

PIC18 Peripheral Configuration and MPLAB[®] C18 Compiler Programming Techniques

Hands-On Exercises

The Microchip name, logo, The Embedded Control Solutions Company, PIC, PICmicro, PICSTART, PICMASTER, PRO MATE, MPLAB, SEEVAL, KEELOQ and the KEELOQ logo are registered trademarks, In-Circuit Serial Programming, ICSP, microID, are trademarks of Microchip Technology Incorporated in the USA and other countries. Windows is a registered trademark of Microsoft Corporation. SPI is a trademark of Motorola. I²C is a registered trademark of Philips Corporation. Microwire is a registered trademark of National Semiconductor Corporation. All other trademarks herein are the property of their respective companies.

© 2006 Microchip Technology Incorporated. All rights reserved.

"Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accuracy of such information, or infringement of patents arising from any such use of otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights."

Table of Contents

202 PRC

PIC18 Peripheral Configuration and MPLAB[®] C18 Compiler Programming Techniques

Lab 1—I/O Ports	4
Lab 2—A/D Converter	8
Lab 3—Real Time Clock with Timer 1	12
Lab 4—CCP: Pulse Width Modulation	16
Lab 5—CCP: Input Capture	20
Lab 6—MSSP: I ² C	26
Lab 7—USART: RS-232 Serial Communications	30
Lab 8—Extended Architecture Demo	
Lab 9—Determining the cause of a reset	

Lab 1 - I/O and Interrupts

Description:

This function configures RB0 as external interrupt pin. Initially RB0 is in high state (when NOT pressed). Interrupt is enabled for external (RB0) interrupt. Interrupt occurs at the falling edge on RB0. Increments the counter on every time the key is pressed. The counter value is displayed on the LCD. Also in interrupt bouncing of key is avoided (De bounce)

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Configure PORTB<4:0> as digital IO on reset Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

Ensure jumper J6 is open (RB0 will not work if jumper is connected)

NOTE: All delays in this project are calculated based on 10.0000MHz crystal

HINT: C Syntax for Setting / Clearing an Individual Bit

<RegisterName>bits.<BitName> = <0 or 1>;

INTCONbits.GIE = 1;

HINT: C Syntax for Writing a Value to an Entire Register

<RegisterName> = <value>; INTCON = 0x90;

TRISB REGISTER (PORTB Data Direction Register)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
	bit 7							bit 0
bit 7-0	TRIS 0 = 1 1 = 1	SB7—TRISB(Port pin is an Port pin is an	PORTB Dat output input	ta Direction R	egister			

Lab 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0 F	RBIF	
	bit 7					•		bit 0	
bit 7	GIE/ <u>Whe</u> 1 = 0 = <u>Whe</u> 1 = 0 =	GIEH: Globa In IPEN = 0: Enables all ur Disables all in In IPEN = 1: Enables all hi Disables all in	I Interrupt Ena masked interr terrupts gh priority inte terrupts	ble bit rupts rrupts					
bit 6	PEII <u>Whe</u> 1 = 0 = <u>Whe</u> 1 = 0 =	E/GIEL: Perip en IPEN = 0: Enables all ur Disables all p en IPEN = 1: Enables all lo Disables all lo	heral Interrup nmasked perip eripheral inter w priority peri w priority peri	t Enable bit oheral interru rupts oheral interru pheral interru	pts pts upts				
bit 5	TMF 1 = 0 =	ROIE: TMR0 C Enables the T Disables the ⁻	Overflow Interr MR0 overflow TMR0 overflov	upt Enable b / interrupt v interrupt	it				
bit 4	INT(1 = 0 =	DIE: INTO Extension Enables the II Disables the I	ernal Interrupt NT0 external i NT0 external i	Enable bit nterrupt interrupt					
bit 3	RBI 1 = 0 =	E: RB Port Cl Enables the R Disables the R	nange Interrup RB port change RB port chang	t Enable bit e interrupt e interrupt					
bit 2	TMF 1 = ⁻ 0 = ⁻	R OIF: TMR0 C TMR0 registe TMR0 registe	Overflow Interr r has overflow r did not overf	upt Flag bit ed (must be low	cleared in so	tware)			
bit 1	INT (1 = 0 =	DIF: INTO Exte The INTO exte The INTO exte	ernal Interrupt ernal interrupt ernal interrupt	Flag bit occurred (mu did not occur	ust be cleared	l in software)			
bit 0	RB I 1 = 7 0 = 1 Not e misr	F: RB Port Ch At least one o None of the R e: A mismatch natch conditio	hange Interrup f the RB7:RB4 B7:RB4 pins I n condition will on and allow th	t Flag bit 4 pins change have change 1 continue to he bit to be cl	ed state (mus d state set this bit. R eared.	t be cleared in eading PORTE	software) 3 will end the		
	Leg R = -n =	end: Readable bit Value at POF	W = R '1' =	Writable bit Bit is set	U = '0'	- Unimplement = Bit is cleared	ed bit, read a l x =	is '0' Bit is unknowr	n

INTCON REGISTER—Interrupt Control Register

NOTE: Only highlighted bits are applicable to this exercise.

