

11068 VSP

Virtual System Prototyping for 16-bit Devices using MPLAB[®] IDE and Proteus VSM

Class Objectives

When you finish this class you will:

- Understand the benefits and advantages of Virtual Simulation and Prototyping
- Be able to use Virtual Demo Boards within MPLAB[®] IDE
- Know how to rapidly test proof of concept ideas prior to full system development
- Use Virtual System Prototyping as part of the product development process
- Use standard Microchip application notes libraries and tools to aid rapid solution development

Agenda

Setting the Scene

- Virtual System Prototyping
- Virtual Development Boards
- Lab1 Explorer-16 VDB
- Lab2 Adding Speech
- Lab3 Adding Mass Storage
- Lab4 Adding Ethernet

Setting the Scene

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11068 VSP

Setting the Scene Market Information

Currently we manufacture a range of high quality monitoring equipment for

- Temperature
- Pressure
- Flow....etc.

Market information shows opportunities for monitoring equipment with

- Local audio feedback
 - Audible spoken warnings and sensor readings
- Data recording features
 - Usage and monitoring data
- Live monitoring and update capabilities
 - Remote diagnostics, monitoring and updates

Setting the Scene The Scenario

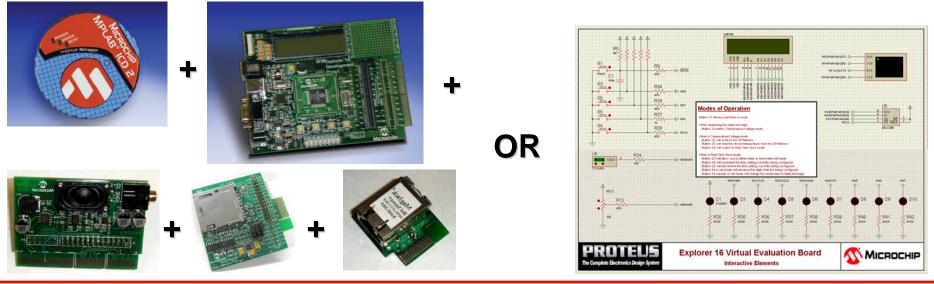
You know the situation. You are working away quite happily when the boss calls you in. Hey Bob, we have a great new product idea, drop everything. We need to prove the concept asap.

Great!, you say, what's the deadline?

Oh, if you can get me the preliminary proof of concept for let's say next Thursday.

No problem, you say.

Now you have got 10 days to look at the concept, determine if it will work and create some proof of concept demonstrations.


Of course, you take it all in your stride. You have limited budget, little time to obtain development boards and no time to create any hardware but you do have a secret weapon to call on.....

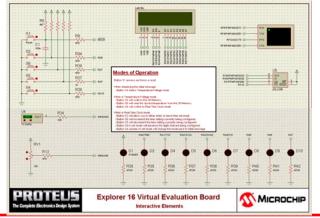
Setting the Scene What tools are available

Design will be based around the Microchip 16-bit Family of MCUs

- PIC24F chosen as starting point
 - DV164005 MPLAB[®] ICD2
 - DM240001 Explorer-16 Demo Board
 - AC164125 Speech Playback PlCtail[™] Plus
 - AC164122 PICtail Plus for SD/MMC to SPI Interface
 - AC164123 Ethernet PICtail Plus

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Slide 7


Setting the Scene Our Tool Choice

• Immediate Start Required so use easily available software tools

- Virtual Simulation and Prototyping with MPLAB[®] IDE and Proteus VSM
- Code development using MPLAB C30 C Compiler
- Application Notes and Libraries from Microchip

Proteus provides virtual equivalents of

- PIC24F devices in 64 to 100 pins
- Development tool functions similar to MPLAB ICD2 / MPLAB SIM
- DM240001 Explorer-16 Demo Board
- AC164125 Speech Playback PICtail[™] Plus
- AC164122 PICtail Plus for SD/MMC to SPI Interface
- AC164123 Ethernet PICtail Plus

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Virtual System Prototyping - Overview

Agenda

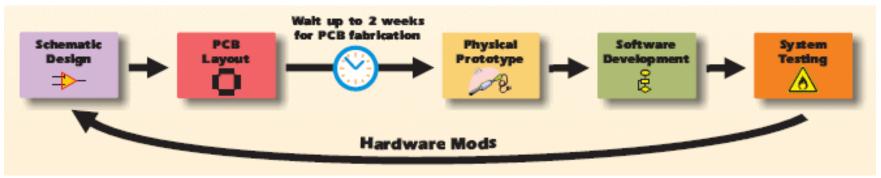
What is Virtual System Prototyping?

- The Design Lifecycle
- What is Proteus VSM?
- Interactive Debug with MPLAB[®] IDE

Virtual System Prototyping?

• Development of a system using

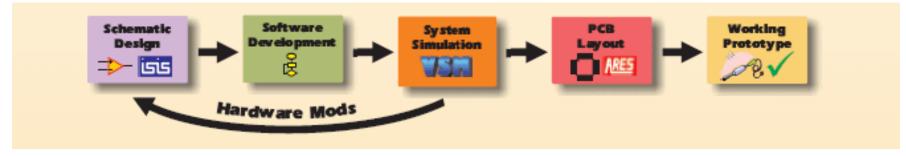
- Software biased approach
- Simulation and test of ideas and principles.
- Allows rapid development and modification
 - Prior to a commitment to hardware
- Simultaneous development of hardware and software
 - On the actual design
 - Prior to availability of physical hardware


Provides early indication of

- Design flaws
- Software/Hardware conflicts

Virtual System Prototyping Classic Design Lifecycle

The critical design path in a typical project.

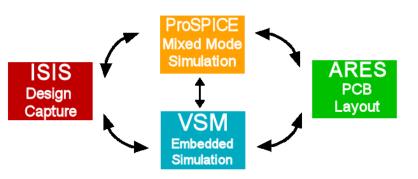


- Testing of the system cannot begin until a physical prototype is available
- Experimentation with code design is difficult without the system hardware
- Software/Hardware conflicts may lie undiscovered until late in the design cycle
- Changes to system hardware are time consuming, particularly if a new prototype is required

Virtual System Prototype Design Lifecycle with Virtual Simulation

The critical design path with virtual simulation.

- The system is available for testing as soon as the schematic has been drawn
- Early simulation of software and its interaction with the entire system available prior to prototyping
- Changes to hardware design can be made as easily as changes to software design
- Potential issues can be evaluated and handled earlier in the design cycle

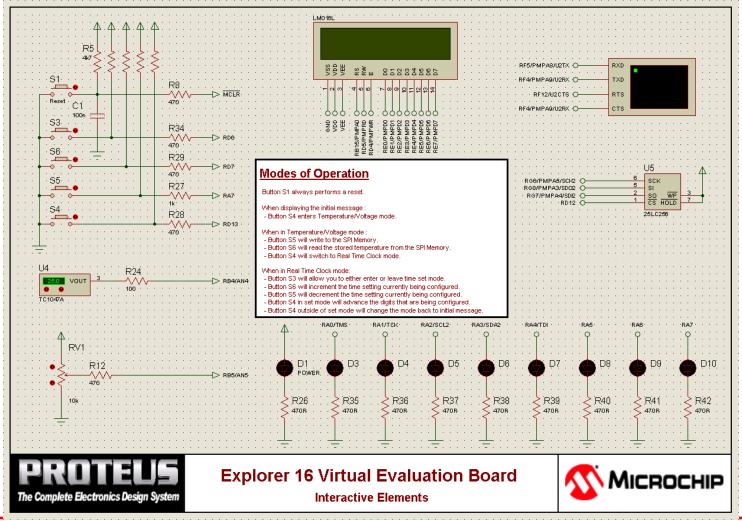

Software development can continue in parallel on an actual target design

Virtual System Prototyping What tools do we need?

Proteus VSM

- Schematic Capture
- Mixed Mode Simulation
 - SPICE Simulation
 - Digital and Analog

- Virtual Simulation for Microcontrollers
 - Cycle accurate models of PIC[®] microcontrollers and peripherals


• MPLAB[®] IDE

- Code Development
- Debugging and Simulation
 - Proteus VSM Plug-In

Virtual System Prototyping Proteus VSM – System Creation

• System is generated as standard schematic

Virtual System Prototyping MPLAB[®] IDE Integration – System Simulation

System is integrated with MPLAB IDE via Proteus VSM Plug In

mo1.mcw 📃 🗖 🔀	MPLAB IDE Editor	🗖 🗖 Demo1. dsn - Proteus VSM MPLAB Viewer (Animating)
Source Files adc.c banner.c buttons.c eeprom.c lcd.c plc24ExpDemo.c tc.c. spinpol.c tbanner.c uart2.c vbanner.c buttons.h buttons.h buttons.h buttons.h	PIC24ExpDemo.c adc.c lod.c PIC24ExpDemo.c adc.c lod.c * * * * * * * * * * * *	AL AL AL AL AL AL AL AL AL AL
b lcd.h p 24FJ128GA010.h h tc.h spimpol.h b system.h b uert2.h Object Files L Unler Scripts L Unler Scripts C Other Files Symbols Mes & Symbols	The Software is Summed by the Company any protected under applicable copyright la Any use in violation of the foregoing r user to criminal sanctions under applic civil liability for the breach of the t license. This SOFTWARE IS PROVIDED IN AN "AS IS" WHENHER KAPRESS, IMPLIED OR STATUTORY, TO, IMPLIED WARRANTIES OF MERCHANTABILI PARTICULAR PURPOSE APPLY TO THE SOFTWA IN ANY CIRCUMSTANCES, BE LIABLE FOR SPE CONSQUENTIAL DAMAGES, FOR ANY REASON W * Author Date Commen Forse Fosler XOX Anton Alkhimenok 10/21/05 Witual Terminal	ALD ALL A
Version Control Find in Files Proteus Ilizing Proteus VSM Simulation Ilizing simulation Jing Program DY ning	VSM Laboratorial constraints of the second	

Virtual System Prototyping - Benefits

All of the factors discussed should result in

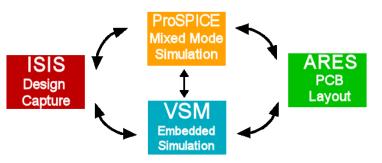
- Reduced design cycle time
- Reduced effort
- Reduced cost
- Reduced time to market

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Agenda

• Virtual Development Boards


- What is a Virtual Development Board (VDB)?
- What tools are available to aid design and simulation?
- Design/Simulation Trade-Offs

Virtual Development Boards What is a Virtual Development Board?

