

11015 MS2 MPLAB® Simulators Advanced Stimulus Additional Examples

Using Clock tab for Grey Code Encoder stimulus

• Grey code encoder has 2 pulse trains, one out of phase with the other. When turning in one direction the phase A leads phase B. In the opposite direction phase B will lead phase A.

A goes high when B is low = Clockwise
 A goes high when B is high = Anti-Clockwise

Using Clock tab for Grey Code Encoder stimulus

- Encoder 64 counts/rev. At 300 RPM (5 RPS) we get 320 pulses per second. This is a 3125 us pulse so we will use 3us.
- At 20 MHZ we get 0.2us Instruction cycle
- Pulse width of 6 cycles = 1.2us period for each half of a full wave. (2.4us pulse)

Label	Pin	Initial	Low Cyc	High Cyc	Dania	End	Comments	
			LUW Cyc		-		Phase A leads Phase B	
PhaseA_up		High	6		-	-	Fhase A leads Fhase b	_
PhaseB_up		High	-		1003 cyc			
PhaseB_dn		Low	6	6			Phase B leads Phase A	
PhaseA_dn	HE1	Low	6	6	2003 сус	2503 cyc		_
Begin C At Star C PC	`				End O Nev O PC		- l herrill	
O PC	=		🚬 hex/la	abel	O PC	=	hex/la	abei
Cycle	= 2000	d	ecimal		O Cyc	:le = 250	0 decimal	
O Pin	=	vis 🔻		I	C Pin	=	is 📃	-

Low power wake up

 On startup under the simulator all input pins are at a zero level state. To initialize the low power wakeup pin we need to set this early to a

high state. We will do this by using simple Pin/Register stimulus to set RA0 at 50 ic.

Pin / Regis	ter Actions	Advanced Pin / Register	Clock Stimulus	Register Injection Register T	race
Time U	nits cyc	•		Repeat after 1	(decima
Time	PORTA		Click here to Ad	dd Signals	
(dec)	(hex)				
50) 01				
					_
					_
1					

Low power wake up

Now to set the Low power wake up. We need to make RA0 go low as if the level to the pin dropped. Use Clock stimulus to set a clock on RA0. Begin at cycle = 100,000. Initial high, low

for 2 and high for 9,999,998. End set at default Never. Under simulation this will wake the process about every 4 seconds.

50	L Workboo	ok - C:\\La	ab908.sb	5						>
Pi	in / Register.	Actions Ad	vanced Pi	n / Registe	er Clock	Stimulus	Register Ir	njection R	egister Trace	1
	Label	Pin	Initial	Low Cyc	High Cyc	Begin	End	Comments	:	
-	LPWUwaki	RA0	High	2	9999998	100000 c	Never			
										- 11
										-
	Begin					⊢ End—		1		
	C At Sta	art				• Ne	wer			
	O PC					O PC	_			abal
		=		i ⊳ hex/	label		· =			apei
	Cycle	= 100000	c	lecimal		O Cy	cle =		decimal	
	🔿 Pin	=	🔻 is			C Pir	n = [V	is 🗌	Y
G	enerate SCL	From Workbo	ook	<u>D</u> eleti	e Row	<u>S</u> ave	Workbook	E <u>x</u> i	it <u> </u>	<u>l</u> elp

- You can either clock the data in using the firmware (your own code) and driving an output pin. Here we use 1 clock per 8 or 16 bit data
- Or provide a clock as in this example as if it was an external clock. To use your code to clock data eliminate the SPI clock step.
- The data is injected using a file which is attached to the SSPBUF, SFR with trigger on Demand and RAW format.
- RC3 is pulsed 20 cycles low 5 cycles high only when RC2 is high.

- RC2 is set high using an Asynchronous pulse for 143 cycles which allows 6 low to high transitions of RC3.
- Each low to high transition of RC3 sets the SSPIF flag. (not quite true SPI which has 1 clock per bit)
- Your program should wait until the IF bit is set then read the SSPBUF (into Wreg)
- Clear the IF flag and loop for the next read.
- When you read the SSPBUF the data from the file will be injected as you read.

© 2007 Microchip Technology Incorporated. All Rights Reserved.