Lab 1

INTCON2 REGISTER—Interrupt Control Register 2

	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
	RBPU	INTEDG0	INTEDG1	INTEDG2	-	TMR0IP	-	RBIP
	bit 7							bit 0
bit 7	RBI 1 = 0 =	PU: PORTB P All PORTB pu PORTB pull-u	ull-up Enable Ill-ups are disa ps are enable	bit abled ed by individua	al port latch v	alues		
bit 6	INT 1 = 0 =	EDG0: Extern Interrupt on ris Interrupt on fa	al Interrupt 0 sing edge Illing edge	Edge Select t	bit			
bit 5	INT 1 = 0 =	EDG1: Extern Interrupt on ris Interrupt on fa	al Interrupt 1 sing edge Illing edge	Edge Select t	bit			
bit 4	INT 1 = 0 =	EDG2: Extern Interrupt on ris Interrupt on fa	al Interrupt 2 sing edge Illing edge	Edge Select b	bit			
bit 3	Uni	mplemented:	Read as '0'					
bit 2	TM 1 = 0 =	R0IP: TMR0 C High priority Low priority	Overflow Interr	upt Priority bi	t			
bit 1	Uni	mplemented:	Read as '0'					
bit 0	RBI	P: RB Port Ch	nange Interrup	ot Priority bit				
	1 = 0 =	High priority Low priority						
	Leg R = -n =	end: Readable bit Value at POF	W = R '1' =	Writable bit Bit is set	U = '0' =	Unimplement = Bit is cleared	ed bit, read a l x =	ıs '0' Bit is unknown
	Not of it the	e: Interrupt fla s correspondi appropriate in	ag bits are set ng enable bit iterrupt flag bi	when an inte or the global o ts are clear pi	rrupt conditio enable bit. Us rior to enablin	n occurs, rega er software sh g an interrupt.	rdless of the hould ensure This feature	state

allows for software polling.

NOTE: Only highlighted bits are applicable to this exercise.

Lab 2 - A/D Converter

Description:

This code measures voltage from a POT provided on PIC DEM 2 PLUS board ADC of PIC18F4520 is used to sample voltage tapped from POT. Measured voltage is displayed on LCD (0 to 5V)

The center tap of R16 is connected to RA0; the result after ADC is multiplied by a scaling factor and the multiplied result is formatted and displayed on LCD.

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

N/A

NOTE: All delays in this project are calculated based on 10.0000MHz crystal

Lab 2

CO	NO REC	SISTER-	–A/D Co	ntrol Re	gister 0			
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	CHS3	CHS2	CHS1	CHS1	GO/DONE	ADON
	bit 7		•			•	•	bit 0
6	Unii	nplemented	: Read as '0'					
2	CHS	33:CHS0: An	alog Channel	Select bits				
	000 001 001 010 010 011 011 100 101 110 110 111 111 Note 2: P	0 = Channel 1 = Channel 0 = Channel 1 = Unimple 1 = Unimple 1 = Unimple 1 = Unimple 1 = Unimple	0 (AN0) 1 (AN1) 2 (AN2) 3 (AN3) 4 (AN4) 5 (AN5)(1,2) 6 (AN6)(1,2) 7 (AN7)(1,2) 8 (AN8) 9 (AN9) 10 (AN10) 11 (AN11) 12 (AN12 mented(2) mented	(The po t implemente unimplement	tentiometer or d on 28-pin de ed channels w	evices.	2 Plus is con	nected to this
	mea GO/	DONE: A/D (Conversion Sta	atus bit				
	<u>Whe</u> 1 =	A/D convers	<u>:</u> ion in progress	6				
	0 =	A/D Idle						
	NO plet quir	e and you ar (it is alread	DONE bit is <u>n</u> re ready to be ady provided	<u>ot set during</u> gin a conve in the lab co	initialization sion. Before ode). See the	 It is only s setting this data sheet f 	et when conf bit, an acqui or details.	iguration is c sition delay is
	ADC	DN: A/D On b	oit					
	1 = 0 =	A/D converte A/D converte	<mark>er module is e</mark> r er module is di	nabled sabled	(Turn on the	ADC module)		
	Leg R = -n =	end: Readable bit Value at PO	W = R '1' =	Writable bit Bit is set	U = '0' =	Unimplemen Bit is cleared	ted bit, read a d x =	s '0' Bit is unknown

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Lab 2

ADCON1 REGISTER—A/D Control Register 1

	U-	0	U-0	R	/W-0	R	/W-0	R	/W-0	R/	W-0	R/	W-0	R/\	N-0
	-		-	V	CFG1		CFG0	PC	CFG3	PC	FG2	PC	FG1	PC	FG0
	bit 7														bit 0
bit 7-6		Unimpl	emente	d: Rea	d as '0'	,									
bit 5		VCFG1	: Voltag	e Refei	rence C	configu	ration b	it (Vre	F- sour	ce)					
		1 = VR	ef- (AN2	2)											
		0 = Vs	S		(U	se grou	und as i	negativ	ve refer	ence)					
bit 4		VCFG0	: Voltag	e Refei	rence C	Configu	ration b	it (Vre	F+ SOU	rce)					
		1 = VR	EF+ (AN	3)	(1)		nly as r	ositive	roforo	nce)					
hit 2 0			·DCECO			of sup	tion Co	otrol bi		nce)					
DIL 3-0		PUPG3		. A/U F		inigura			115.						
		PCFG3	12	5	10	ი	ω	7	9	5	4	e	2		0
		PCFG0	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN
		0000	A	Α	A	А	Α	А	Α	А	А	А	Α	Α	А
		0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		0010	Α	Α	Α	Α	Α	А	Α	А	А	Α	Α	Α	А
		0011	D	Α	Α	А	Α	А	Α	А	А	А	Α	Α	А
		0100	D	D	Α	Α	Α	А	Α	А	А	Α	Α	Α	А
		0101	D	D	D	Α	Α	А	Α	А	Α	Α	Α	Α	А
		0110	D	D	D	D	Α	А	Α	А	А	А	Α	A	А
		0111	D	D	D	D	D	Α	Α	Α	Α	Α	A	A	A
		1000	D	D	D	D	D	D	A	A	A	A	A	A	A
		1001	D	D	D	D	D		D	A	A	A	A	A	A
		1010	D			D	D	D	D	D	A	A	A	A	A
						D	D	<u>D</u>	D	D	D	A	A	A	A
		1100					D	<u> </u>					A	A	A
		1101	D	D	D	D	D	D	D	D	D	D	D	A	A
		1110	D	D	D	D	D	D	D	D	D	D	D	D	A
		1111	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog Input