• A schematic representation of a system design

- Allows both
 - Standard Design and Forward Annotation for PCB manufacture
 - Interactive Simulation

- How
 - Components are standard schematic symbols with simulation model properties
 - Components can be used for simulation only
- Model Properties
 - Models are faithful representations of real components

What tools are available to aid design and simulation?

- Allows full simulation of
 - Device Management Functions
 - WDT
 - Timers
 - Sleep
 - Etc.
 - ADC
 - Comms Peripherals
 - UART/USART (incl EUSART)
 - SPI and I²C[™]

Plus many other features

What tools are available to aid design and simulation?

- Classic SPICE Analog simulation
 - Based on Berkeley SPICE v3f5
 - Fully integrated with VSM microcontroller simulation engine
- Interactive Components
 - Buttons, LED's, Pot's and active components
 - LCD's
 - Segment, Matrix and Graphical

What tools are available to aid design and simulation?

• Suite of Virtual Instruments

- Oscilloscope
- Logic Analyzer
- Serial Terminal
- Protocol Analyzers
- DVM
- Function Generators
- Graphs
-etc

Component and System Level Debugging

- Breakpoints, Watch Windows etc
- Visual Logic State Indicators
- Real Time Current and Voltage Probes
- Component Level Diagnostics
- Trace and Log functions for MCU and Peripherals

What tools are available to aid design and simulation?

Benefits

- Full System Simulation
 - Peripherals function as would a real device
- ADC is fully modelled incl. Vrefs
 - Can be simulated by external components
- Comms modules are fully simulated
 - Terminal and Protocol Analyzers available
- External amplifiers and filters simulated in step with code
- Debugging and interaction is similar to working with hardware

Virtual Development Boards Design and Simulation Trade-Offs

• Simulation Only

- No forward annotation to PCB expected
- Components can be excluded from design
- Only key components used
- Simulation time reduced
- Simple, small design
- Easier to place virtual instruments etc

Fully Annotated Designs

- All Components required
 - Some can be excluded from simulation and annotation
- Group interactive components on single sheet
 - Allow space for instruments

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Hands-On Labs Lab Structure

Virtual System Prototyping Hands-On Labs: Structure

• Intro and Explanation of

- Key Concepts
- Design Considerations
 - What decisions were made
 - Where to find more information
- Walk through Demo
 - No need to follow along
 - Show and tell of key operations
- Lab using Lab Notes
 - These will provide sufficient detail to follow along
- Additional Exercises
 - These are OPTIONAL
 - More exercises are provided than there will be time to complete
 - Plenty to keep the high flyer's busy

Virtual System Prototyping Hands-On Labs: Tools

• MPLAB[®] IDE

- Code Development
- Debugging and Simulation
- Proteus VSM
 - Mixed Mode Simulation Tool

• MPLAB C30 C Compiler

Additonal tools

Where needed to aid the system design additional tools will be introduced

 $\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Hands-On Lab1 – Explorer-16 VDB

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11068 VSP

Agenda

Lab1 – Explorer-16 VDB

- What is implemented?
- Types of simulation
 - Interactive / Real Time
 - Batch Mode
- Virtual Instruments to aid debug
- Using MPLAB[®] IDE and Proteus VSM
- Lab1 Demo
- Lab1 Practical

Lab1 – Explorer-16 VDB What are we going to do?

• Familiarise ourselves with the baseline toolset

- Use software tools
 - MPLAB[®] IDE
 - MPLAB C30 C Compiler
 - Proteus VSM Simulator
- Open the Virtual Explorer-16 Demo Board
 - Run the standard 'out of the box' hardware demo
 - Interact with the demo
 - Add a virtual instrument
 - Add a breakpoint to the source code

• How does this fit into our scenario

Prior to adding new features we need a baseline system

Lab1 – Explorer-16 VDB What is implemented?

Simulation Only Design

- Only functional or interactive components implemented
 - No Power
 - No Connectors
 - No PIC18F4550 USB Device
 - No RS232 Device
 - Replaced with Virtual Terminal

Lab1 – Explorer-16 VDB What do we gain?

• Simple, clean VDB

- Only essential components added
 - Only components needed for simulation implemented
 - Quick and easy to implement proof of concept designs
 - Additional components can be added as needed
- Quick and easy to implement changes and modifications
 - No Soldering
 - No Lifted Pads
 - No Wire Mods
 - No Component Changes
 - No Searching for Components
 - No Waiting for Orders to Arrive
 - No Waiting for PCB's

Lab1 – Explorer-16 VDB What are the limitations?

Simulation limited by

Available models

- Often a nearest best fit can be used
- Models can be generated / written
 - SDK available (under NDA)
- Real world issues
 - Simulation of ESD/EMC and other effects are unimplemented
 - Models are pure functional equivalents No Errata are modelled

Let's take a tour

Open Lab1

- Open Project in MPLAB[®] IDE

Navigate to Culture (1)

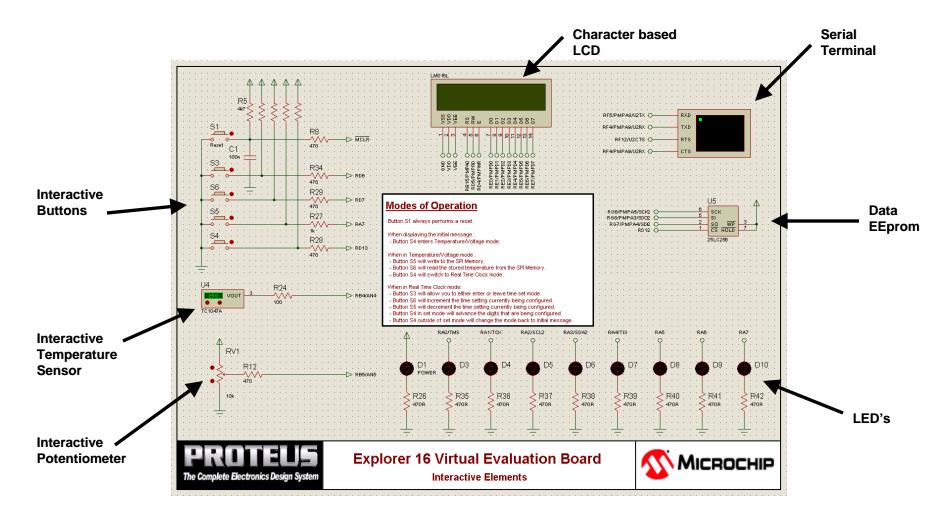
- C:\Masters\11068\Lab1\Lab1a\
- Select Lab1a.mcp

Follow along for this sectionWill advise when you go solo

Lab1 – Explorer-16 VDB Simulation Modes – Interactive Mode

• How Do I Use Interactive Mode?

- Select Proteus VSM as Debugger
 - Click 'Debugger' Menu
 - Select Proteus VSM as Debugger tool
 - Viewer Window Opens


• If needed open required schematic design inside viewer

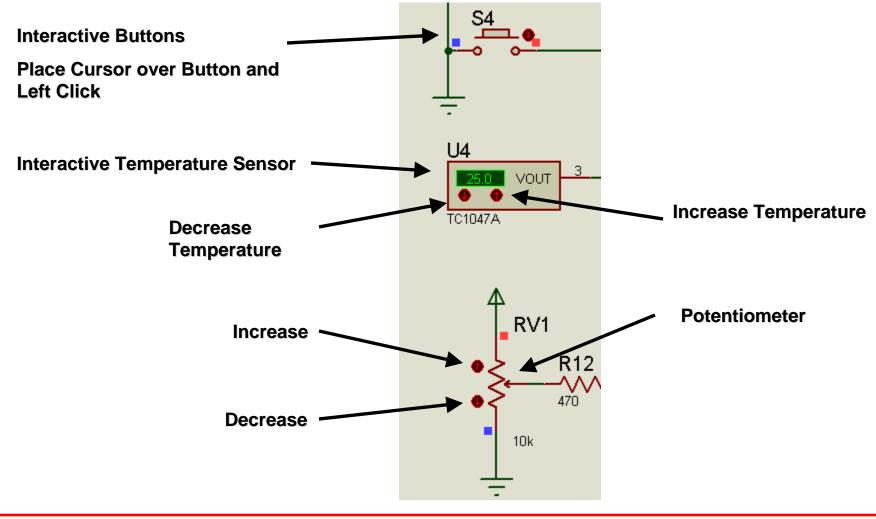
- Use the Open Design icon inside viewer window
- Browse to and open relevant schematic file

Project	Debugger Progra	ammer	Tools	Configure	Window	Help
	Select Tool		×	None		۵ 😫
	Clear Memory		•	🖌 1 Proteus VSM		
mo.mcw	Run	F9		2 MPLAB 1	ICD 2	
ons.c	Animate	1.2		3 MPLAB 1	ICE 4000	
om.c	Halt	F5		4 MPLAB S	SIM	
	Step Into	F7		5 MPLAB I	ICE 2000	
4ExplDemo.ı c	Step Over	F8		6 REAL IC	E	
ol.c	Step Over	10		7 PICkit 2		
ner.c	Reset]			
ъс						
2.c	Breakpoints	F2				
iner.c Files	Start Simulation	E12				
יייט אין	Stop Simulation		12			
ons.h		Curri .				

