the Trampoline

To add the trampoline to a GCC project, do the following in config.mk:

• Add $(SERV_PATH)/USB/CLASS/DFU/EXAMPLES/ISP/BOOT/trampoline.S to the ASSRCS

assembler source files.

• Select the appropriate linker script from $(UTIL_PATH)/LINKER_SCRIPTS/ with

LINKER_SCRIPT.

• Set the program entry point to _trampoline by adding -Wl,-e,_trampoline to

LD_EXTRA_FLAGS.

To add the trampoline to an IAR project, do the following:

• Add SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\BOOT\trampoline.s82 to the project files.

• Select the appropriate linker script from UTILS\LINKER_SCRIPTS\ in the project

options.

23

7745A–AVR32–07/07

• Set the program entry label to __trampoline in the project options.

The trampoline can be removed from a GCC or IAR project to reallocate the size of the

bootloader for the application. This can be achieved by removing the trampoline assem-

bler source file from the project and by removing the program entry point override.

7.5.3.2 Adding or Removing the Bootloader Binary Image

It is possible to include the binary image of the bootloader in any GCC or IAR project.

This may especially be useful for debug purposes when using JTAGICE mkII.

To add the bootloader binary image to a GCC project, do the following in config.mk:

• Add $(SERV_PATH)/USB/CLASS/DFU/EXAMPLES/ISP/BOOT/ to the INC_PATH include path.

• Add $(SERV_PATH)/USB/CLASS/DFU/EXAMPLES/ISP/BOOT/isp.S to the ASSRCS assembler

source files.

• Select the appropriate linker script from $(UTIL_PATH)/LINKER_SCRIPTS/ with

LINKER_SCRIPT.

• Set the program entry point to _isp by adding -Wl,-e,_isp to LD_EXTRA_FLAGS.

To add the bootloader binary image to an IAR project, do the following:

• Add SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\BOOT\isp.s82 to the project files.

• Select the appropriate linker script from UTILS\LINKER_SCRIPTS\ in the project

options.

24

7745A–AVR32–07/07

• Set the program entry label to __isp in the project options.

To remove the bootloader binary image from a GCC or IAR project, remove the isp

assembler source file from the project and remove the program entry point override.

Note that the bootloader binary image added to a project by the isp assembler source

file is SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3X/GCC/at32uc3x-isp.bin for GCC

and SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3X\IAR\at32uc3x-isp.h for IAR.

These are by default the most up-to-date releases of the bootloader, the bootloader

shipped with the parts being the GCC version. However, the user may apply his own

changes to the bootloader sources in the SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/ folder,

then recompile it using GCC or IAR and program it as any other project with JTAGICE

mkII. These changes will be automatically applied to the bootloader binary image used

for IAR projects, but SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3X/GCC/uc3xxxxx-

isp.bin will have to be renamed or copied manually to SERVICES/USB/CLASS/DFU/EXAM-

PLES/ISP/AT32UC3X/GCC/at32uc3x-isp.bin for GCC projects for safety.

7.5.3.3 Extending the Bootloader

An application can integrate its own bootloader by enlarging the bootloader protected

area specified by the BOOTPROT general-purpose fuse bits (see Section 6.2.1). In this

case, Atmel’s bootloader will launch the application as usual at 80002000h where the

applicative bootloader should be located. The applicative bootloader is responsible for

the following operations.

Once Atmel’s ISP has been used to program the application and its bootloader, it can be

deactivated by setting the ISP_IO_COND_EN general-purpose fuse bit to 0 (see Sec-

tion 6.2.1) if it is no longer needed.

25

7745A–AVR32–07/07

Figure 7-4. Extension of the Bootloader on AT32UC3A0512

Atmel's Bootloader
Reset vector is
@ 80000000h

Application is
@ 80002000h

8 kB

Free Flash Space

512-kB
Flash
Array

MCU Address Space

Application

Applicative Bootloader
BOOT
PROT

26

7745A–AVR32–07/07

8. Frequently Asked Questions

Q: How do I reprogram the bootloader to the original program and fuse settings?

A: Connec t your board to your PC us ing a JTAGICE mk I I and execute

./program_at32uc3x-isp-1.x.x.sh in the SERVICES/USB/CLASS/DFU/EXAM-

PLES/ISP/AT32UC3X/Releases/AT32UC3X-ISP-1.X.X/ folder of the UC3 software

framework corresponding to your part. See Section 7.1 for further details.

Q: I want to program my own bootloader. How do I do that?

A: You can either replace Atmel’s bootloader with your own by changing the bootloader

sources in the SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/ folder and programming it with

JTAGICE mkII or you can extend Atmel’s bootloader with your own by enlarging the

bootloader protected area specified by the BOOTPROT general-purpose fuse bits. See

Section 7.5.3.2 and Section 7.5.3.3 for further details.

Q: I do not want to use the bootloader and I want to use the first 8 kB of the flash

for my application. How do I do that?

A: Remove the bootloader with JTAGICE mkII by unprotecting and erasing the MCU

flash array with avr32program chiperase. The trampoline should then be removed from

your project to free the first 8 kB of the flash. See Section 7.5.3.1 for further details.

Q: I do not want any ISP I/O condition with my program. Can I still use the ISP?

A: ISP I/O conditions can be suppressed by setting the ISP_IO_COND_EN general-pur-

pose fuse bit to 0. The only way of reaching the ISP is then to set the ISP_FORCE

general-purpose fuse bit to 1 from the programmed application and to generate an MCU

hardware reset. See Section 6.2.1 and Section 7.2 for further details.

Q: I do not want to use the trampoline section from the software framework but I

still want to use the bootloader. Is it possible and where should I link my

application?

A: Remove the trampoline from your project by following the instructions in Section

7.5.3.1 and link your application as if the reset vector were at 80002000h instead of

80000000h. This can be achieved by modifying the linker script you use with GCC or

IAR. Your project will then be unusable with JTAGICE mkII.

27

7745A–AVR32–07/07

9. User’s Guide Revision History

Please note that the referring page numbers in this section are referred to this docu-

ment. The referring revision in this section are referring to the document revision.

9.1 Rev. A 07/07

1. Initial revision for bootloader 1.0.0.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trademarks

of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any

intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-

TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY

WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-

TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT

OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no

representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications

and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided

otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use

as components in applications intended to support or sustain life.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

7745A–AVR32–07/07 /xM

	Features
	1. Description
	2. Related Parts
	3. Related Items
	4. Abbreviations
	5. Bootloader Environment
	6. Inner Workings
	6.1 Memory Layout
	6.2 Configuration
	6.2.1 General-Purpose Fuse Bits
	6.2.2 Flash User Page

	6.3 Boot Process

	7. Using the Bootloader
	7.1 Reprogramming the Bootloader
	7.2 Activating the ISP
	7.3 BatchISP
	7.3.1 Installation
	7.3.2 Usage

	7.4 AVR32 Studio
	7.4.1 Creating an AVR32 Target for BatchISP
	7.4.2 Usage

	7.5 UC3 Software Framework
	7.5.1 Memory Layout

	7.5.2 Usage
	7.5.3 Project Customization
	7.5.3.1 Adding or Removing the Trampoline
	7.5.3.2 Adding or Removing the Bootloader Binary Image
	7.5.3.3 Extending the Bootloader

	8. Frequently Asked Questions
	9. User’s Guide Revision History
	9.1 Rev. A 07/07

