
© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 1

11030 HTC
Using HI-TECH PRO C Compiler
Introducing HI-TIDE™ & C-Wiz

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 2

Class Objectives

To become familiar with:
HI-TIDE™ and C-Wiz
PRO Version of the Compiler
− Compilation workflow
− Source code differences
New STD Compiler Features

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 3

Class Agenda

Compiler Overview
Demonstration of HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files
− Lab 1: Using the diagnostic files
Interrupts
− Lab 2: Using interrupts

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 4

Class Agenda (cont.)

Library & Compiler-Generated
Code
− Lab 3: Defining power-up code
Psects and the Linker
HI-TECH Assembly
− Lab 4: Placing code at a specific

location

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 5

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 6

Compiler Overview

HI-TECH PIC18 Compiler
consists of Several Applications:
− CPP & P1 C preprocessor & parser
− CGPIC18 code generator
− ASPIC18 assembler
− HLINK linker
− OBJTOHEX, CROMWELL & HEXMATE

output utilities

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 7

STD compiler input sequence

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 8

PRO compiler input sequence

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 9

Compiler output sequence

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 10

Command Line Driver

Driver: PICC18
Calls Appropriate Applications
based on Input File Extension:

Intel® HEX files.hex

Object & p-code library files.lib .lpp

Relocatable & p-code object
files

.obj .p1

C and assembly source files.c .as

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 11

Compiler Messaging

Applications Report via a
Driver-Controlled System

ts002.c: 159: (762) constant truncated
when assigned to bitfield (warning)

Driver Options Available to:
− Adjust format
− Select language
− Disable warnings

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 12

Demonstration

Getting Started with HI-TIDE
− Getting help
− Creating projects
− Debugging
Getting Started with C-Wiz

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 13

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 14

Data Types Supported

Standard Arithmetic Types
− char is unsigned by default

Use --char=signed to change
− double types 24 bits by default

Use –-double=32 to specify 32 bits

24-bit short long integral type
bit type used for boolean values
− 8 bit variables packed per byte

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 15

Data Types (cont.)
− Bit addresses used in diagnostic files
− bit variables cannot be auto

How can you define a bit variable with
scope only in a function?

− Integral conversion to bit type is via
truncation

static bit flag;

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 16

Standard Qualifiers Supported

const objects
− Read-only
− Stored in program space
volatile objects
− Value may change between reads

due to external modification
− Optimizer won’t remove redundant

accesses

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 17

Standard Qualifiers (cont.)

− Compiler will attempt atomic access
Modify value in one instruction

− Should be used for:
Variables mapped over registers
modified by hardware
Registers whose value translates to
an electrical signal
Variables modified by interrupt
routines

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 18

HI-TECH Specific Qualifiers

near Objects
− Place in access bank
far Objects
− Place in program memory space
persistent Objects
− Not cleared by run-time start-up code

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 19

Absolute Objects

Primarily Intended to Map Variables
over an SFR, e.g.

volatile near unsigned char TOSH @ 0xFFE;

Memory is Automatically Allocated
by the Code Generator (CGEN)
Header Files contain Absolute
Variable Definitions for SFRs:

#include <htc.h>

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 20

Absolute Objects (cont.)

− Const objects and functions can be
made absolute using similar
construct

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 21

Pointers

Pointers to Data and Functions
Supported
− HI-TECH specific qualifiers required

to indicate pointer extent
− Size and extent are determined from

pointer usage
− Standard qualifiers should still be

used for const or volatile objects

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 22

Pointers (cont.)
near int ni;
int i, j;
far int fi;
int * ip;

void main(void) {
ip = ∋ // ip 1/2 bytes wide
j = *ip;
ip = &i; // ip 2/2 bytes wide
j += *ip;
ip = &fi; // ip 3/2 bytes wide
j += *ip; // read from wrong loc

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 23

Question

Is it legal to qualify a variable both
const and volatile? If not, why not; if

so, what does it mean?