• Asynch Pulse to initiate a message

			er - [Untitled]	-	_		×
[is (SCL) File					
	C:/DI	n\tests\T6xx	x\spi_simulation\;	spi_simulati	on.sci		
	Å	ltach	Detach	Import/Me	rge		
	Asynck	hronous Stimu	ulus —				-
	Fire	Pin	Action	Width	Units	Comments	
	>	RC2	Pulse High	143	сус	Pulse long enough to get 6 clock cycles	

• SPI Clock

 S	timulus - C	:\\SPI_sin	nulation.	sbs						
F	Pin / Register	Actions Ad	vanced Pi	n / Registe	er Clock	Stimulus	Reg	gister Injection	Register Trace	Asynch
	Label	Pin	Initial	Low Cyc	High Cyc	Begin		End	Comments	
	SPIclock	RC3	Low	20	5	RC2 is Hi	gh	RC2 is Low		
										_
	•									▶
	Begin					nd				
	C At Star	t				Never				
	C PC 🔹	-	7	hex/labe	1 0	O PC	= [hex/label	
	C Cycle :	= 🚺 de	ec 🗌		.	Cycle	= [dec		_
	⊙ Pin ⇒	RC2	💌 is 🖡	ligh 💌	0	Pin	= [RC2 💌	is Low 💌	
	dvanced	Apply		Delete	Row	Save	e Wi	orkbook	Exit	Help

SPI IRQ Flag set by using a conditional statement

	- C:\\SP)	I_simula	ation.sbs				
in / Regis	ster Actions	Advanc	ced Pin / R	legister	Clock Stimulus	Register Injection Registe	r Trace Asyn
Define ⁻	Triggers						
Enable	Condition	Туре	Re-Arm [Delay	PIR1.SSPIF	Click here to Add Sign	ials 🔺
	COND1	Cont	10	сус	1		
							-
					I		
- Define (Conditions -						
Condition	n	When	Changed		Wait	Commente	
		WHEH	changeu		w ait	Comments	
COND1		RC3	=		1	When RC3 goes high se	et IF re-arm
				-	1		et IF re-arm
				-	1		et IF re-arm
				-			et IF re-arm
							t IF re-arm
COND1	Pin F	RC3				When RC3 goes high se	¥
	Pin F) Delete Ro			et IF re-arm

- If you wanted to clock bits and have the IF set after 8 bit clocks. You could set the wait time on COND1 to delay the duration of 8 clock cycles.
- You can then set the re-arm delay to avoid a retrigger.

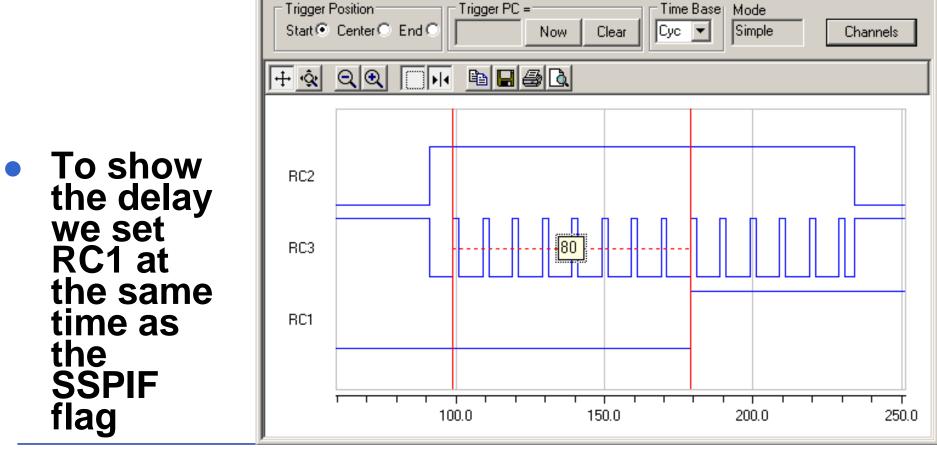
	innaias	- C:\\SPI	_simula	ation.sbs						_ 🗆 🗵
Pi	n / Beai	ster Actions	Advan	ced Pin / R	egister (Clock Stimulus	l Br	egister Injection	Begister Trace	Asunch
					- 1		.1	giotor inteodori I	Theglotter Theorem	Tristion
[Define	Triggers								
	Enable	Condition	Туре	Re-Arm D	Delay	PIR1.SSPIF		Click here to /	Add Signals	
	✓	COND1	Cont	100	сус	1				
										_
	_									<u> </u>
		Conditions -								
	- Define Conditio		When	Changed		Wait		Con	nments	-
		n	When {C3	Changed =	1		сус			IF
	Conditio	n					сус			IF
	Conditio	n					сус			F
	Conditio	n			1		сус			IF
	Conditio	n			1		сус			IF
A	Conditio	n Pin F		=)elete Ro	80				IF Help

SPI Data file injection

Label	Reg / Var	Trigger	PC Value	Width	Data Filename	Wrap	Format	Comments
(optional)	SSPBUF	Demand		1	C:\bin\Tests\16xxx\	Yes	Raw	(optional)

SSPBUF Data 1 character is read on each IRQIF The string is 5 characters plus CRLF

C:\\SP	I_Data.txt
1	\$МТО@
2	\$MT10
3	\$MT20
4	\$MT30
5	



SPI Clock as seen within the Logic Display

Trigger Position Start I Center C End C	Trigger PC = Time Base Mode Now Clear Cyc Simple Channel:	5
RC2		

SPI Clock as seen within the Logic Display when using 8 clock pulses per IRQ

_ 🗆 ×