Let's take a tour

Lab1 – Explorer-16 VDB Using Proteus VSM and MPLAB® IDE

Overview of Package Operation


- Simulation modes
 - Interactive Mode
 - Code level debug
 - Virtual Instruments active
 - Interactive Components operational
 - Similar to hardware
 - Uses same MPLAB IDE debugging functions
 - Allows interaction with design via Proteus VSM Viewer

Batch Mode

- Mixed mode simulation
 - Allows SPICE and source code to be synchronised
 - Use with Analysis Graphs
 - Used in Lab2

Lab1 – Explorer-16 VDB Interactive Components


Lab1 – Explorer-16 VDB Simulation Modes – Interactive Mode

• Using Interactive Mode

- Click the Green Button
 - Connects MPLAB[®] IDE to Proteus VSM Simulator

- Turns to RED when MPLAB IDE is connected to Proteus VSM
 - Enables interactive buttons
 - Opens Virtual Instrument windows

- Use Normal MPLAB IDE functions to debug
 - MPLAB IDE operates as per MPLAB SIM or MPLAB ICD2/Real ICE

Lab1 – Explorer-16 VDB Lab1 - Demonstration

Lab1a

Follow the Lab Notes

- Connect MPLAB[®] IDE to Proteus VSM
 - Run Simulation
 - *may request a code out of date re-build
 - Use interactive buttons to scroll through menus on LCD
 - Modify Potentiometer position and observe changes to voltage on LCD
 - Modify Temperature using buttons on interactive temperature sensor

Lab1 – Explorer-16 VDB Lab1 – Additional Excercise

• Lab1b (optional)

- Stop and disconnect Proteus VSM Simulator
 - Hint : Press Red Button
- Add a DVM to each of
 - Net R12-2/RB5
 - Net R24-2/RB4
- Add Breakpoints in ADC.c to capture ADC conversions
 - Compare DVM readings to measured and calculated values on LCD
 - Allows check of Vout range of temperature sensor to reported temperature
 - Confirms calculations and sensor operations
 - Allows range checking in code etc

Follow the Lab Notes

Virtual System Prototyping Hands-On Labs : Timing

Back in 10mins for Lab2 – Adding Speech to your design

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Hands-On Lab2 – Adding Speech to Your Design

Agenda

Lab2 – Adding Speech/Audio to Your System

- System choices for Speech Playback
 - Quality
 - Memory
 - Algorithms
- Playback hardware
- Message creation

Lab2 – Adding Speech Market Requirements

Market requirement #1

- Provide Speech/Audio playback capability
 - Audible Warnings or Readouts
 - Set Point or Alarm messages
 - May require
 - Multiple languages to suit market needs

Lab2 – Adding Speech What are we going to do?

- Add speech playback to our system
 - Use a readily available demo to create a speaking thermometer

Provides a platform to evaluate

Low cost PWM DAC generated speech output

Introduces method to

- Create and manipulate samples
- Store in memory
- Recall from memory relative to real events

Introduces additional software tools

- Goldwave : wave editor
- Winspeech : compression tool
- MPFS : filing system tool

Lab2 – Adding Speech

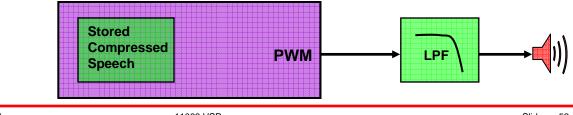
System Choices for our Playback Only System

• MCU

- PIC24FJ128GA010
 - Ample Internal Memory for Application and Data
 - PWM / Output Compare Module
 - Allows 16kHz at 16bits to be implemented easily

Output Filter

- At least 4th order Low Pass
 - Cut-off Freq c. 4kHz
 - Low Cost components

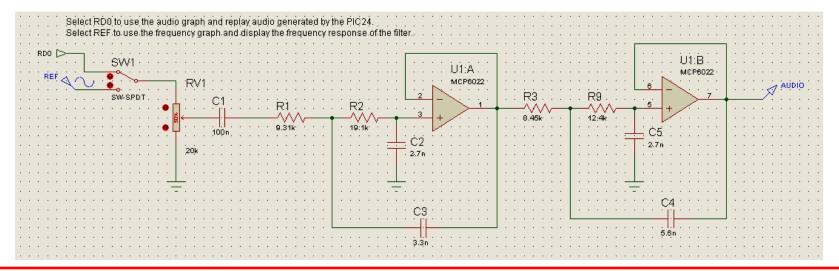

Memory

- Internal Program Memory
- MPFS Filing System implemented

Algorithm

- IMA ADPCM Chosen
 - Easy to implement
 - Low MIPS requirement, No DSP so can be implemented in an MCU
 - Adequate Compression ratio at 4:1

PIC24FJ128GA0xx



Lab2 – Adding Speech Message Output

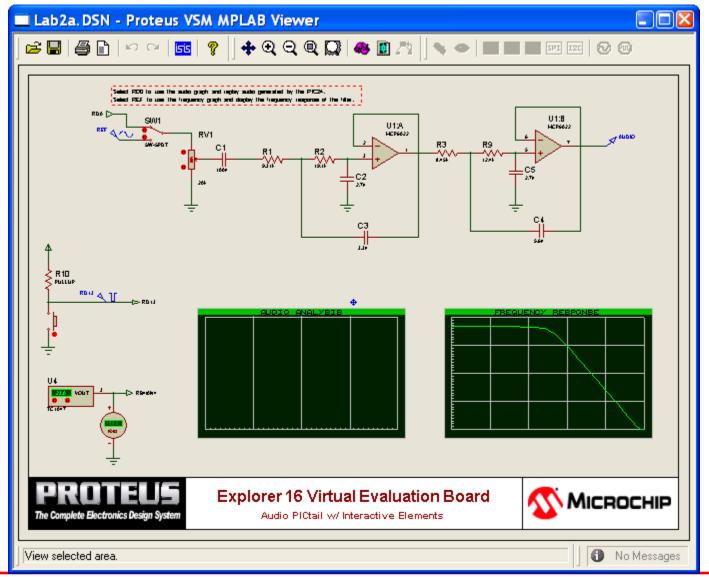
A Digital to Analog Converter (DAC) is created using

- PWM Output from Output Compare Module
 - Frequency and Resolution are limited
- Analog Filter
 - At least 4th Order Filter recommended

Lab2 – Adding Speech Lab2 – Open Lab

Open Lab2.mcp

- Open Project in MPLAB[®] IDE


Navigate to

- C:\Masters\11068\Lab2\Lab2a\
- Select Lab2a.mcp

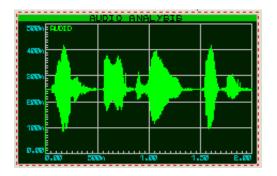
Perform batch mode operation to generate speech output

Lab2 – Adding Speech Lab2 – What we should see is...

Lab2 – Adding Speech Simulation Modes – Batch Mode

• Using Batch Mode

- No Connection to Proteus VSM Simulator is made
 - Button should stay GREEN



• Place mouse pointer over Audio Analysis Graph

- A Red Dashed Line Box will appear around graph
- Press Space Bar OR Right-Click and Select Simulate Graph

ALC:	10		
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	

Pre-Simulation

Post Simulation

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Lab2 – Adding Speech How Speech Output is Constructed

Phrase constructed from a series of individual words

- In this case for 23°C, we use
 - Twenty
 - Three
 - Degrees
 - Celsius

- Complete vocabulary stored in minimal memory

Vocabulary consists of individual words

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
 ,20,30,40,50,60,70,80,90,100,Degrees,Celcius,
 Fahrenheit

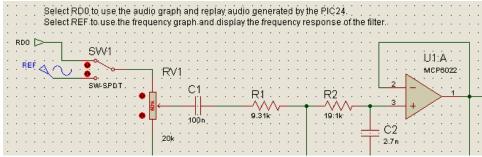
Lab2 – Adding Speech Lab2 - Demonstration

• Lab2a

Run simulation

Follow the Lab Notes

- *may request a code out of date re-build
- DO NOT CONNECT to VSM
 - Batch mode simulation required
- Move Cursor over Analysis Graph
 - Press Space Bar
- Allow simulation to complete
 - Message should play
 - Use Ctrl-Space to re-play message
- Modify temperature and re-run


Lab2 - Additional Excercise

• Lab2b (optional)

- Observe the differences between filter types
 - Run the Audio Analysis as for Lab2a

- Change switch position to determine filter response
 - Switches a 1kHz Sine wave into filter
- Select the Frequency Response Graph
 - Press <Space> to run simulation
- Select the Fourier Analysis Graph
 - Press <Space> to run simulation
- Observe the effects and modify the filter characteristics
 - Change values of passives to modify filter

- Select, in turn, Frequency Response and Fourier Analysis Graphs
 - Press <Space> to run simulation and observe changes
- Change switch position to PWM DAC signal
 - Simulate message as Lab2a

Lab2 - Additional Excercise

• Lab2c (optional)

– Open Lab2c

Follow the Lab Notes

- Code setup for full temperature range playback
- Record 'Zero', 'Minus', 'Two Hundred', 'AND' Messages
 - Use PC and Microphone/Speakers
 - Manipulate using Goldwave
- Compress using Winspeech
- Add messages to image file using MPFS v2
- Add revised MPFSImgASM.s to your project
 - Build Project
- Set required temperature for message to play back
- Run simulation
- *comprehensive details in Lab notes and/or appendix

Virtual System Prototyping Hands-On Labs : Timing

Back in 10mins for Lab3 – Adding Mass Storage to your design

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Hands-On Lab3 – Adding Mass Storage

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Agenda

Lab3 – Adding Mass Storage

- What are the options?
- Filing Systems
- Using a Virtual Mass Storage Device

Lab3 – Adding Mass Storage Market Requirements

Market requirement #2

- Provide PC compatible Mass
 Storage capability
 - Storage of usage and monitoring data
 - External memory for speech playback
 - Aid storage for multi-lingual systems

Lab3 – Adding Mass Storage What are we going to do?