D = Digital I/O

(Only AN0 needs to be an analog input for the potentiometer, all other pins should be digital I/O.)

- Note 1: The POR value of the PCFG bits depends on the value of the PBADEN configuration bit. When PBADEN = 1, PCFG < 3:0 > = 0000; when PBADEN = 0, PCFG<3:0> = 0111.
 - 2: AN5 through AN7 are available only on 40/44-pin devices.

Lab 2

	R/W	-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADF	M	-	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0			
	bit 7								bit 0			
bit 7		ADF 1 = F	M: A/D Resu	It Format Sele	ect bit			`				
hit 6			ett justified	(vve Read as '0'	won't be usir	ig the two LSt		-)				
		0										
bit 5-3		ACQT2:ACQT0: A/D Acquisition Time Select bits 111 = 20 TAD 110 = 16 TAD										
		101 =	= 12 TAD	(Bas	sed on formul	as in data she	et)					
		100 = 011 = 010 = 001 = 000 =	= 8 TAD = 6 TAD = 4 TAD = 2 TAD = 0 TAD (1)									
bit 2-0		ADC	S2:ADCS0:	A/D Conversi	on Clock Sele	ct bits						
		111 = 110 = 101 = 100 = 011 = 010 =	= FRC (clock = FOSC/64 = FOSC/16 = FOSC/4 = FRC (clock = FOSC/32	derived from	A/D RC oscill A/D RC oscill	ator) (1) ator) (1)						
		001 =	= FOSC/8	(Bas	sed on formul	as in data she	et)					
		000 = Note	= FOSC/2 • 1: If the A/D	FRC clock so	ource is selec	ted, a delay of	f one TCY (in	struction cycle	e) is			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Lab 3 - Real Time Clock with TMR1

Description:

A Real time clock (RTC) is designed using Timer1 (Explained in RTC.C), time is displayed on 16x1 LCD provided on PICDEM2 board.

A watch Crystal of frequency 32.768 KHz is connected to T1OSO & T1OSI pins.Timer1 increments at the rate of approx 30.51 micro seconds. Timer1 is 16 bit wide; hence it takes 2 seconds for timer to overflow from zero. To get 1 second resolution for RTC application Timer1 counter registers TMR1H:TMR1L are loaded with half of the value i.e., 0x8000. e.g. TMR1 = 0x8000;

Interrupt is enabled for timer1 overflow conditions, three counters Hours, Minutes and Seconds are incremented at the interrupt and time elapsed is displayed on LCD.

Using Switches S2 and S3 Time can be set and allow running from set value.

Time on LCD is refreshed for every second.

Timer 1 is configured to run on every rising edge of clock i.e., synchronous mode.

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

N/A

NOTE: All delays in this project are calculated based on 10.0000MHz crystal

INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7							bit 0

See page 5 of 202 PRC handout for details. Bits 7 & 6 will need to be set for TMR1 interrupts to work.

Lab 3

					.•g.•.•.			
	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
	bit 7							bit 0
bit 7	RD1	I 6: 16-bit Rea	d/Write Mode	Enable bit	ana 40 hitan	eretien		
	1 = 0 =	Enables regi	ster read/write	e of Timer1 in	two 8-bit ope	rations		
bit 6	T1R 1 = 0 =	UN: Timer1 S Device clock Device clock	System Clock is derived fro is derived fro	Status bit m Timer1 osc <mark>m another sou</mark>	illator urce (This is)	the default va	lue)	
oit 5-4	T1C 11 10 01 00	EXPS1:T1CKI = 1:8 Prescal = 1:4 Prescal = 1:2 Prescal = 1:1 Prescal	PS0: Timer1 I e value e value e value e value e value	nput Clock Pr	escale Select	bits		
oit 3	T1C	SCEN: Time	r1 Oscillator E	nable bit				
	1 = 0 = The	Timer1 oscill Timer1 oscill oscillator inve	ator is enable ator is shut of erter and feed	<mark>d</mark> f lback resistor a	are turned off	to eliminate p	oower drain.	
oit 2	T1S <u>Whe</u> 1 =	YNC: Timer1 en TMR1CS = Do not synch	External Cloo	ck Input Synch al clock input	nronization Se	elect bit		
	<u>Whe</u> This	en TMR1CS =	<u>external cloci</u> : <u>0:</u> I. Timer1 uses	s the internal c	lock when TN	//R1CS = 0.		
oit 1	TMF 1 = 0 =	R1CS: Timer1 External cloc	Clock Source k from pin RC (Fosc/4)	e Select bit <mark>C0/T1OSO/T1</mark>	3CKI (on the	rising edge)		
oit 0	ТМ	R1ON: Timer1	l On bit					
	1 = 0 =	Enables Tim Stops Timer	er1 I					
	Leg R = -n =	end: Readable bit Value at POF	W = २ '1' =	- Writable bit - Bit is set	U = '0' =	Unimplement = Bit is cleared	ted bit, read a	s '0' Bit is unknow