Yes. It means that it can only be read
by the program, but that its value may

change by other means.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 24

Question

How would you define a read-only
pointer variable that points to a
volatile character variable?

volatile char * const my_pointer;

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 25

Memory Allocation

The CGEN can either:
− allocate an address to an object; or
− place output in a named block (psect

program section) for linker to position
Variables Allocated by CGEN are
then Treated as Absolutes

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 26

Variable Allocation

All variables are allocated
memory by the CGEN, except:
− const objects
− Initialized variables (data psect)
− auto/parameter objects
CGEN allocates memory for
absolute variables; remainder
allocated by the linker

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 27

Variable Allocation (cont.)

auto & parameter variables form
a block (APB) for each function
The linker overlays APBs of
functions not concurrently active
The entire program’s APB is
contained within one psect
(param, param0, param1…)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 28

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts & Runtime Startup
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 29

Useful General Options

External Interface mode--emi
Define preprocessor macro-D

List supported chips--chipinfo

Show full command lines-V

Control compiler messages--msgdisable

Select message language--lang

Show help--help

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 30

Useful Debug Options

Stop after assembling-C

Select debugger--debugger

Stop after preprocessing--pre

Generate assembly list file--asmlist

Generate map file-M

Stop after parsing--pass1

Stop after code generation-S

Control optimizers--opt

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 31

MPLAB® IDE Project Setup

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 32

MPLAB® IDE Options Dialog

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 33

HI-TIDE Options Dialog

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 34

HEXMATE Control

Other HEXMATE Features:
− Merge Intel HEX files
− Search for HEX codes and optionally

replace with new codes

Calculate and insert a
checksum value

--checksum
Fill unused memory--fill

Insert bytes (serial number)--serial

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 35

Controlling Messages

#pragma warning allows control
over individual errors & warnings

retrieve previous statepop

make messages warningwarning list

make messages errorerror list

save current statepush
enable messagesenable list
disable messagesdisable list

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 36

Question

How could you easily send your
source code to a colleague when the C

source files include header files
located in many folders?

Preprocess the source files using the
--pre option. This includes the

header files so they are contained
within the output file.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 37

Understanding List Files

The Assembler List Files show:
− The C or assembly source
− The generated assembly code
− Assembler directives
− Absolute addresses determined by

the linker
− The module’s symbol table

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 38

List Files (cont.)
96 PSECT text
97 003FEA _main:
98 003FEA FFFF DW 0FFFFh
99 003FEC D008 goto f22

100 003FEE f21:
101 GLOBAL _foo
102 ;main.c: 3: void main(void)
103 003FEE 0E01 movlw 01h
104 003FF0 CFE8 F5FF movff wreg,_foo
105 ;main.c: 7: foo++;
106 003FF4 0105 movlb _foo >> 8
107 003FF8 2BFF incf _foo&0ffh,b
108 ;main.c: 8: }

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 39

Symbol Translations
Assembler mappingC code symbols

_gi_gi
_func_func
?_func+0, ?_func+1?_func+0, ?_func+1

??_func+0, ??_func+1??_func+0, ??_func+1
?a_func+0, ?a_func+1?a_func+0, ?a_func+1

int gi;int gi;
void funcvoid func

(int pi)(int pi)
{{
int i;int i;

}}

Most C Definitions Map to an
Assembler Label: symbol:

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 40

List Files (cont.)

Be Aware of the Following:
− A C list file with “.lst” extension is

produced if –-asmlist is not used
− The assembler optimizer omits some

assembler directives in the listing file
− Absolute addresses are only shown

if the linker runs to completion
’ marks show unresolved values

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 41

List Files (cont.)
96 PSECT text
97 000000’ _main:
98 000000’ FFFF DW 0FFFFh
99 000002’ D008 goto f22

100 000004’ f21:
101 GLOBAL _foo
102 ;main.c: 3: void main(void)
103 000004’ 0E01 movlw 01h
104 000006’ CFE8 F000’ movff wreg,_foo
105 ;main.c: 7: foo++;
106 00000A’ 0100’ movlb _foo >> 8
107 00000E’ 2B00’ incf _foo&0ffh,b
108 ;main.c: 8: }

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 42

Understanding the Map File

The Map File consists of:
− The options used by the linker
− The call graph
− Psects defined by each module
− Psect summary listed by class
− Unused class memory locations
− The program symbol table

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 43

The Map File (cont.)
HIHI--TECH Software PICCTECH Software PICC--18 Compiler V9.5018 Compiler V9.50