- Discuss design factors relative to adding mass storage to a system
- Create a functional system utilising
 - External flash memory mass storage card
 - Microchip FAT16 Library
- Use virtual equivalents of
 - DM240001 Explorer-16 Demo Board
 - AC164122 PICtail[™] Plus for SD/MMC to SPI Interface

Understand how to use additional tools to

Add files to a virtual mass storage device image file

Lab3 – Adding Mass Storage What Filing System Options Are Available

	Direct Access	MPES	FAT16	Proteus Model	Licence Required
Internal					
Program Flash	2				
Serial					
Data EE		2			
Serial Flash		Future			
SD/MMC					2
Parallel					
Parallel Flash	7				
Compact Flash					
ATA HDD					

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Lab3 – Adding Mass Storage Filing Systems - FAT16

- For our purposes a SD/MMC or Compact Flash card can be used
 - Microchip FAT16 Library implemented
 - Best option for technology chosen
 - Easy interaction with PC
 - Use of MPFS or raw data would require a more complex target interface
 - Overhead of FAT16 library is acceptable

• Creation of Multi Language Talking Thermometer

- Similar to Lab2a
- Increased memory capacity allows for increased functionality
- Uses FAT16 filing system
- Concept lends itself as basis for many other designs

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Lab3 – Adding Mass Storage Open Lab3

Open Lab3.mcp

- Open Project in MPLAB[®] IDE

Navigate to

- C:\Masters\11068\Lab3\Lab3a\
- Select Lab3a.mcp

Lab3 – Adding Mass Storage Lab3 - Demonstration

• Lab3a

– Run simulation

*may request a code out of date re-build

- DO NOT CONNECT to VSM
 - Batch mode simulation required
- Move cursor over Analysis Graph
 - Press Space Bar
- Allow simulation to complete
 - Message should play
 - Use Ctrl-Space to re-play message
- Modify Temperature or Language Setting and re-run
- Message is now being read from external mass storage rather than internal program memory

Follow the Lab Notes

Lab3 – Adding Mass Storage Lab3 - Additional Excercise

- Lab3b (optional)
 - Record a Message and compress
 - As per Lab2c
 - Add file to Virtual Mass Storage device
 - Use software utility to add files to virtual drive image file
 - Move Cursor over Analysis Graph
 - Press Space Bar
 - Allow simulation to complete
 - Message should play
 - Use Ctrl-Space to re-play message

Follow the Lab Notes

Virtual System Prototyping Hands-On Labs : Timing

Back in 10mins for Lab4 – Adding Ethernet to your design

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Agenda

Setting the Scene Virtual System Prototyping Virtual Development Boards Lab1 – Explorer-16 VDB Lab2 – Adding Speech Lab3 – Adding Mass Storage Lab4 – Adding Ethernet

Hands-On Lab4 – Adding Ethernet

Agenda

Lab4 – Adding Ethernet

- Ethernet and the Virtual ENC28J60
- How it connects to the real world
- Simulation considerations for Real Time operation
- Connecting to the Network
- Observing 'your' network transactions

 $\ensuremath{\textcircled{\sc c}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Lab4 – Adding Ethernet Market Requirements

Market requirement #3

Ability to monitor/control remotely

- Enables live feedback/monitoring of data
- Enables remote updates and changes
- Enables remote diagnostics capability

Lab4 – Adding Ethernet What are we going to do ?

• We will

- Discuss design factors relative to adding Ethernet to a system
- Create a functional system utilising
 - ENC28J60 Ethernet controller
 - Microchip TCP/IP Stack
- Use virtual equivalents of
 - DM240001 Explorer-16 Demo Board
 - AC164123 Ethernet PICtail[™] Plus
- Understand how to use additional tools to
 - Capture network traffic
 - Setup and view network devices

Lab4 – Adding Ethernet Simulation Considerations

• Simulation is CPU intensive

Consider active devices

- PIC24FJ128GA010
 - Running Application and TCP/IP Stack
- ENC28J60
- LCD, Serial Terminal etc

Load on CPU is heavy

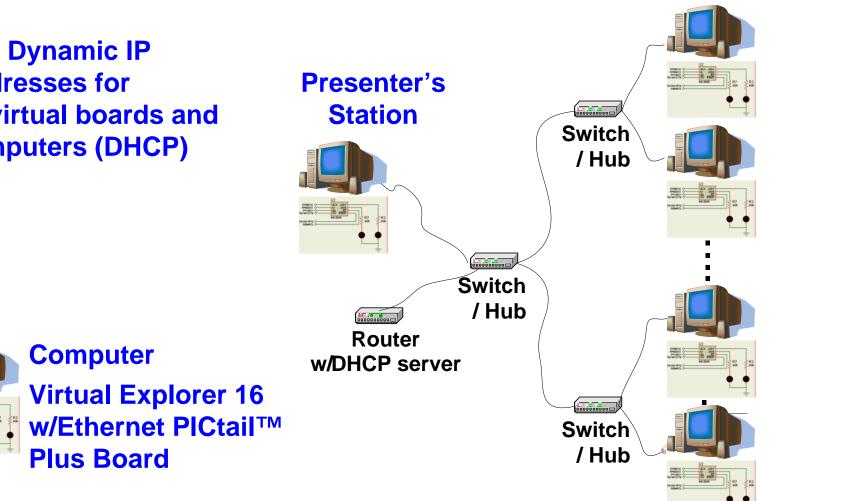
- Where possible exclude unnecessary devices from simulation
- A fast PC will help
 - Minimise number of active applications and resource sinks

Lab4 – Adding Ethernet Connecting to a Network

• Simulation contained within PC

- Will need an active DHCP server
- PC is supporting multiple IP addresses
 - WinPcap hiding the virtual board from PC resource map
 - WinPcap enables PC to support traffic to browser, virtual demo board and packet sniffer
- Virtual ENC28J60 will request IP address via DHCP from server
 - Once active other users can connect to your virtual board via network
- Ethernet Discoverer will list users as they connect

Lab4 – Adding Ethernet Classroom Network


Student

Stations

Slide

80

Use Dynamic IP Addresses for all virtual boards and computers (DHCP)

Lab4 – Adding Ethernet Observing Network Transactions

Observe Network Transactions using Wireshark

- World's foremost network protocol analyzer
 - Allows network traffic to be captured, filtered and analysed
 - Utilises WinPcap

		Test.pcap - Wire						36
<u>Eile</u>	dit <u>V</u> iew <u>G</u> o	<u>Capture</u> <u>Analyze</u>	<u>S</u> tatistics <u>H</u> elp					
			• • • • •	⇔ ∞	주 앞 □ [0, 🖭 🖼 🖾	
Eilter:				 Express 	ion <u>C</u> lear <u>A</u> pply			
No	Time	Source	Destination	Protoco	l Info			
	0.000000	192.168.0.8	255.255.255.255	UDP	Source port: 28			
	27.217934	QuantaCo_c5:3a		ARP	who has 192.168			
	3 27.233891	Microchi_00:00			192.168.0.8 is			
	27.233905	192.168.0.7	192.168.0.8	TCP	1296 > http [SY			
	5 27.247614	192.168.0.8	192.168.0.7	TCP			Ack=1 Win=576 Len	=
	27.247658	192.168.0.7	192.168.0.8	TCP			0 Win=65535 Len=0	
	27.248357	192.168.0.8	192.168.0.7	TCP			294967295 Ack=1 wi	
	3 27.248370		192.168.0.8	TCP		1] 1296 > http	D [ACK] Seq=1 Ack=	C
	9 27.249464	192.168.0.7	192.168.0.8	HTTP	GET / HTTP/1.1			
	27.281675	192.168.0.8	192.168.0.7	TCP			100 Win=576 Len=0	
	27.282166	192.168.0.8	192.168.0.7	TCP	TCP DUD ACK ID	#1] http > 129	06 [ACK] Seq=0 Ack	=
	27.371988	192.168.0.8	192.168.0.7	TCP	[TCP segment of			
	3 27.373029	192.168.0.8	192.168.0.7	TCP			ent of a reassemble	
	27.373051	192.168.0.7 192.168.0.8	192.168.0.8	TCP			<=522 Win=65013 Le	r
	27.491739	192.168.0.8	192.168.0.7	TCP TCP	TCP segment of	a reassembled	ent of a reassembly	
	27.492297	192.168.0.7	192.168.0.7 192.168.0.8	TCP	1306 x bttp FAC	KI Spar 400 Ach	<=1044 win=65535 L	
	3 27. 565636	192.168.0.8	192.168.0.7	TCP	TCP segment of	NJ SEG=400 ACK	<=1044 WIN=05555 E	E
			bytes captured)		TISE SEGMENT IN			-
Ethe	ernet II, Sr	c: Microchi_00:0	0:00 (00:04:a3:00:00	:00), Dst	: Broadcast (ff:	f:ff:ff:ff:ff)	
Inte	ernet Protoc	ol, src: 192.168	.0.8 (192.168.0.8),	Dst: 255.	255.255.255 (255	255.255.255)		
			t: 2860 (2860), Dst					
	(61 bytes)	, , , , , , , , , , , , , , , , , , , ,						
000 1	FF FF FF FF	ff ff 00 04 a3	00 00 00 08 00 45 00		E.			_
			el c0 a8 00 08 ff ff		d			
120 H	ff ff oh 2c	76 5f 00 45 00	00 4d 43 48 50 42 41		.EMCHPBO			
030 4	41 52 44 20	20 20 20 20 20	Od Oa 30 30 2d 30 34	ARD	00-04			
040 2	2d 41 33 2d	30 30 2d 30 30	2d 30 30 0d 0a 44 48	3 -A3-00)-0 0-00DH			
050 4	43 50 2f 50	6f 77 65 72 20	65 76 65 6e 74 20 6f	CP/Pov				
060 (63 63 75 72	72 65 64		ccurre	ed			
-1 U.C.	1 decoupt of			D 40				-
ile: "C	:\11068VSP\G	raphics\Virtual ENC	28360 Test.pcap" 612 KE) P: 484	45 D: 4845 MI: 0			
	corporated All R	ights Bosonvod		11068 VSP			Sli	inde