T1CON REGISTER—Timer 1 Control Register

NOTE: In Synchronous mode Timer1 counter increments on every rising edge of the clock pulse. Timer1 will not increment in SLEEP mode since the synchronization circuit is shut off. The Prescaler will however continue to increment

Lab 3

PIE1 REGISTER—Peripheral Interrupt Enable Register 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7	·	•			•		bit 0
bit 7	PS 1 0 No	FIE: Parallel = Enables the = Disables the te 1: This bit	Slave Port Re PSP read/wr e PSP read/w is unimplemei	ad/Write Inter ite interrupt rite interrupt nted on 28-pir	rrupt Enable b n devices and	oit(1) will read as '0)'.	
bit 6	AC 1 0	DIE: A/D Conv = Enables the = Disables the	verter Interrupt A/D interrupt A/D interrup	: Enable bit t				
bit 5	RC 1 0	CIE: EUSART = Enables the = Disables the	Receive Inter EUSART rec EUSART rec	rupt Enable b eive interrupt ceive interrupt	it t			
bit 4	TX 1 0	IE: EUSART = Enables the = Disables the	Transmit Inter EUSART trai EUSART tra	rrupt Enable b nsmit interrup nsmit interrup	vit t ot			
bit 3	SS 1 0	FIE: Master S = Enables the = Disables the	Synchronous S MSSP interru MSSP interr	Serial Port Inte upt upt	errupt Enable	bit		
bit 2	CC 1 0	CP1IE: CCP1 = Enables the = Disables the	Interrupt Enat CCP1 interru CCP1 interru	ble bit ipt upt				
bit 1	TN 1 0	IR2IE: TMR2 = Enables the = Disables the	to PR2 Match TMR2 to PR2 TMR2 to PR	Interrupt Ena 2 match interr 2 match inter	able bit rupt rupt			
bit 0	TN 1 0	IR1IE: TMR1 = Enables the = Disables the	Overflow Inte TMR1 overflo TMR1 overfl	rrupt Enable t ow interrupt ow interrupt	bit			
	Le	gend:						(0)

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Lab 3

R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIF⁽¹⁾ ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF bit 7 bit 0 bit 7 **PSPIF:** Parallel Slave Port Read/Write Interrupt Flag bit(1) 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred Note 1: This bit is unimplemented on 28-pin devices and will read as '0'. bit 6 ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete RCIF: EUSART Receive Interrupt Flag bit bit 5 1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The EUSART receive buffer is empty bit 4 **TXIF:** EUSART Transmit Interrupt Flag bit 1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The EUSART transmit buffer is full bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive CCP1IF: CCP1 Interrupt Flag bit bit 2 Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0 **TMR1IF:** TMR1 Overflow Interrupt Flag bit (Read this bit to see if TMR1 caused the interrupt) 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

PIR1 REGISTER—Peripheral Interrupt Request Register 1 (Flags)

-n = Value at POR

x = Bit is unknown

Lab 4 - PWM

Description:

CCP module is configured to PWM mode. A/D module is used to generate ADC value.

ADC value depends on the POT (R16 – RA0) position. Each time ADC is performed and ADRESH is loaded to Period control register PR2 and half of ADRESH is loaded to Duty Cycle control register CCPR1L which gives 50% duty cycle.

Configured Duty Cycle and Period is displayed on LCD. An oscilloscope can be used to view the PWM signal

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

NOTE: All delays in this project are calculated based on 10.0000MHz crystal

Useful Formulas From Data Sheet

PWM Period = [(PR2) + 1] • 4 • T_{OSC} • (TMR2 Prescale Value)

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • T_{OSC} • (TMR2 Prescale Value)

Where:

 T_{OSC} = System oscillator period = 1/ F_{OSC} = 1/10MHz = 100ns PR2 = Timer 2 Period Register TMR2 Prescale Value = Option selected in T2CON register CCPR1L:CCP1CON<5:4> = Duty Cycle bits (10-bits in two registers: CCPR1L and CCP1CON)

Example:

1) **PWM Period** = [(PR2) + 1] • 4 • TOSC • (TMR2 Pre scale Value) For PR2 = 0x80, CCPR1L: CCP1CON<5:4> = 380, TOSC = 1/10.0000 MHz, TMR2 presale = 4. PWM period = 206.4 micro Seconds PWM Frequency = 1/ PWM Period = 4.902 KHz.

```
2) PWM Duty Cycle = (CCPRXL: CCPXCON<5:4>) • TOSC • (TMR2 Presale Value)
Considering same value for CCPR1L:CCP1CON<5:4> = 380,
PWM Duty Cycle = 152.0 micro Seconds
```