Linker command line:Linker command line:

----edf=C:edf=C:\\PROgram FilesPROgram Files\\HIHI--TECH TECH
SoftwareSoftware\\PICCPICC--1818\\9.509.50\\datdat\\en_msgs.txt en_msgs.txt \\

--h+main.sym h+main.sym --z z --Q18F452 Q18F452 --ol.obj ol.obj --Mmain.map Mmain.map
--ver=PICCver=PICC--18#V9.50 18#V9.50 \\

--ACODE=00hACODE=00h--03FFFhx2 03FFFhx2 --ARAM=00hARAM=00h--0FFhx6 0FFhx6 --
ABIGRAM=00hABIGRAM=00h--05FFh 05FFh --ACOMRAM=00hACOMRAM=00h--07Fh 07Fh \\

--ANVRAM=0500hANVRAM=0500h--05FFh 05FFh ––preset_vec=0hpreset_vec=0h\\

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 44

Call Graph Details

Indentation shows Call Hierarchy
and Approximate Stack Usage
− Actual stack usage may be higher,

due to interrupts, or lower due to
optimizations

− Indirect calls & parameters involving
function calls show extra levels

Left-Most are “root” Functions,
not Directly Called by C Code

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 45

Call Graph (cont.)

Starred Functions use auto/
Parameter RAM that does not
Overlap with Other Functions
− Look at these functions to reduce

RAM usage

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 46

Call Graph (cont.)
Machine type is 18F452

Call graph:

*_main size 0,6 offset 0
* _dummy size 0,5 offset 6
* _fcp size 2,12 offset 11

awtoft size 0,0 offset 11
_free size 0,2 offset 6

*_another_isr size 0,0 offset 25
*_my_isr size 0,6 offset 25

lbtoft size 0,0 offset 31
* _delay size 2,0 offset 31

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 47

Psect Summary Details

Each psect Defined by Each
Module Contributing to the
Output is shown with:
− Psect link and load address

Load address specifies ROM (HEX)
image if applicable

− Psect length (size)
− Resident memory space

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 48

Psect Summary (cont.)
Name Link Load Length Select Space Scale

startup.obj
end_init A A 4 0 0
init 0 0 A 0 0

main.obj
text 3FEA 3FEA 16 1FF5 0
bss 6 6 10 FE 1
my_bit 8 1 2 0 1 8

C:\Program Files\...\lib\pic84--p.lpp

COMMON
param 1A 1A 10 0 1

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 49

Memory/Symbol Summary

Unused Space Remaining in
Class is Indicated
− Classes defined by linker option
− More than one class may cover an

address range
Symbol Table for Global Symbols
− Shows assembler symbol name
− Residing psect (or abs) and address

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 50

Memory Summary (cont.)
UNUSED ADDRESS RANGES

BIGRAM 000003-0005FF
CODE 000022-007FFF
COMRAM 000003-00007F
CONFIG 300000-30000D
EEDATA F00000-F000FF
IDLOC 200000-200007
RAM 000003-0005FF

Symbol Table

__HRAM (abs) 000000 __Hbigbss bigbss 000003
__Hbigdata bigdata 000003 __Hbss bss 00000A
_i bss 00000A _main text 000A06

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 51

Lab 1

Open lab1 Project in MPLAB® IDE
Using .lst/.map File, determine:
− Address of the C function get_half
− Address of the C variable randx
− Unused space in CODE class
− Did the function delay appear in the call

graph?
Did it appear in the output assembly
code?

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 52

Lab 1 (cont.)

− Were any modules linked in from the
library files?

− Which functions had their
auto/parameter areas overlapped
with that from other functions?

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 53

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 54

C Interrupt Functions

An Interrupt Function (ISR) is
Defined by the Qualifier interrupt
− Associated with high-priority interrupt

vector by default

void interrupt isr(void)
{

if(RCIF && RCIE)
byte = RCREG;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 55

Interrupt Functions (cont.)