Lab4 – Adding Ethernet Open Lab4

Open Lab4.mcp

- Open Project in MPLAB[®] IDE

Navigate to

- C:\Masters\11068\Lab4\Lab4a\
- Select Lab4a.mcp

Lab4 - Adding Ethernet Lab4 - Demonstration

Lab4a

Open file TCPIPConfig.h

Follow the Lab Notes

- Navigate to #define MY_DEFAULT_HOST_NAME
- Use the unique hostname provided
- Scroll down to #define MY_DEFAULT_MAC_BYTE5
 - Add the MAC Address Provided to
 - MY_DEFAULT_MAC_BYTE5
 - MY_DEFAULT_MAC_BYTE6
- Check the Default IP Addr #define MY_DEFAULT_IP_ADDR_BYTE'n'
 - Ensure Default IP Addr is 192.168.0.xxx
 - Where 'xxx' is the IP Address Provided
 - Required should DHCP fail to serve an address
- Build Source
- Connect to Proteus VSM Simulator
 - Press Green Button
- Run Simulation
 - If running correctly an IP address should appear in the LCD and/or Virtual Terminal

Lab4 – Additional Excercise

Lab4b (optional)

Follow the Lab Notes

Interact with virtual Ethernet

Use served IP address to

- Connect to board via
 - ftp
 - http
- Ping board
- Use serial port and virtual terminal to connect to device and setup parameters

Delivering the Goods

Our 10 days is over...the report and presentation is now required

- Fundamentally we can achieve all of the desired product additions using readily available software and hardware at a reasonable cost
 - Microchip Demo's and App Notes provide good application framework
 - Virtual Prototyping can be used to
 - Accelerate project
 - Increase productivity
 - Reduce re-work
 - Get to market faster

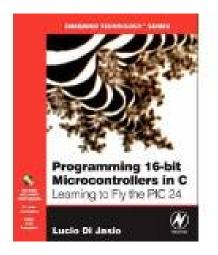
Project Approved.....

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Summary

We should now

- Understand the benefits and advantages of Virtual Simulation and Prototyping
- Be able to use Virtual Demo Boards within MPLAB[®] IDE
- Know how to rapidly test proof of concept ideas prior to full system development
- Use Virtual System Prototyping as part of the product development process
- Use standard Microchip application notes libraries and tools to aid rapid solution development


Want to know more

For more details of Proteus VSM

- visit <u>www.labcenter.com</u>
- OR visit Labcenter at the Third Party Booths

16-bit Books

Lucio DiJasio "Programming 16-bit Microcontrollers in C – Learning to Fly the PIC24"

Covers a number of topics similar to this class

- Speech/Audio Playback
- Mass Storage
 - FAT Filing System

Feedback

Please complete the class feedback questionnaire

- If you liked it let us know
- If you didn't we need to know also

Is there anything you would like to see in the class?

Thank you for attending. We hope you find it useful.

References General

• Application Notes

- AN643 Adaptive Differential Pulse Coded Modulation using PIC[®] microcontrollers
- AN538 Using PWM to Generate Analog Output
- AN833 Microchip TCP/IP Stack

Masters Classes

- 1096VSM Virtual Simulation for Microcontrollers using MPLAB[®] IDE and Proteus VSM
- 977SPE Adding Speech to Low Cost Microcontrollers
- 1042CAL Using Communication Application Libraries with Microchip's 16-bit Microcontrollers
- 1040HOE Hands on Ethernet

$\textcircled{\sc 0}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

References Libraries and Data

Microchip Libraries

- FAT16
- TCP/IP

Data Sheets

- DS39747C PIC24FJ128GA010
- DS21498C TC1047A
- DS39662B ENC28J60

References Development Tools

• Microchip

- DV164005 MPLAB[®] ICD2
- DM240001 Explorer-16 Demo Board
- AC164125 Speech Playback PICtail[™] Plus
- AC164122 PICtail Plus for SD/MMC to SPI Interface
- AC164123 Ethernet PICtail Plus
- SW006012 MPLAB C30 C compiler

References Other Software and Utilities

Microchip

- Included within Application Note source code and demos
 - Winspeech
 - MPFS
 - Microchip Discoverer

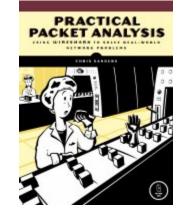
Labcenter

- Included within Proteus VSM install and Demos
 - FATutil
 - IFLIST

Third Party

- Cygus HEX Editor (Free Edition), http://www.softcircuits.com/cygnus/fe/
- WinPcap, <u>http://www.winpcap.org/</u>
- Wireshark, <u>http://www.wireshark.org/</u>
- Goldwave, http://www.goldwave.com/

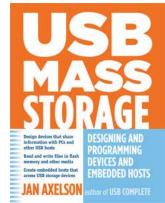
$\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.



References **Books**

Useful Books

Practical Packet Analysis Using Wireshark to Solve Real-World Network Problems by Chris Sanders


May 2007, 216 pp. ISBN-10 1-59327-149-2 ISBN-13 978-1-59327-149-7

USB Mass Storage

Designing and Programming Devices and Embedded Hosts by Jan Axelson

August 2006, 287 pp Publication date: ISBN# 1-931448-04-3

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix

Appendix Setting the Scene

Setting the Scene

Investigate available technologies for

- Audio Playback
 - Record may also be required in the future
- Storage of Data on PC compatible storage cards
- Internet connectivity

Will allow us to evaluate

- Effort required
- Costs involved
- Benefits gained

• This will aid decision making process

- Can we enter market cost effectively
- What resources will be required
 - Engineering / Product development time needed
 - Manufacturing changes
 - Training for Installation Personnel
- Likely timescales to develop full products

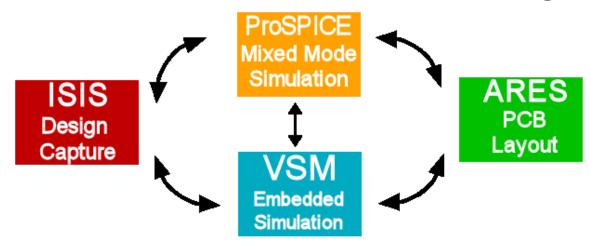
Setting the Scene What do we have to help us?

• Development Tools

- Hardware Development Boards
 - Budget is very limited
 - Delivery may delay us by several days
- Compiler
 - MPLAB[®] C30 C Compiler
 - Student/Demo Version Free Download
 - Allows immediate start
- Virtual Simulation and Prototyping Tools
 - Proteus VSM System Simulation Tool
 - Full Featured Demo Version Free Download
 - Comprehensive range of Virtual Demo Boards
 - Low setup cost for Full version

• Application Notes and Libraries

Fast, Easy method to evaluate a technology


Appendix A Proteus VSM

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix A – Proteus VSM Proteus Overview

An introduction to the Proteus Design Suite.

- A traditional CAD package with extra functionality for embedded systems simulation
- Allows you to simulate your PIC[®] microcontroller together with any analog or digital electronics connected to it
- Provides a complete software design flow for the embedded engineer

 $\textcircled{\sc c}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix A – Proteus VSM The Processor Models

A summary of the scope of PIC[®] microcontroller models available in Proteus VSM.

Well over 100 modeled PIC® microcontroller variants available :

- PIC10/ PIC12 Family :
 - 6 and 8 pin variants.
- PIC16 Family :
 - 14, 18, 28 and 40 pin variants.
- PIC18 Family :
 - 18, 28, 40, 64 and 80 pin variants.
- PIC24 Family :
 - 64, 80 and 100 pin variants.

Appendix A – Proteus VSM

A summary of the functionality implemented in Proteus VSM CPU models.

- PIC[®] MCU Model functionality :
 - Entire instruction set including extended instruction set for appropriate variants
 - Supports all Port and other I/O pin operations
 - Supports all timers in all modes including
 - Watchdog
 - Sleep Mode
 - Wake-up
 - Supports (E)CCP modules in all modes
 - Supports Parallel Slave Port (on appropriate devices)
 - Supports MSSP module including
 - SPI (all modes)
 - I²C[™] (master and slave modes)

Appendix A – Proteus VSM The Processor Models

A summary of the functionality implemented in Proteus VSM CPU models.

- PIC[®] MCU Model functionality (continued):
 - (E)USART in all modes
 - ADC Module including voltage reference pins
 - Analog Comparator Module with Internal or external reference
 - Internal Code and Data EE memory including data persistence and code protection
 - ALL Interrupt modes including priority on appropriate devices
 - I/O and other event timing accurate to one instruction cycle
 - Provides consistency checks on system operation
 - Writing to LCD Display while busy
 - Timing violation and contentions etc..
 - Extensively Tested with a suite of over 450 conformance analyses

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix A – Proteus VSM The Peripheral Models

A summary of just some of the peripheral models included with Proteus VSM.

• Proteus VSM Peripheral Models :

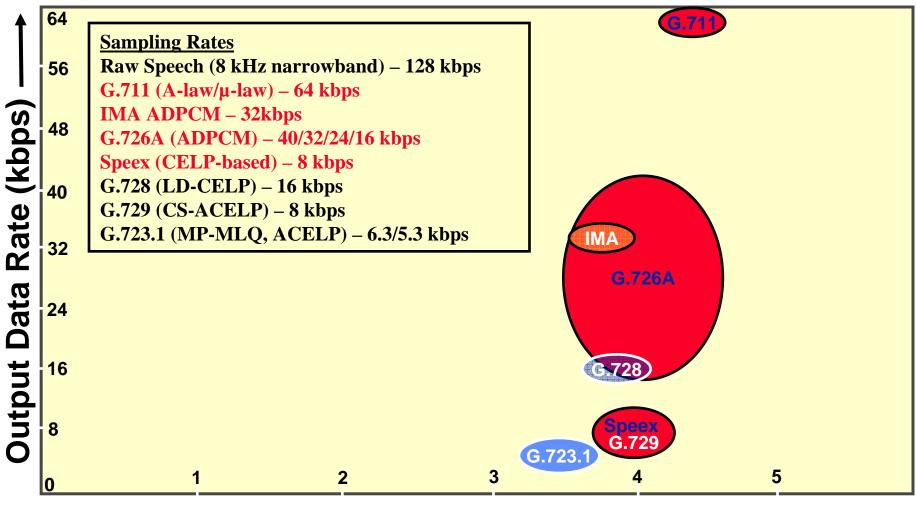
- Thousands of standard 'building blocks' TTL/CMOS, passives, etc.
- Interactive models for switches, buttons, pots, keypads etc.
- OptoElectronic models.
- Motor models and controllers.
- Memory models.
- Temperature Control models.
- Real Time Clocks and Timekeeping models.
- I²C[™]/SPI Protocol models.
- 1-Wire Protocol models
- RS232/RS485/RS422 Protocol models.
- ADC/DAC Converter models.
- Pulse Width Control models.
- Power Management models.
- Many, many others !