Lab 4

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	
	bit 7							bit 0	
bit 7-6	P1N <u>If C</u> xx <u>If C</u> 00 01 10	M1:P1M0: Enh <u>CP1M3:CCP1</u> = P1A assign <u>CP1M3:CCP1</u> = Single outp = Full-bridge = Half-bridge	nanced PWM M2 = 00, 01, ed as Capture M2 = 11: ut: P1A modu output forward output: P1A,	Output Config <u>10:</u> e/Compare in lated; P1B, P d: P1D modul P1B modulate	guration bits out/output; P1 <mark>1C, P1D assig</mark> ated; P1A act ed with dead-b	B, P1C, P1D gned as port p ive; P1B, P1C pand control; F	assigned as p <mark>ins</mark> inactive P1C, P1D ass	oort pins	
bit 5-4	11 DC ²	= Full-bridge	output reverse PWM Duty Cy	e: P1B modul	ated; P1C acti pit 0	ive; P1A, P1D	inactive		
	<u>Cap</u> Unu <u>Cor</u> Unu <u>PW</u> The four	<u>iture mode:</u> ised. ised. ised. <u>M mode:</u> se bits are the ind in CCPR1L	e two LSbs of	the 10-bit PW	/M duty cycle.	The eight MS	Sbs of the dut	y cycle are	
bit 3-0	found in CCPR1L. it 3-0 CCP1M3:CCP1M0: Enhanced CCP Mode Select bits 0000 = Capture/Compare/PWM off (resets ECCP module) 0001 = Reserved 0010 = Compare mode, toggle output on match 0011 = Capture mode 0100 = Capture mode, every falling edge 0101 = Capture mode, every falling edge 0101 = Capture mode, every falling edge 0101 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, initialize CCP1 pin low, set output on compare match (set CCP1IF) 1001 = Compare mode, initialize CCP1 pin high, clear output on compare match (set CCP1IF) 1001 = Compare mode, generate software interrupt only, CCP1 pin reverts to I/O state 1011 = Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CC1IF bit) 1100 = PWM mode: P1A_P1C active-high_P1D active-high								
	1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low								
	Leg R = -n =	end: Readable bit Value at POF	W = R '1' =	Writable bit Bit is set	U = '0' =	Unimplement	ed bit, read a	s '0' Bit is unknown	

CCP1CON REGISTER—Enhanced CCP 1 Control Register

NOTE FOR EXERCISE: Any combination of 11xx may be chosen for bits 3-0 since only P1A will be modulated (others not connected to pins) because bits 7-6 are both clear (see above).

Lab 4

		_								
	U-()	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	-		T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
	bit 7								bit 0	
bit 7		Unir	nplemented:	Read as '0'						
bit 6-3	it 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits									
		000	0 = 1:1 Posts	cale (Pos	stscaler not us	ed by CCP1	in PWM mode	e)		
		000	1 = 1:2 Posts	scale						
		•								
		•								
		111	1 = 1:16 Pos	tscale						
bit 2		TMR2ON: Timer2 On bit								
		1 =	Timer2 is on	(Tur	n on Timer 2)					
		0 = Timer2 is off								
bit 1-0		T2C	KPS1:T2CKF	'SO : Timer2 C	lock Prescale	Select bits				
		00	= Prescaler i	s 1						
		01	= Prescaler i	s 4 (Ch	osen based o	n formulas in	data sheet)			
		1x	= Prescaler i	s 16						
	_									
		Leg R = -n =	end: Readable bit Value at POF	W = R '1' =	Writable bit Bit is set	U = '0' =	Unimplement Bit is cleared	ed bit, read a	s '0' Bit is unknown	

T2CON REGISTER—Timer 2 Control Register 1

Lab 5 - Input Capture

Description:

PWM module is used to generate signal, A/D module is used to load Period control register (PR2) and Duty Cycle control register (CCPR1L). Duty Cycle is always maintained at 50% of period.

CCP module is configured in capture mode to capture at rising edge.

Two consecutive rising edge will give Pulse period and events at rising and immediate falling edge will provide pulse width.

For demonstration, PWM pulse length and CCP capture event are configured at 1:1 ratio, more details on how this is achieved is mentioned in details in following chapters.

Project settings:

Configuration word:

Select appropriate clock RB3 as CCP2 pin Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

RB3 is the input for CCP2. RC2 is the output of PWM Connect a wire from RC2 (remove short link from buzzer) to RB3 on PICDEM 2 PLUS board S2 & S3 for STOP and START for Capture Module. R16 (POT) is for varying Duty cycle

NOTE: Please tune delay functions appropriately. This project developed on 10.0000MHz crystal clock (HS)

INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7							bit 0

See page 5 of 202 PRC handout for details. Bits 7 & 6 will need to be set for TMR1 interrupts to work.

Lab 5

CP2	2CON	RE	GISTER	-Captu	re, Com	pare, PV	VM 2 Co	ntrol Reg	gister			
	U-0		U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	-		-	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0			
	bit 7								bit 0			
t 7-6		Unin	nplemented:	Read as '0'								
t 5-4		DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCP Module x										
		Unused. <u>Compare mode:</u> Unused. <u>PWM mode:</u> These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DCx9:DCx2) of the duty cycle are found in CCPRxL.										
3-0		ССР	xM3:CCPxM	0: CCP Modu	le x Mode Se	lect bits						
	0000 = Capture/Compare/PWM disabled (resets CCP module) 0001 = Reserved 0010 = Compare mode, toggle output on match (CCPxIF bit is set) 0011 = Reserved 0100 = Capture mode, every falling edge											
		0101	L = Capture	mode, every r	ising edge							
 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode: initialize CCP pin low; on compare match, force CCP pin high (CCPIF bit is set) 1001 = Compare mode: initialize CCP pin high; on compare match, force CCP pin low (CCPIF bit is set) 1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set CCP pin reflects I/O state) 									jh W			
									w is set,			
		1011 11xx	L = Compare CCP2 m c = PWM mo	e mode: trigge atch (CCPxIF ode	r special ever bit is set)	nt, reset timer,	, start A/D cor	version on				

© 2006 Microchip Technology Inc.

Lab 5

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T 3SYNC	TMR3CS	TMR30N				
-	bit 7		•	•				bit 0				
bit 7	RD 1 = 0 =	16: 16-bit Rea <mark>- Enables regi</mark> - Enables regi	d/Write Mode ster read/write ster read/write	Enable bit of Timer3 in of Timer3 in	<mark>one 16-bit op</mark> two 8-bit oper	eration ations						
bit 6,3 Careful! Non-contiguou Bits	T30 1x 01	 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits 1x = Timer3 is the capture/compare clock source for the CCP modules 01 = Timer3 is the capture/compare clock source for CCP2; Timer1 is the capture/compare clock source for CCP1 00 = Timer1 is the capture/compare clock source for the CCP modules 										
bit 5-4	T30 11 01 00	 00 = I Imer1 is the capture/compare clock source for the CCP modules T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 02 = 1:4 Prescale value 										
bit 2	T3S (No <u>Wh</u> 1 = <u>0</u> = <u>Wh</u> This	SYNC: Timer3 t usable if the en TMR3CS = Do not synch Synchronize en TMR3CS = s bit is ignored	External Clock device clock <u>= 1:</u> pronize extern external clock <u>= 0:</u> I. Timer3 uses	ck Input Synch comes from T al clock input (input (Defau s the internal c	nronization Co imer1/Timer3. Ilt Value) clock when TM	ntrol bit) /R3CS = 0.						
bit 1	TM 1 = 0 =	R3CS: Timer3 External cloce Internal cloce	Clock Source k input from T (Fosc/4) (D	e Select bit Fimer1 oscillat efault Value)	or or T13CKI	(on the rising	edge after the	e first falling edge				
bit 0	TM 1 = 0 =	R3ON: Timer3 <u>Enables Tim</u> Stops Timer3	3 On bit <mark>er3</mark> 3									

T3CON REGISTER—Timer 3 Control Register 1

Lab 5

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	OSCFIE	CMIE	-	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE			
	bit 7							bit 0			
bit 7	OS(1 = 0 =	<pre>OSCFIE: Oscillator Fail Interrupt Enable bit 1 = Enabled 0 = Disabled</pre>									
bit 6	CMI 1 = 0 =	<pre>CMIE: Comparator Interrupt Enable bit 1 = Enabled 0 = Disabled</pre>									
bit 5	Uni	Unimplemented: Read as '0'									
bit 4	EEI 1 = 0 =	EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit 1 = Enabled 0 = Disabled									
bit 3	BCI 1 = 0 =	LE: Bus Collis Enabled Disabled	ion Interrupt	Enable bit							
bit 2	HL\ 1 : 0 :	HLVDIE: High/Low-Voltage Detect Interrupt Enable bit 1 = Enabled 0 = Disabled									
bit 1	TMF 1 = 0 =	TMR3IE: TMR3 Overflow Interrupt Enable bit 1 = Enabled 0 = Disabled									
bit 0	CCI	P2IE: CCP2 Ir	terrupt Enabl	e bit							
	1 = 0 =	Enabled Disabled									

PIE2 REGISTER—Peripheral Interrupt Enable 2 Register

Lab 5

PIR2 REGISTER—Peripheral Interrupt Request Register 2 (Flags)

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	OSCFIF	CMIF	-	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	
	bit 7							bit 0	
bit 7	OS0 1 = 0 =	CFIF: Oscillato Device oscilla Device clock	or Fail Interrup ator failed, clo operating	ot Flag bit ck input has o	changed to IN	TOSC (must l	be cleared in	software)	
bit 6	CMI 1 = 0 =	F: Comparato Comparator i Comparator i	or Interrupt Fla nput has chai nput has not o	ag bit nged (must be changed	e cleared in sc	oftware)			
bit 5	Uni	mplemented:	Read as '0'						
bit 4	 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit 1 = The write operation is complete (must be cleared in software) 0 = The write operation is not complete or has not been started 								
bit 3	 BCLIF: Bus Collision Interrupt Flag bit 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 								
bit 2	HLV 1 = 0 =	/DIF: High/Lov A high/low-vo A high/low-vo	w-Voltage De bltage conditio bltage conditic	tect Interrupt on occurred (c on has not occ	Flag bit lirection detern curred	mined by VDI	RMAG bit, HL	VDCON<7>)	
bit 1	TMF 1 = 0 =	R3IF: TMR3 C TMR3 registe TMR3 registe	overflow Interr er overflowed er did not over	upt Flag bit (must be clea flow	red in softwar	e)			
bit 0	CCF <u>Cap</u> 1 = 0 = <u>Con</u> 1 = 0 = <u>PWI</u> Unu	P2IF: CCPx In ture mode: A TMR1/3 re No TMR1/3 r npare mode: A TMR1 regis No TMR1 regis Mo TMR1 regis M mode: Ised in this mode	terrupt Flag b gister capture egister captur ster compare gister compare ode.	it occurred (mu e occurred match occurre e match occur	u <mark>st be cleared</mark> ed (must be cl rred	in software) leared in softv	vare)		

Lab 6 - MSSP in I²C Mode

Description:

A TC74 Serial Digital Thermal Sensor is used to measure ambient temperature. The PIC and TC74 communicate using the MSSP module. The TC74 is connected to the SDA & SCL I/O pins of the PIC and functions as a slave. Measured temperature is displayed in the LCD.