− Low-priority ISR can be created by
also using the low_priority keyword

void low_priority interrupt
isr(void)

{

if(T0IF && T0IE)

count++;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 56

Context Restoration

Different Memory Areas are used
for the Context of the Low and
High-Priority Interrupt Routines
The Compiler Selectively Saves
those Objects Used by the ISR
− Objects include registers used by the

CGEN, and scratch variables
− High-priority ISRs take advantage of

shadow registers

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 57

Context Restoration (contd.)
− Compiler takes into account registers

used by functions called by the ISR
− In-line assembler cannot be scanned

for register usage
“Unseen” Routines Called by an
ISR Forces Save of All Registers
− CGEN will see any called C routine

defined above ISR in the module
− CGEN will see any called C routine

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 58

Context restoration (contd.)

Interrupt Functions are not
Re-entrant
Functions Called from Interrupt
Functions and Main-Line Code:
− Produce a linker error “Function

appears in multiple call graphs…”
− Produce duplicate assembly output

for each call tree

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 59

Lab 2
Open lab2 Project in MPLAB® IDE
Identify the ISR
Which Variables:
− should be qualified volatile?
− are not assigned by atomic operations?
Note the Assembly Code that
Assigns to bb
− Make bb volatile & note change

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 60

Lab 2 (cont.)

What is the Name of the Library
Routine Implicitly Called to
Perform Division in main?
− Was the same routine called by the

ISR?

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 61

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 62

Library Code
Libraries Functions (string, math
etc.) Provided
Driver Links Relevant Library Files
− See map file to confirm
Only Functions Used are Included
Source Code is Searched First for
Function Definitions
− See map file to confirm

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 63

Compiler-Generated Code

Some Routines are Written or
Customized by the Compiler:
− Run-time start-up code (assembly)
− Printf (C code)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 64

Coming out of Reset

DEVICEDEVICE
RESETRESET

POWERPOWER--UPUP

RUNRUN--TIMETIME
STARTSTART--UPUP

main()main()

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 65

Run-Time Start-up Code

The Run-Time Start-up Code:
− Runs any user’s power-up code
− Clears uninitialized variables
− Assigns values to initialized variables
− Performs any miscellaneous setup
− Executes main
Code Contained in Assembly File:
startup.as

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 66

Run-Time Start-up (cont.)

Can be Controlled by –runtime
Suboptions:

clearing of variablesclear
initialization of variablesinit

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 67

Power-up Routine

The Power-up Routine is
Executed after Reset
Its Use is Automatic provided:
− Code is within the powerup psect
− It jumps to start on completion

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 68

printf Routine

Extra CGEN pass detects printf
and placeholders used
− Symbols are defined which

customize a generic printf routine
Options: -Ll, -Lf or –Lw must be
used to select printf library
version

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 69

printf Routine (cont.)

User must "define" stdout by
Writing the putch Function

void putch(char data) {
while(! TRMT)

;
TXREG = data;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 70

Lab 3

Open lab3 Project in MPLAB® IDE
Add Option to Keep startup.as
Compile Project and Inspect
startup.as
Add powerup.as File to Project
Recompile and Re-examine
startup.as

Confirm Use in Map File

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 71

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 72

PSECTs

OUTPUTOUTPUT

RELOCATABLERELOCATABLE
OBJECT FILEOBJECT FILE

ASSEMBLERASSEMBLER

DATADATA

CODECODE

TEXT PSECTTEXT PSECT

BSS PSECTBSS PSECT

DATA PSECTDATA PSECT

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 73

PSECTs (cont.)

The Code Generator places
Output into a psect by Using an
Assembler Directive (PSECT)
− The directive specifies the psect

name and any options
The Assembler produces a
Relocatable Object File that
consists of psects

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 74

PSECTs (contd.)

Compiler-Generated psects, e.g.:
− text for code
− data types for initialized variables
Additional psects can be Created
by the Programmer

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 75

PSECT Flags

specify size of addressing unitdelta

psect holds bit objectsbit
specify upper address limitlimit
overlay with similar psectsovlrd
specify memory spacespace
specify psect alignmentreloc
make member of a linker classclass

group with other global psectsglobal

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 76

Linker

RELOCATABLERELOCATABLE
OBJECT FILESOBJECT FILES

TEXT PSECTTEXT PSECT

BSS PSECTBSS PSECT

DATA PSECTDATA PSECT

TEXT PSECTTEXT PSECT

BSS PSECTBSS PSECT

DATA PSECTDATA PSECT

LINKERLINKER
ABSOLUTEABSOLUTE

OBJECTOBJECT
FILEFILE

Linker
options

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 77

Linker (cont.)