Appendix B Adding Speech

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Speech Algorithms

© 2007 Microchip Technology Incorporated. All Rights Reserved.


Appendix B – Adding Speech Speech Algorithms

- Speech normally 300 Hz to 3300 Hz
- Sample minimum of 8 kHz, 8-bit A/D
 64 Kbits/s, ~20x bandwidth of original signal
- Low-end operate sample to sample
 - Quantize the difference between samples
 - Adapt quantizer relative to changes to input
- High-end analyze frames of speech
 - Find a codebook entry that best fits frame
- Benefits of Speech Coding
 - Reduces communications bandwidth
 - Reduces storage requirements

Appendix B – Adding Speech

Speech Algorithms – Quality vs. Bit Rate

Mean Opinion Score (Speech Quality)

Assumes 16-bit mono, 8 kHz input/output (128Kbps raw speech uncompressed)

Appendix B – Adding Speech

Speech Algorithms - Algorithm Specifications

	G.711	IMA ADPCM	G.726A	Speex
MOS	4.3-4.5	3.8	3.4-4.5	3.7-4.2
Compression Ratio	2:1	4:1	3.2:1 – 8:1	16:1
MIPS encode/decode	1	3/2	15	19/3
Flash encode/decode	3 Kb	1 Kb / 1 Kb	6 Kb	30 Kb / 15 Kb
Date Rate	64 Kbps	32 Kbps	16-40 Kbps	8 Kbps
BW reduction	50%	75%	68%- 88%	94%

Assumes 16-bit mono, 8 kHz input/output (128Kbps raw speech uncompressed)

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix B – Adding Speech Available Speech Algorithms for 16-bit Devices

	24F	24H	dsPIC 30F/33F	App Note / Library	Licence Required
G.711					
IMA-ADPCM				AN643	
G.726					
Speex					

System Considerations

Appendix B – Adding Speech System Considerations and Trade-offs

- Required Quality of Output –v- Memory –v- Speed –v- Cost –v- ...
 - What is the system type?
 - Playback only
 - Playback and Record
 - Record to what memory type
 - End to End system
 - Same as record and playback but real time communications requirement
 - What sample rate at what bit rate is acceptable?
 - Affects storage requirements
 - Has implications on compression algorithm, power consumption, processor speed....
 - What is the sound to be played back on?
 - Low Cost Amplifier and Speaker
 - Piezo Sounder
 - High Quality Audio
 - What playback technology is to be used?
 - PWM DAC
 - Audio Quality DAC
 - CODEC

Appendix B – Adding Speech System Considerations and Trade-offs

- What compression algorithm is to be used
 - Is a royalty payment required?
 - MP3 and some of the G.7xx algorithms are royalty based
 - Lossy or Lossless?
 - Does it affect quality of output when decompressed
 - Will losses be noticed
 - See MOS information for guidance
 - Processing performance and resources needed to run algorithm
 - Does algorithm need DSP or standard MCU?
- What is the power budget?
 - Has an effect on MIPS, memory and algorithm
 - High sample rates require higher speed DAC's, so more current
- What memory is available to store data?
 - Quantity of available memory affects length/quantity of messages
 - May require more complex algorithms for higher compression
 - Is RAM required for message buffering during record
- Many of these factors can be tested using system simulation techniques

Appendix B – Adding Speech System Considerations and Trade-offs

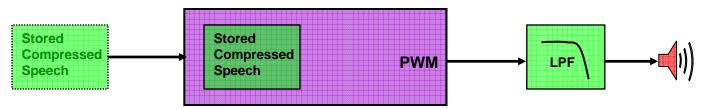
Types of Playback methods

- PWM Based DAC
 - Single Output
 - Multi Output
- Audio DAC
- CODEC

	Quality	Cost	Current	Comment
PWM DAC				
Single	Low to Med	Low	Low	Fs limited by PWM freq
Multi	Low to Med	Low	Low	Binary Weighted outputs
Audio DAC	Med - High	Med	Low to Med	
CODEC	High	High	Med to High	Needs I2S Port

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix B – Adding Speech What is required?


• Playback Only

- MCU
 - PWM / Output Compare Module
 - External R/C to create DAC
- Output Filter
 - At least 4th order Low Pass
 - Cut-off Freq c. 4kHz
- Memory

Internal or External

- Will be determined by combination
 - Message length
 - Compression Algorithm
 - Recorded Sample Frequency
 - Message Construction

PIC24FJ128GA0xx

Appendix B – Adding Speech What is required?

• Record/Playback

- MCU
 - ADC
 - 10 or 12 bit
 - Possibly oversampled
 - Microphone Pre-Amp and Filter

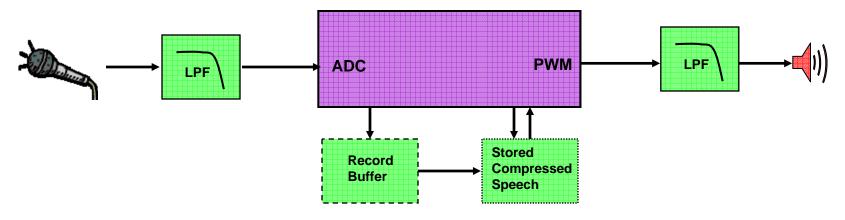
PWM / Output Compare Module

- External R/C to create DAC
- Input Filter

Microphone Pre-Amp and Filter

- Provides suitable bias and level shift for chosen microphone type
- At least 4th order Low Pass
 - Cut-off Freq c.4kHz
- Output Filter

• At least 4th order Low Pass

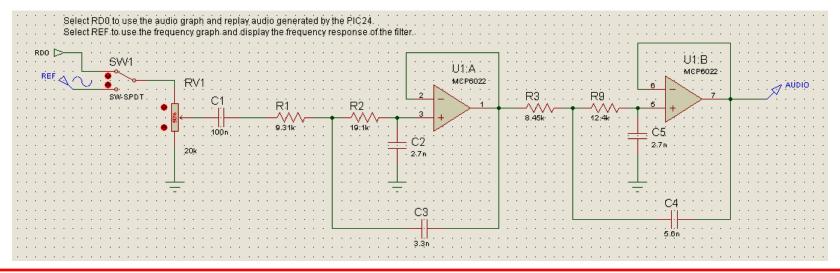

– Cut-off Freq c. 4kHz

Appendix B – Adding Speech What is required?

• Record/Playback

- Memory
 - Will need RAM to buffer when recording
 - Internal or External for storage/buffering
 - Will be determined by a combination of
 - Message length
 - Compression Algorithm
 - Recorded Sample Frequency
 - Message Construction

PIC24FJ128GA0xx


PWM DAC's

Appendix B – Adding Speech

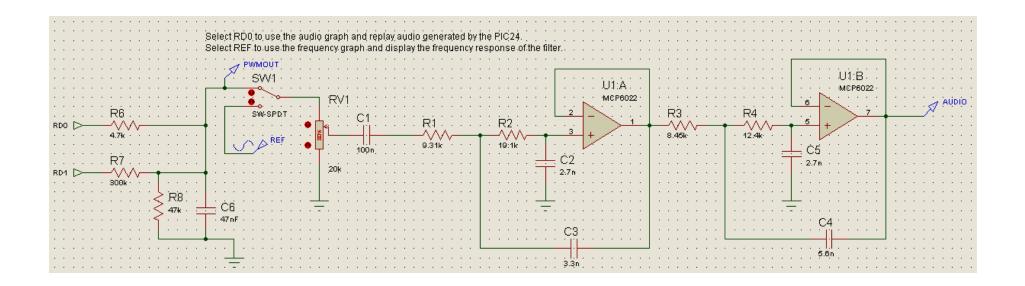
A Digital to Analog Converter (DAC) is created using

- PWM Output from Output Compare Module
 - Frequency and Resolution are limited
- Analog Filter
 - At least 4th Order Filter recommended

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix B – Adding Speech PWM DAC's

• Multi Output


- Splits number being output to PWM between 2 channels
 - 16bit number split into 2x8bit
 - 12bit number split into 2x6bit
- Uses Binary Weighted output to re-combine outputs.
 - Split into Low and High outputs
 - Resistors weighted
 - $LowR = 2^n x HighR$
- Allows
 - Increased resolution at same F_{PWM} as single output
 - Increased F_{PWM} at same resolution
 - Increased F_{PWM} and increased resolution
- Analog Filter
 - At least 4th Order Filter recommended

Appendix B – Adding Speech PWM DAC's

• Multi Output

 Virtual simulation allows us to quickly and easily modify circuit to try different configurations

Recording Messages

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11068 VSP

Appendix B – Adding Speech Recording and Manipulating Messages

- Messages recorded as '.WAV' files on PC
 - Usually stored as CD Quality 44.1kHz 16bit Stereo
 - Raw data and quality in original source
 - Source edited to required format for compression tool
 - Downsampled
 - 44.1kHz to 16kHz
 - Trimmed
 - Lead In and Run Out trimmed to remove any excess
 - Reduces message size and hence data size
 - Converted to Mono
 - Saved in required format for compression tool
 - Save as '.RAW' unsigned PCM 16-bit little endian
 - Compress to IMA ADPCM using Microchip Winspeech utility
 - Provides a file suitable for input to filing system tool