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

NOTE: All delays in this project are calculated based on 10.0000MHz crystal

SSPADD REGISTER—Baud Rate Value (I²C Mode)

In I2C Master Mode this register is used for baud rate generation. In this application, MSSP is configured in I2C master mode with the TC74 as a slave device.

Baud Rate = Fosc / (4 * (SSPADD + 1)

Fosc = 10.000MHz and SSPADD = 0x63 (any desired value—as master you are in control of the baud rate)

Lab 6

	R/W-0	R/W-0	R/W-0	R/W-0	R/W_0	R/W-0	R/W-0	R/W-0		
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0		
	bit 7							bit 0		
bit 7	 WCOL: Write Collision Detect bit <u>In Master Transmit mode:</u> 1 = A write to the SSPBUF register was attempted while the l2C conditions were not valid for a transmission to be started (must be cleared in software) 0 = No collision <u>In Slave Transmit mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision <u>In Receive mode (Master or Slave modes):</u> This is a "don't care" bit. 									
bit 6	This is a "don't care" bit. SSPOV: Receive Overflow Indicator bit <u>In Receive mode:</u> 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software) 0 = No overflow <u>In Transmit mode:</u> This is a "don't care" bit in Transmit mode.									
bit 5	SSF	PEN: Synchro	nous Serial P	ort Enable bit						
	1 = 0 = Not e	Enables the s Disables seri e: When enab	<mark>serial port and</mark> al port and co bled, the SDA	<mark>d configures th</mark> onfigures these and SCL pins	ne SDA and S e pins as I/O p s must be prop	CL pins as th port pins perly configure	<mark>e serial port p</mark> ed as input or	ins output.		
bit 4	In Slave mode: 1 = Release clock 0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode:									
bit 3-0	SSF 111 111 101	SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I2C Firmware Controlled Master mode (Slave Idle)								
	100	0 = I2C Mast	er mode, cloc	k = Fosc/(4 *	(SSPADD + 1	, ())				
	011 011 Bit c	1 = I2C Slave 0 = I2C Slave combinations	e mode, 10-bi e mode, 7-bit not specificall	t address address y listed here a	re either rese	rved or imple	mented in SP	l mode only.		

SSPCON1 REGISTER—MSSP Control Register 1 (I²C Mode)

Lab 6

SSPSTAT REGISTER—MSSP Status Register (I²C Mode)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R -0			
	SMP	CKE	D/Ā	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 7	SMF	P: Slew Rate	Control bit (In	Master or Sla	ve Mode)						
	1 = 0 =	Slew rate cor Slew rate cor	ntrol enabled	for standard s	peed mode (1 mode (400 k	Hz)	NIHZ)				
bit 6	CKE	: SMBus Sel	ect bit (In Mas	ster or Slave N	/lode)						
	1 = 0 =	Enable SMB Disable SMB	us specific inp us specific inp	outs outs							
bit 5	D/A	: Data/Addres	s bit								
	In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address										
bit 4	P: S	stop bit									
	1 =	Indicates that Stop bit was	t a Stop bit ha	is been detect	ted last						
	Note	e: This bit is c	leared on Res	set and when	SSPEN is cle	ared.					
bit 3	S : S	start bit									
	1 =	Indicates that Start bit was	t a Start bit ha	as been detect	ted last						
	Note	e: This bit is c	leared on Res	set and when	SSPEN is cle	ared.					
bit 2	R/W	: Read/Write	Information b	it (I2C mode o	nly)						
	<u>In S</u> 1 =	<u>lave mode:</u> Read									
	0 =	Write									
	Not only	e: This bit hole valid from the	ds the R/W bi	t information f	ollowing the la Start bit. Sto	ast address m p bit or not A(atch. This bit i	S			
	In M	laster mode:									
	1 = 0 =	Transmit is in	n progress ot in progress	;							
	Not in A	e: ORing this ctive mode.	bit with SEN,	RSEN, PEN,	RCEN or AC	KEN will indica	ate if the MSSI	P is			
bit 1	UA:	Update Addr	ess bit (10-bit	Slave mode of	only)						
	1 = 0 =	Address does	t the user nee s not need to	eds to update t be updated	the address in	the SSPADE) register				
bit 0	BF:	Buffer Full St	atus bit								
	<u>ln T</u> 1 =	<u>ransmit mode</u> SSPBUF is fi	<u>:</u> ull								
	0 =	SSPBUF is e	empty								
	<u>In R</u> 1 =	eceive mode: SSPBUF is fi	ull (does not ir	nclude the AC	K and Stop b	its)					
	0 =	SSPBUF is e	mpty (does n	ot include the	ACK and Sto	p bits)					

Lab 6

Lab 7 - EUSART

Description:

USART module is configured to asynchronous mode. Baud Rate of 19200 is selected.