The Output of the Linker is an
Absolute Object File
The Linker performs Memory
Allocation in Several Steps
− Grouping of psects by name,

obeying any psect flags
− Relocation of psects into memory as

specified by linker options and psect
flags

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 78

Linker (cont.)

Resolution of Symbolic Values
− Symbol fix-up to absolute addresses

in object file
− Rewrite (fix-up) of assembler list file

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 79

Linker Options

Psects may be Linked
− Explicitly in a set order and address
− Anywhere within a class range

text anywhere in class-ptext=CODE

define CODE range-ACODE=0-7FFh,
800-FFFh

const after strings-Pstrings=const
const after text-Ptext=200h,const
text at 200h-Ptext=200h

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 80

Linker Options

Additional Linker Options can be
Added Using the Driver -L-
Option
Default Linker Options can be
Modified Using the Same Option
− If the new option string up to the first

“=“ matches a default linker option, it
replaces that default option

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 81

Linker Options (cont.)
Example: Given default linker options:

-pparam=100h,bss
place bss psect at 200h

-L-pparam=100h –L-pbss=200h

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 82

Question

What does this linker error mean?
fixup overflow in expression (location
0x302 (0x300+2), size 1, value 0x116)

000300 0E01 movlw 055h
000302 6F00’ movwf _c

linker allocates _c at address 0116h
0110 1111 xxxx xxxx movwf _c

1 0001 0110

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 83

Question

What does this linker error mean?
Can't find space for 0xF40 words (0xF40
withtotal) for psect text in segment CODE

UNUSED ADDRESS RANGES
CODE 3900-3FFF

7650-7FFF

total free space 10AEh words in two blocks

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 84

Linker Options

CGEN output can be redirected
into a new psect using:
#pragma psect current=new

− What was placed in the psect
current will now be placed in new

− Has effect over entire module

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 85

Compiler, HI-TIDE & C-Wiz
Data Types & Qualifiers
Diagnostic Files & Options
Interrupts
Library & Compiler-Generated Code
Psects & the Linker
HI-TECH Assembly

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 86

Assembly

Assembly Code may be Written:
− In separate assembler modules; or
− Placed in-line with C code using

either:
An asm(“ … ”); statement which
places one instruction; or
An #asm … #endasm block of
instructions

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 87

Assembly

Be aware of the following:
− All assembly code may be altered by

the assembler optimizer, if enabled
Preserve code in a separate module
compiled without the optimizer

− An #asm block is not syntactically
part of the C code and may not
follow normal C flow-of-control rules

− Assembler code must not alter the
state assumed by the CGEN

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 88

Common Assembler
Directives

Specify space for autos/paramFNSIZE

Define signature for routineSIGNAT
Move offset into psectORG
Reserve space in psectDS
Place byte/word in psectDB, DW
Equate symbol and valueEQU
Link with/make public symbolsGLOBAL
Create & switch to psectPSECT

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 89

Lab 4
Open lab4 MPLAB® IDE Project
Compile and Verify the Size of the
Pointer Parameter to check, and the
Code Generated for check
− Uncomment second assignment to

pointer and repeat
− Uncomment third assignment and repeat
Remove All Assignments to c and
Observe the Code Produced for
check

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 90

Summary

Introduced:
− HI-TIDE & C-Wiz
− PRO version compiler
− New STD version features
Practical Use of List and Map
Files

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 91

Summary

You should now be able to:
− Control start-up code
− Control object placement
− Understand interrupt issues
− Interact with assembly code

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 92

Tools Used in this Class

MPLAB® IDE v7.61.00
HI-TECH PICC-18 PRO v9.61
HI-TIDE v3.12PL1

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 93

Thank You

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 94

Appendix

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 95

Optimization Techniques

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 96

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 97

PRO Version Optimizations
All C and p-code Library Modules are
combined into one during the Code
Generation Phase
− This allows the code generator to analyze

more code
− Better prediction of register usage in

functions allows for better caching of
variables in registers

− Better optimization by assembler
− The programmer does not need to

rearrange functions between modules

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 98

PRO Version Optimizations
(cont.)