• 'Goldwave' chosen to perform this task

- Excellent, intuitive editing tool
- Provides correct output file format for use by Winspeech

Appendix B – Adding Speech Adding a Message to Your Target

• Data can be added as

- Arrays/Tables of data
 - simplest method
- Files
 - Essentially arrays but accessible via filenames
 - Some overhead for filing system
- For playback from internal memory a thin filing system used
 - MPFS v2
 - Used in TCP/IP Stack Application
 - PC Based tool for creating files
 - Creates a <filename>.s file to be added to project
 - Allows simple 8.3 filename access to be used on source code
 - Accessing multiple small files much simpler

Appendix B – Adding Speech How Speech Output is Constructed

Phrase constructed from a series of individual words

- In this case for 23°C, we use
 - Twenty
 - Three
 - Degrees
 - Celsius

- Complete vocabulary stored in minimal memory

Vocabulary consists of individual words

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
 ,20,30,40,50,60,70,80,90,100,Degrees,Celcius,
 Fahrenheit

Winspeech

Appendix B – Adding Speech Winspeech

Winspeech is a Microchip application supporting

- AN643 Adaptive Differential Pulse Coded Modulation using PIC[®] Microcontrollers
- It is included in the support package for 11068 VSP

Winspeech performs

- Encode to OR Decode from a IMA-ADPCM file
- A '.dat' filename extension is used
 - Can be any 3 character extension
- Operates on a per file basis
 - Process will need to be repeated for multiple files

Appendix B – Adding Speech Winspeech Input Format

- Winspeech requires input files to be
 - PCM unsigned 16-bit, little endian
 - Sample frequency independent
 - Suggest use of
 - Goldwave wave editor
 - Allows storage of files as '.raw' with required format

Appendix B – Adding Speech Winspeech

Winspeech Interface

WinSpeech 2.0.1.0				
Speech Compression/Decompression				
Input File	Browse			
Output File	Browse			
Process Direction © Encode © Decode	<u>G</u> enerate			

Appendix B – Adding Speech Winspeech Usage

• Setup 3 folders

- ..\WAV : for source recordings pre manipulation
- ..\RAW : for post manipulated recordings prior to input to Winspeech
- ..\ADPCM : for '.dat' file output from Winspeech

For the output from the MPFSv2 utility a further file may also used

- ..\MPFS : for output from MPFSv2 utility
- This can also be placed directly in target source folder

 $\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Microchip File System (MPFS)

Appendix B – Adding Speech Filing Systems - MPFS

What is MPFS?

- How does MPFS work?
- Where do I get MPFS?
- Target resource usage

Appendix B – Adding Speech Microchip File System (MPFS)

- Small yet powerful file system
- Flexible storage scheme
 - Internal program memory or external data EEPROM
- PC based utility to generate MPFS image
- 8.3 short file names
- Case-insensitive file names
- Read AN833 for more detail

Appendix B – Adding Speech MPFS Variants

• Two variants

- MPFS
 - Command Line based
 - Suitable for MPLAB[®] C18 C Compiler
 - Will create images for
 - Internal Program Memory : <filename>.c
 - External EE memory : <filename>.bin
- MPFSv2
 - Graphical Interface
 - Suitable for MPLAB C30 C Compiler
 - Will create images for
 - Internal Program Memory : <filename>.s

• Created for TCP/IP stack to aid storage of web pages

- Suitable as filing system for other tasks
- Image size must fit in available memory
- All files to be added to image must be within same folder
- "CR LF" stripped from "*.htm" files
- Reserved block for application specific data

Appendix B – Adding Speech MPFSv2 Image for MPLAB C30

• Image is created as '.s' ASM30 file

- Data is created as a packed table
- 3 bytes per program memory address
- Data accessed via Table Read and Write instructions

• Basic FAT table created

- Allows acces of data table using 8.3 short filename
- FAT table references filename to a memory location

```
.byte 0x00,0x00
.long paddr(_MPFS_0000)
.byte '1','.','D','A','T', 0 , 0 , 0 , 0 , 0 , 0 , 0
```


Appendix B – Adding Speech MPFSv2 Image for MPLAB C30

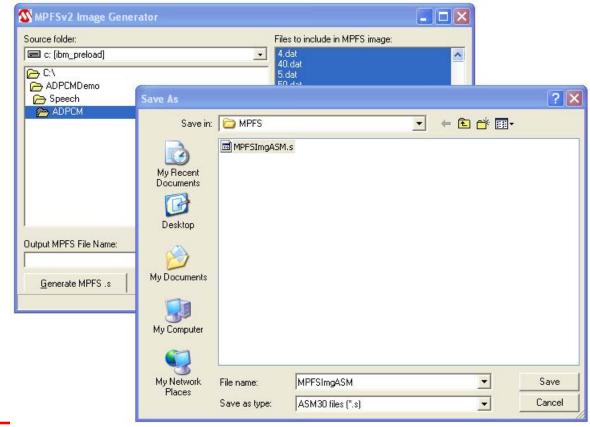
• FAT table performs cross reference to data table

;*************************************	***************************************
, goto END_OF_MPFS_0000	; Prevent accidental execution ; of constant data.
.global _MPFS_0000	
_MPFS_0000:	
.pbyte 0xFC,0x10	
.pbyte .pbyte 0x04,0xFF,0xFF,0xFF,0xFF END_OF_MPFS_0000:	; MPFS_ETX, MPFS_INVALID

• MPFSv2 will

- Add all selected files
- In a single folder
- To a specified image <filename>.s file

• Select source folder


- Add all required files
- Ensure files not required are de-selected
- Files not required will consume valuable memory resource

MPFSv2 Image Generator	
Source folder:	Files to include in MPFS image:
🖃 c: (ibm_preload) 🔹	4.dat 40.dat
🗁 C:\	5.dat
ADPCMDemo	50.dat
Breech	6.dat 60.dat
DPCM	7.dat
	70.dat 8.dat
	80.dat
	9.dat 90.dat
	cel.dat
	code.txt
	deg.dat far.dat
	sample.txt 🕥
Output MPFS File Name:	31 files totaling 52274 bytes
<u>G</u> enerate MPFS .s	Browse

Browse for Destination Folder

- Add / Create destination file
- Generate image file

- On creation of <filename>.s
 - Add file to project tree in MPLAB[®] Project
- MPLAB Project also requires
 - Target source files for MPFS filing system
 - C:\Microchip Solutions\Microchip\Include\TCPIP Stack\mpfs.h
 - C:\Microchip Solutions\Microchip\TCPIP Stack\mpfs.c

MPFSv2 application can be found in the TCP/IP stack distribution installation

 C:\Microchip Solutions\Microchip\TCPIP Stack\mpfsv2.exe

Appendix C Adding Mass Storage

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Design Considerations

Appendix C – Adding Mass Storage What options are available?

- Data EE
- Serial Flash / Data Flash
- SD/MMC Card
- Parallel
 - Parallel Flash
 - Compact Flash
 - PATA HDD

Appendix C – Adding Mass Storage What needs to be considered?

- What is the amount of memory required?
- Is high endurance required?
 - No. of E/W cycles expected
- What is the power budget?
 - Is a low power sleep mode required
 - Access speed is a factor

• What system reliability is needed?

- Some technologies require a card frame
 - Potential reliability issues in some environments
- Directly soldered devices can be limited in memory size

• What filing systems can be used?

- For large or multiple data sets a filing system is advisable
- Allows for portability in removable memory cards

Appendix C – Adding Mass Storage What are the Options?

Comparison of available technologies

	Voltage	Current			Capacity	Endurance	Cost	Comment
		Read	Write	Standby	max.	Max E/W		
Serial								
Data EE	1.8 - 5.5v	7mA	6mA	10uA/1uA	1Mb/128kB	1M	\$	Current for SPI EE
Serial Flash	2.7 - 3.6v	10mA	15mA	2uA	16Mb/2MB	10k - 100k	\$	
Data Flash	2.7 - 3.6v	10mA	25mA	25uA	64Mb/8MB	100k	\$	
SD/MMC	2.0 - 3.6v	15mA/30mA	15mA/30mA	300uA	2GB	n/a	\$\$	25MHz/50MHz, SDHC upto 32GB
Parallel								
Parallel Flash	2.7 - 3.6v	10mA	25mA	15uA	64MB/8MB	n/a	\$	
Compact Flash	3.3 or 5v	60mA	60mA	600uA	16GB	n/a	\$\$	FAT32 required above 2GB
ATA HDD	5v	360mA	360mA	20mA	160GB	n/a	\$\$\$	FAT32 required above 2GB, Max160GB for 2.5" PATA, Spin Up Current c.1A

Appendix C – Adding Mass Storage What Proteus VSM Models are available?

• Serial

- Data EE
 - Multiple Vendors
 - I²C[™] and SPI
- Serial Data Flash
 - NEW 4Mbit AT25F4096
- SD/MMC Card
 - Models MMC Specification
 - Uses binary image file

Parallel

- Compact Flash
 - ATA Mode
 - Uses binary image file
- ATA HDD
 - Uses binary image file

FAT16 File System

Appendix C – Adding Mass Storage Filing Systems – FAT16

Standard format from Microsoft

- Readable by PDAs, PCs, etc.
- Requires a license or waiver from Microsoft
- Addresses up to 2 Gbyte
- Memory usage
 - ~14K bytes of program memory, includes card interface
 - ~650 bytes of RAM
- Supports card detect, fopen, fclose, fread, fwrite, rewind, remove, etc.