Firmware waits for PC to send a byte; when it receives a byte from PC, firmware will check for following condition;

a) If received byte is 'T', then firmware will read on board temperature sensor and transmits measure temperature to PC over RS232 in the format "**Temp = xxx** ° **C**".

b) If received byte is 'S', then firmware will replay to PC with a string "MICROCHIP MASTER".

c) If any other byte is received, firmware will reply with the same byte.

Project settings:

Configuration word:

Select appropriate clock (HS in the current example) Disable watch dog timer (enable if required) If using ICD, Disable WDT, Low Voltage programming

Language tool suite:

C18 if writing in C ASM for assembly programming.

Hardware Configuration:

An RS232 cable (D9) from PC to PICDEM2PLUS board

NOTE: Please tune baud rate appropriately. This project developed on 10.0000MHz crystal clock (HS), Baud rate in the current example is 19200.

SPBRG REGISTER—EUSART Baud Rate Value

For a baud rate of 19200 with BRGH = 1 (See TXSTA Register), we use a formula from the data sheet to determine the value required for the SPBRG Register.

BaudRate = $F_{OSC} / [16 \cdot (SPBRG + 1)]$ 19200 = 10MHz / [16 • (SPBRG + 1)]

SPBRG = 31 (decimal)

Lab 7

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R -1	R/W-0					
	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D					
	bit 7	I		I				bit 0					
bit 7	CSF	RC: Clock Sou	rce Select bit	t									
	<u>Asy</u> Don	<u>nchronous mo</u> 't care	ode:										
	<u>Syn</u>	chronous mod	<u>de:</u>										
	1 = 0 =	Master mode	e (clock genera (clock from ex	ated internally	(from BRG)								
bit 6	TX9	: 9-bit Transn	nit Enable bit		/								
	1 =	1 = Selects 9-bit transmission											
	0 =	Selects 8-bit	transmission										
bit 5	TXE	EN: Transmit E	Enable bit										
	1 = 0 =	Transmit disa	abled										
	Note	e: SREN/CRE	N overrides	TXEN in Sync	mode.								
bit 4	SYN	IC: EUSART	Mode Select	bit									
	1 = 0 =	Synchronous	s mode Is mode										
bit 3	SEN	IDB: Send Br	eak Characte	r bit									
	Asy	Asynchronous mode:											
	0 =	1 = 3 Send Sync Break of next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed											
	<u>Syn</u> Don	<u>chronous moo</u> 't care	<u>de:</u>										
bit 2	BRO	GH: High Bau	d Rate Select	bit									
	Asy	nchronous mo	ode:										
	1 =	High speed											
	<u>Syn</u>	chronous mod	<u>de:</u>										
	Unu	sed in this mo	ode.	O (1)									
bit 1		TSR empty	Shift Register	Status bit									
	0 =	TSR full											
bit 0	ТХ9	D: 9th bit of T	ransmit Data										
	Can	be address/c	lata bit or a pa	arity bit.									

TXSTA REGISTER—EUSART Transmit Status Register

Lab 7

RCSTA—EUSART Receive Status Register

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Serial Port Enable bit											
	1 =	Serial port en	abled (config	ures RX/DT a	nd TX/CK pin	s as serial po	rt pins)					
1.11.0	0 =	Serial port dis		n Reset)								
DIT 6	RX9	Selects 9-bit	e Enable bit									
	1 = 0 =	Selects 8-bit	reception									
bit 5	SRE	N: Single Re	ceive Enable	bit								
	Asynchronous mode: Don't care. Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave: Don't care.											
bit 4	CRE	N: Continuou	is Receive En	able bit								
	Asyr	hchronous mo	iver									
	0 =	Disables rece	eiver									
	<u>Syna</u> 1 = 0 =	chronous moc Enables cont Disables cont	<u>le:</u> inuous receiv tinuous receiv	e until enable ve	bit CREN is c	leared (CREN	N overrides SF	REN)				
bit 3	ADD	DEN: Address	Detect Enabl	e bit								
	<u>Asyr</u> 1 = is se 0 = <u>Asyr</u> Don	nchronous mo Enables addr et Disables add nchronous mo 't care.	de 9-bit (RX9 ress detection ress detectior de 9-bit (RX9	<u>1 = 1):</u> , enables inte n, all bytes are <u>1 = 0):</u>	rrupt and load	ds the receive d ninth bit can	buffer when F be used as p	≀SR<8> arity bit				
bit 2	FER 1 = 0 =	R: Framing E Framing error No framing e	rror bit r (can be upda rror	ated by readir	ng RCREG reg	gister and rec	eiving next va	lid byte)				
bit 1	OEF 1 = 0 =	R: Overrun E Overrun error No overrun e	irror bit r (can be clea rror	red by clearin	g bit CREN)							
bit 0	RX9 This	D: 9th bit of R can be addre	Received Data	a a parity bit ar	nd must be ca	lculated by us	er firmware.					

Lab 7

INTCON REGISTER

R/V	V-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/C	SIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7								bit 0

See page 5 of 202 PRC handout for details. Bits 7 & 6 will need to be set for TMR1 interrupts to work.

PIE1 REGISTER—Peripheral Interrupt Enable Register 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

See page 14 of 202 PRC handout for details. Ensure that transmit interrupts are *disabled* and that receive interrupts are *enabled*.

PIR1 REGISTER—Peripheral Interrupt Request Register 1 (Flags)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

See page 15 of 202 PRC handout for details.