Allocation of Objects into the
Data Space is Automatic
− This ensures that the access bank is

fully utilized
− The programmer does not need to

use keywords for variable placement

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 99

PRO Version Optimizations
(cont.)

The Size of Pointers is
determined from the Program,
based on what the Pointer
References and the Amount of
Code and Data Defined
− This minimizes data and program

memory usage
− The programmer does not need to

use options to control pointer size

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 100

PRO Version Optimizations
(cont.)

The Required Size of Variables
may be determined by its
Content
− This minimizes data and program

memory usage
− The programmer does not need to

modify code to get optimal output

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 101

PRO Version Optimizations
(cont.)

The Code Required to Implement
the printf Function can be
determined by Placeholders used
in the Format String
− This minimizes program memory

usage
− The programmer does not need to

use options to specify which printf to
use

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 102

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 103

HI-TECH PICC Compiler

Basic Tips, it’s the simplest of things:
− Turn the Optimizers on

Versions 9.x and greater, turned on by default

− In MPLAB IDE, turn them on from the
Build Options menu

− Use the smallest data types that will do
the job

unsigned char for 8-bit values, unsigned int for 16-bit values
If a function only needs to return true or false, use bit value. If
you are concerned with portability and the use of bit, call it a
BOOL and use a define or typedef

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 104

HI-TECH PICC Compiler

Basic Tips, it’s the simplest of things:
− Use unsigned types rather than signed,

if possible
− Try to reduce the number of mixed types

within an expression
Although the compiler will handle all casting for you, this can be
costly in terms of code size, particularly when there is conversion
from signed types to a large type, or from integral to floating point
or vice versa

− Use the const qualifier for strings
The const qualifier makes access to an object read-only
It tells the compiler that the object might be able to be stored
in program memory rather than taking up RAM

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 105

HI-TECH PICC Compiler

Basic Tips, it’s the simplest of things:
− With function declarations, don't use too

many parameters.
Although you may not want to communicate using global variables, it
can be appropriate to consider using one if it represents something
global anyway, e.g. state machine context, ports or peripherals.
Globals eliminate the need to copy the variable value each time a
function is called, reducing code size and speeding up execution.
However, there are advantages and disadvantages with this sort of
thing

− On the subject of using global variables:
(1) if a function returns several things, putting them in global variables
or a global struct may be more code and time-efficient than having the
function return a struct (at the expense of having the items always
allocated)
(2) if a function takes one or more ‘bit’ parameters, it may be
worthwhile to create global variables for them and define wrapper
macros

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 106

HI-TECH PICC Compiler
Instead of:

typedef unsigned char ub;
void foo(ub ch, ub mode) /* Mode is always 0 or 1 */

Use:
bit foo_mode;
#define foo(ch,mode)

(foo_mode=(mode),do_foo(ch))
void do_foo(ub ch)

Allows faster testing of ‘mode’ within the
function and will also, in most cases, make
function calls more efficient

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 107

Reducing Code Size

Use near Variables whenever
possible
− When defining pointers that only point to
near objects, qualify the pointer

Use auto Objects rather than Global
or Static Objects
− These all reside in the same bank

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 108

“Virtual Stack” Overlay
Model for Local Variables

HI-TECH PICC creates an automatic overlay
model for local variables. This allows shared
RAM usage within functions that are not part of
the same call tree:
void main(void){

Function1(A, B);
Function2(D, E);}

Function1(unsigned char a, unsigned char b)
PORTB = a | b;

Function2(unsigned char d, unsigned char e)
PORTB = d & e;

In this example, d and e will overlay a and b and
will use only (2) bytes of RAM

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 109

Variables in the Same Bank
(PIC16 only)

When assigning variables,
consider sequences which are
common and assign those
variables to the same bank using
the Bank keyword
This eliminates any unnecessary
banking instructions within a
function sequence

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 110

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 111

HI-TECH PICC Compiler

Initializing global variables
unsigned int value = 5;
main()
{
}

− At start-up, initialized variables should be
set up and uninitialized variables should be
set to zero. These initializations are
handled by a start-up routine which is
included if required. On a Mid-Range PIC®

MCU, the above will compile to 61 words of
program memory.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 112

HI-TECH PICC Compiler

− Now if we make a small change:
unsigned int value;
main()
{

value = 5;
}

Compiles to 29 words of program memory.
− The initialization routine that was previously

required to set value did not have to be linked in.
Note, there is a fixed overhead to initialized values;
when you have less than ~20 bytes, it is more code
efficient to assign them as shown here.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 113

HI-TECH PICC Compiler

− If you only have a small number of
variables that need to be initialized, then
you may find it better to do it in main()

− On the other hand, if you have lots of
variables to initialize, then it may become
more efficient to let the compiler set them
up in one block at start-up

The PRO Version compiler will write
custom start-up code based on
exactly what is needed

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 114

HI-TECH PICC Compiler
Basic Tips, it’s the simplest of things:
− Anything that is done multiple times can be

moved into its own function
This can be worthwhile, even if it is just one line containing a
moderately complex expression. However, in doing is
advantageous when there are very few parameters since
parameter passing is also costly.
Parameters are stored on a virtual overlay RAM stack so
memory is reused when functions don’t call each other
If you have lots of parameters and only a few lines of code, a
macro will likely have less overhead since the call and return
are eliminated

− It can also be interesting to have a look at the
assembly just to see if there are any lines
that produce unexpectedly large amounts of
code and if so, try doing something else.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 115

HI-TECH PICC Compiler
Basic Tips, it’s the simplest of things:
− When initializing an array, use something

other than a "for" loop and count
downwards

This is because the decrement and test for leaving
the loop is one instruction

unsigned char somearray[10];
unsigned char n;
for (n = 0; n < 10; n++)

somearray[n] = 0; // commonly used but not ideal

n = 10; // This usually will produce smaller code
do

somearray[n-1] = 0; // the "-1" does not add any overhead since
while (--n); // it is added to the address of somearray

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 116

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 117

HI-TECH PICC Compiler

//example one
const unsigned char string1[] = "Hello, world!\n";

Places the string “Hello, world!\n” into
program memory
− Simple & clean

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 118

HI-TECH PICC Compiler
//example two
const unsigned char * table[] = {

{ "one" },
{ "two" },
{ "three" },

};

Creates an array of pointers to strings, bye-bye RAM
− Stores strings "one", "two", "three“ in program

memory
− There will also be a 16-bit pointer for each created in

RAM
− Additionally, the compiler will have to include code to

initialize these pointers at start-up

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 119

HI-TECH PICC Compiler
//example three
const unsigned char * const table[] = {

{ "one" },
{ "two" },
{ "three" },

};

With "const" now being applied to the
pointers, the pointers will be stored in
program memory too
− Better than using RAM, but the problem with this

type of declaration (called a ragged-array) is that
pointers must be created

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 120

HI-TECH PICC Compiler
//example four
const unsigned char table[3][6] = {

{ "one" },
{ "two" },
{ "three" },

};

Now the array has defined dimensions
− This is only a small example and the

difference is minimal, but when applied to a
large array of strings it could make a big
difference

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 121

HI-TECH PICC Compiler

(General): Rather than repeatedly
accessing an element in an array in a
sequence of code, it may be better to
declare a pointer and set it to point at
the element
− Then, only code for dereferencing the

pointer needs to be generated instead
of always having to first recalculate
the address of the element

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 122

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 123

HI-TECH PICC Compiler
Refer to the map file’s call graph to identify
the calling relationships between functions
− Locate functions which make lots of calls and

group the called functions into the same C file
Call graph:
*_main size 0,0 offset 0
* _caller size 0,0 offset 0
* _func1 size 0,0 offset 0
* _func2 size 0,0 offset 0
* _func3 size 0,0 offset 0

− main calls caller which calls func1, func2, func3
− So, in the very simple example, it would be best to

group func1, func2, func3 together in the same file
as caller

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 124

HI-TECH PICC Compiler

Before:
main.c: contains main()
caller.c: contains caller()
file1.c: contains func1()
file2.c: contains func2()
file3.c: contains func3()

After:
main.c: contains main()
caller.c: contains caller(), func1, func2 and func3

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 125

HI-TECH PICC Compiler
When functions are in the same file, the compiler can
perform call/jump optimizations between functions
(and possibly merging & other optimizations)
When functions are in different files, these
optimizations cannot occur because the location (and
contents of) the other functions is not known
The above would tend to indicate that it might be
better to put your entire project into the one C file
− Well, if you are really struggling for space – then yes, this could

be a good idea
− However, from a design & maintenance point of view, it probably

isn’t. Hi-Tech is currently developing a new code generator with
whole program optimization capabilities which effectively does
the above automatically. Look for this next year...