Appendix C – Adding Mass Storage Filing Systems – FAT16

Disk Organization

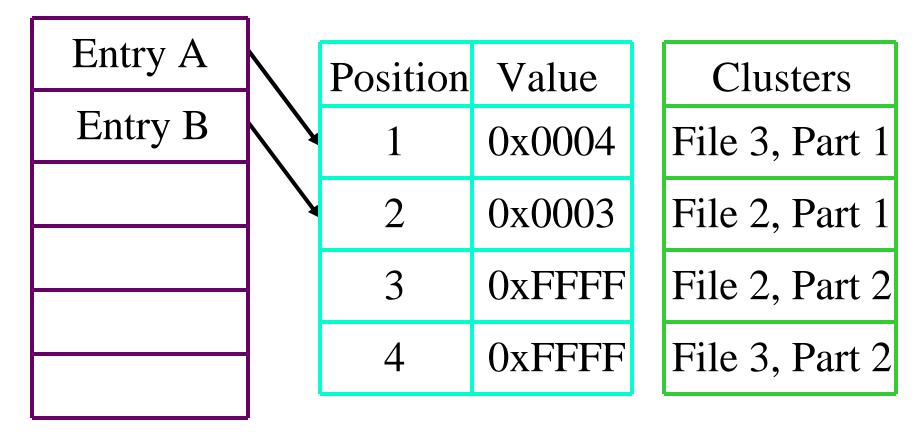
- Fundamental unit is sector, typ. 512 bytes

- 1 Mbyte = 2048 sectors
- 20 Gbyte = >40 Million sectors
- Group sectors into blocks called clusters

Structures

- Master Boot Record (MBR)
- Boot Sector
- Root Directory
- File Allocation Table

Appendix C – Adding Mass Storage Filing Systems – FAT16 File Allocation Table


- The table has one 16-bit entry (hence, FAT16) for every cluster on the disk
- Each entry either points to the next cluster in a file or contains a special

value

Value	Meaning			
0x0000	Cluster is available			
0x0001	Reserved Cluster			
0x0002 - 0xFFEF	Used cluster. Value points to next cluster			
0xFFF0 - 0xFFF6	Reserved Values			
0×FFF7	Bad Cluster			
0xFFF8 - 0xFFFF	Last cluster in file			

Appendix C – Adding Mass Storage Filing Systems – FAT16 Example

Root Directory

11068 VSP

FAT

© 2007 Microchip Technology Incorporated. All Rights Reserved.

References – FAT

Information sources related to FAT filing system

- Microsoft FAT32 Filing System Specification
 - http://www.microsoft.com/whdc/system/platform/firmwar e/fatgen.mspx
- Jan Axelson's USB Mass Storage
 - http://www.lvr.com/mass_storage.htm

Flash Memory Cards

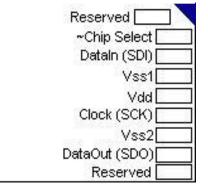
© 2007 Microchip Technology Incorporated. All Rights Reserved.

11068 VSP

Appendix C – Adding Mass Storage Flash Memory Cards – Secure Digital Cards

• 64 Mbyte @ \$15

Up to 2 Gbytes


Communications

1 wire SPI

Additional Pins

- Power/Ground
- Write Enable
- Card Detect

Requires a license from SD Card Association http://www.sdcard.org/

Appendix C – Adding Mass Storage Flash Memory Cards – CompactFlash® Card Interface

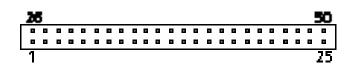
• 64 Mbyte @ \$12

- Up to 8 Gbytes

• Same as PCMCIA-ATA

3.3 mm or 5 mm thick

Communications


Memory mapped address

• Uses 3 I/O pins + PMP

- 8 data, 3 control, 4 address
- Card Detect, Rdy/Busy, Reset (I/O pins)

Requires a license from CompactFlash Association

http://www.compactflash.org/

Virtual Mass Storage Devices

• VSM provides a variety of models

Can be used raw or formatted

• No drive letter allocated on PC

- Virtual Drives DO NOT have drive letter associated with them
- Interaction is via a binary image file
- Created and accessed on PC
 - Use a Hex Editor to view contents
 - FATutil DOS Utility to Add, Delete or Append image file

Appendix C – Adding Mass Storage Using FATutil

- DOS command line interfaceto binary image file
 - Allows read, write, erase
- To view an image file a Hex editor whould be used
- Only single file operations allowed

FATUTIL - Read or write to FAT16 binary images. Usage: FATUTIL [imagefile [Actions...]...] Actions:

/w filename Write file to image./r filename Read file from image./e filename Erase file from image.

 $\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix C – Adding Mass Storage Using FATutil

• Example command line operations

Example (single operation):

- To Write <filename>.dat to the image file CFimage.bin, where <filename>.dat and image.bin are located in the same folder
 - fatutil CFimage.bin /w <filename>.dat
- To Read <filename>.dat from the image file CFimage.bin, where <filename>.dat and image.bin are located in the same folder fatutil CFimage.bin /r <filename>.dat
- To Erase <filename>.dat from the image file CFimage.bin, where <filename>.dat and image.bin are located in the same folder fatutil CFimage.bin /e <filename>.dat

Appendix C – Adding Mass Storage Using FATutil

• To perform multiple operations the MS-DOS[®] 'FOR' command is used.

To Write to <filename>.bin with multiple files a wildard (*) can be used.

FOR %i IN (*.dat) DO FATUTIL <filename>.bin /w %i

Requires FATUTIL and image file (<filename>.bin) to be located in same folder. If path is used in (set) eg.

- FOR %i IN (c:\Explorer-16\Demo4\Adpcm*.dat) DO FATutil /w <filename>.bin

FATutil will try to write to image file in the same folder. Therefore ensure you locate the image file to be appended to the same working folder as the dat files

Read and erase operations operate in a similar manner.

 $\ensuremath{\mathbb{C}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix D Adding Ethernet

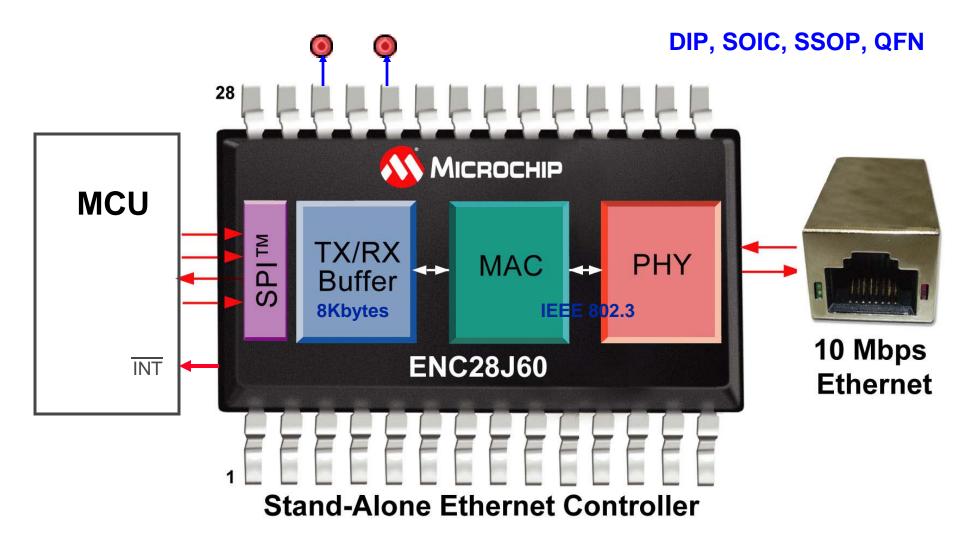
Appendix D – Adding Ethernet What are we going to do?

• Add Ethernet to design

- Use Microchip TCP/IP library to evaluate internet capabilities
- Use basic interaction concepts in TCP/IP Demo
 - Little time available to create any custom code or web pages

• Provides a platform to evaluate

- Flexibility of permanent wired internet connection
- Implications for Embedded Device
- Microchip TCP/IP Library and feature enhancements this can provide the product


Introduces additional software tools

- IFLIST NIC enumeration tool for Virtual ENC28J60 in Proteus VSM
- Microchip Ethernet Discoverer Determine Microchip devices on a network
- Wireshark Ethernet packet sniffer
- WinPcap Packet Capture Interface

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Appendix D – Adding Ethernet The ENC28J60 Ethernet Controller

Appendix D – Adding Ethernet Connecting to the Real World

• How does Virtual Ethernet Work?

- WinPcap
 - Packet Capture Interface and Filtering Interface
 - Allows applications to capture and transmit network packets bypassing the protocol stack
 - www.winpcap.org
- Virtual ENC28J60
 - Uses WinPcap to interface directly to PC NIC
 - Allows PC to run normal network traffic and Virtual Demo Board simultaneously
 - Active NIC must be selected in device properties
 - Use IFLIST.exe to identify your active NIC
 - Set NIC number in ENC28J60 Device Properties
 - Utilises Microchip TCP/IP Stack
 - Provides fast, easy method to evaluate TCP/IP connectivity in a system design

Microchip TCP/IP Stack

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11068 VSP

Appendix D – Adding Ethernet The Microchip TCP/IP Stack

• Stack Details

- Stack is Application Note based AN833
- Fully Supported by Microchip Technical Support
- NO ROYALTY or LICENCING FEES

- Licence restricts use to a PIC[®] microcontroller or dsPIC[®] digital signal controller
- Modular
 - Only relevant functions need to be used
 - Some functions are dependant on others !!
- Features Offered
 - ARP
 - IP
 - ICMP
 - UDP
 - TCP
 - DHCP
 - Client and Server
 - SNMP
 - HTTP
 - FTP
 - TFTP

Appendix D – Adding Ethernet Connecting to the Internet with TCP/IP Stack

Resources and Layers

Details of stack modules, size and relative layer

Application	HTTP (3.7K bytes)	SMTP (3.8K bytes)	DHCP (1.9K bytes)	DNS (1.5K bytes)				
Transport	TCP (11.5K bytes)		UDP (2K bytes)					
Internet & Network Access	IP (874 bytes), ARP (896 bytes)							
Physical	Ethernet – ENC28J60 (3.8K bytes)							

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, KeeLoq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified Iogo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies.