

11015_MS2 MPLAB Simulators Advanced Stimulus Lab 1

Objective: Create pulse train triggered by Asynch stimulus

Open MPLAB® IDE

- Select menu item "<u>Configure>Select Device</u>"
- Select a "pic18C442" device "OK"
- Select menu item "<u>Debugger>Select Tool>MPLAB SIM</u>"

Open Stimulus window. ASYNCH event

- Select "<u>Debugger>Stimulus>New Workbook</u>"
- Select "Asynch" tab
- Select pin with drop down list "RD2" (Port D bit 2)
- Select action "Pulse High"
- Enter pulse width "60" cycles

Stimulus. SYNCH event

- Select the "Clock Stimulus" tab at the top
- Enter an optional label if desired
- Select the "RD2" pin from drop down under "Pin" column
- Select "Low" from drop down under "Initial" state column
- Set "Low Cycles" to "5". Set "High Cycles" to "5"
- Select the "Begin" box on the stimulus row. By default this will be set to "At Start"
- Move down to the "Begin" dialog edit area (lower left)
- Change from the "At Start" to the "Pin" option (radio button)
- Select "RD2" in drop down list for the "Pin" to use

Stimulus. SYNCH event cont...

- Select "High" in the adjacent drop down box
- The clock will begin when RD2 goes to a high state and the selections in the Begin area will be reflected within the "Begin" column above
- Select the "End" box on the stimulus row. By default this will be set to "Never"
- Move to the "End" dialog edit area (lower right)
- Select the option to end on "Cycle" (radio button)
- Set cycles to "50"
- Select "from clock start" in the adjacent drop down box
- The clock will end 50 cycles after the starting trigger and the selections in the End area will be reflected within the "End" column above
- Optionally enter a comment within the stimulus row

Apply Synchronous Stimulus

- Select the "Apply" button at the bottom of the stimulus window
- Select the "Asynch" tab in preparation to fire the asynchronous stimulus.
- You are now ready to test

Testing. Write code for animation (simple loop)

- Open a new file, "<u>File>New"</u>. No real code needed for testing
- Enter a tab then a "nop" on the first line
- Enter a tab then a "goto 0" on the second line
- Enter a tab then "end" directive on the third line
- Select "Save", give the file a name with an 'asm' extension
- Select the menu "<u>Project>Quickbuild</u>" (file must be in focus)

Testing. Enable trace

- Select "<u>Debugger>Settings</u>" and check the box "Trace All"
- Select the "Animation / Realtime Updates" tab. Set "animate step time" to 100 ms
- Select OK at the bottom to close the settings dialog
- This allows tracing of IO pin data so we can view it in the logic analyzer

Testing. Execution

- Select reset and then animate (double arrow icon in toolbar)
- Fire the Asynch stimulus "RD2 pulse high 60 cycles" from the Asynch tab in the Stimulus window
- Due to the animate speed being 0.1 seconds per step halt after about 6 seconds to allow the synch clock to complete

Testing. Verify input pulses

- Open the Logic Display "<u>View>Simulator Logic Analyzer</u>"
- Select the "Channels" button and select the "RD2" signal
- Press the "Add" button to add it to selected signals
- Click OK

Testing. Verify input pulses

- View the output of the RD2 wave form
- If the Logic Analyzer is already open, you will see it update on each step during animation

Extra Objective

- Turn the cursors on within the Logic Analyzer and measure between the first and last rising edges
- Is it what you expect?