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 126

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 127

HI-TECH PICC Compiler
Case vs. If-Else, what’s better??
− For example, in a simple 2 choice

check/assignment routine…..

− What is a better choice?

if (a==0)
b=3;

else if
(a==3)

b=7;

if (a==0)
b=3;

else if
(a==3)

b=7;

switch (a)
{
case 0:

b=3;
break;

case 1:
b=7;
break;

default:
break;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 128

HI-TECH PICC Compiler
What about, in a simple 15
choice check/assignment
routine…..

− What is a better
choice?

if (a==0)
b=0;

else if (a==1)
b=1;
.
.

else if (a==14)
b=14;

if (a==0)
b=0;

else if (a==1)
b=1;
.
.

else if (a==14)
b=14;

switch (a)
{
case 0:

b=0;
break;

case 1:
b=1;
break;
.
.

case 14:
b=14;
break;

default:
break;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 129

HI-TECH PICC Compiler
Case 2 options, 26 words program memory (21) (17) (15)
If-Else 2 options, 22 words program memory (20) (12) (12)

Case 6 options, 58 words program memory (45) (38) (36)
If-Else 6 options, 66 words program memory (56) (37) (37)

Case 7 options, 66 words program memory (51) (43) (41)
If-Else 7 options, 77 words program memory (65) (43) (43)

Case 15 options, 74 words program memory (84) (74) (68)
If-Else 15 options, 165 words program memory (137) (91)
(91)
Note: (Opt.On lev 9) (Asm opt) (Asm opt & Opt.On lev 9)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 130

HI-TECH PICC Compiler
Case vs. If-Else
− When is one better than the

other??

− That depends. Per the previous
example:

− If-Else for <=6 decisions

− Case for >=6 decisions

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 131

Use PRO Version of the Compiler
Some Simple things with Variables
Initializing
Strings & Things
Functional Relationships
If-Else vs. Case: What’s Better
PIC18 Considerations

HI-TECH Compiler
Optimization

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 132

HI-TECH PICC-18
Compiler

The access bank can be reached
regardless of what bank is currently
selected
− Utilizing this area can reduce your code size

because no bank swapping instructions will be
required

− The compiler offers the near storage qualifier
to put an object into the access bank. The near
qualifier can be used on any global or static
variables

− Ordinarily, pointers are 16 bits (or 24 bits) in
size. A pointer qualified as near is only 8 bits in
size which is much more efficient to work with.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 133

HI-TECH PICC-18
Compiler

Near vars = Access bank examples

unsigned int number; // no storage qualifier,
// could be positioned anywhere

near unsigned int fastnum; // will be put into the access bank

near unsigned int * fastptr; // an 8-bit pointer that can point
// to near int objects

near unsigned int * near fastptr2; // same as above, but the pointer
// itself is also put into the access bank.

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 134

HI-TECH PICC-18
Compiler

If a function needs to return multiple values, do this
with a structure instead of with pointer parameters
since pointers to non-near objects are costly

void GetTime (unsigned char* hour, unsigned char*
minute, unsigned char* weekday);

....
unsigned char hour;
unsigned char minute;
unsigned char weekday;
GetTime (&hour, &minute, &weekday);

Very inefficient…

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 135

HI-TECH PICC-18
Compiler

Much better way…

typedef struct {
unsigned char hour;
unsigned char minute;
unsigned char weekday;

} tTime;
tTime GetTime (void);
....
tTime Time = GetTime();

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 136

Common Math Libraries

Review each of the math libraries
called out in the MAP file
If using 16/8 divide in one place
and a 16/16 divide in another,
promote the 8-bit variable to
16 bits to eliminate the 16/8
library function

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11030 HTC Slide 137

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq,
KeeLoq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC
and SmartShunt are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV,
MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology Incorporated in
the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM,
fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM,
MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE,
rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective
companies.

