

11015 MS2

MPLAB® Simulators Advanced Stimulus

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11015 MS2

Class Objective

- When you finish this class you will be able to:
 - Create complex, parallel clock signals using Stimulus
 - Create and stimulate multiple A/D waveform inputs
 - Monitor and control parameters in firmware using DMCI +
 - Know how to use Stimulus to log data to verify program functionality

© 2007 Microchip Technology Incorporated. All Rights Reserved.

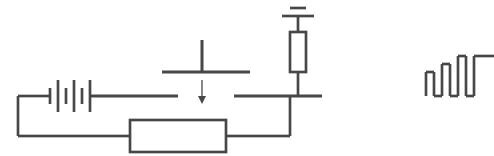
Expectations

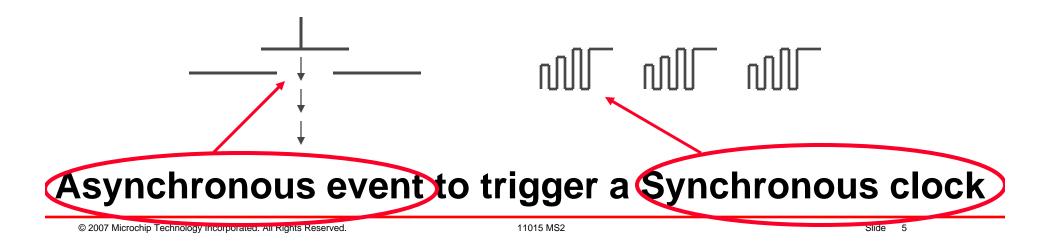
I will not cover fundamental operations of

- Simulator
- Stimulus dialog
- Details will be in lab handouts
- Teaching methods
 - Run through functionality "How to"
 - Lab

Agenda

• Use Stimulus for complex signals


- Repeating, periodic clock (Keybounce) Lab 1
- Conditional stimulus injection (Encoder) Lab 2
- Create and use multiple A/D channel signal injection Lab 3a
- Monitor signal injection and control a firmware parameter with DMCI Lab 3b



Key Bounce

Short clock burst

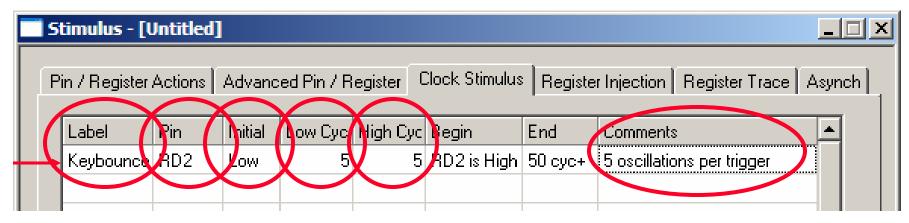
Repeat when desired

Stimulus Select

T	PLAB	IDE v	7.60												
			Project	Debugger Programmer	Tools	<u>C</u> onfigure <u>W</u> indow	Help								
1			*	Select <u>T</u> ool Clear <u>M</u> emory				0	⊳ ∥∥ Þ	₽ ₩ ₽					
				Run Animate Halt Step Into Step Out Reset	F9 F5 F7 F8				us - [Untitle egister Action Pin / SFR RD2		Width	er Cloc Units Cyc	ck Stimulus Register Injection	Register Trace	Asynch
			<	Breakpoints StopWatch Complex Breakpoints Stimulus Brofile Clear Code Coverage Refresh PM Settings	F2	<u>New Workbook</u> Open Workbook Save Workbook As Glose Workbook									
								Advanc	ed	Apply F	lemove	Dele	te Row Save	Exit	Help

Define Asynchronous Button

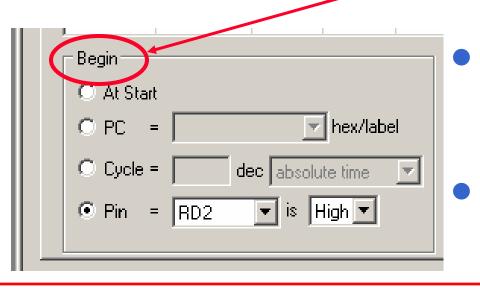
• Select Pin

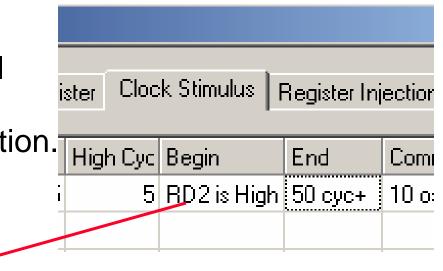

- Rx?
- TxCLK
- Select Action
 - Pulse
 - High
 - Low
 - Toggle
- Select Width
 - Dec value
- Units

Cyc, ns
 us, ms
 sec

Stimulus	- [Untitle	ed]						
Pin / Regis	ster Action	s Advance	d Pin / Regis	ter Cloc	k Stimulus	Register Injection	on Register Trace	Async
Fire P	in / SFF		Width	Units	Comments	/ Message		
	D2	Pulse High		0 ryc				
								_
Advanced.		Apply	Remove	Dele	te Row	Save	Exit	Help

Synchronous Clock

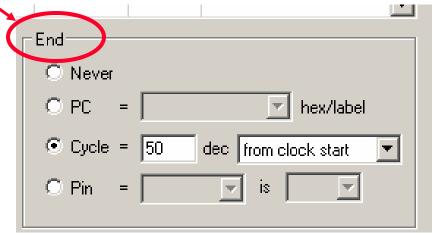



- Each row provides a separate clock
- Optional label
- Select pin to inject the clock into
- Initial start state
- Low time
- High time
- Optional comments

Synchronous Clock

- Begin column edit area determines when the clock will start
- "At Start" starts at initial execution. This is the default
- "PC" starts at PC value or a specific label

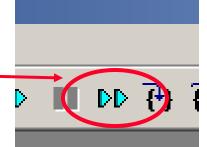
"Cycle" starts at an absolute cycle count from initial program execution. Or starts a relative cycle count after the last clock


"Pin" starts when the selected pin changes to the selected state. RD2 :- Port D bit 2

Synchronous Clock

:	ister Clock Stimulus Register Injection								
1									
	High Cy		Begin	End	Comi				
i	ļ	5	RD2 is High	50 cyc+	10 o:				

- End column edit area determines when the clock will stop
- "Never" the clock will never stop. This is the default.
- "PC" stops at the PC value or a specific label
- "Cycle" stops at an absolute cycle count from initial program execution. Or stops a relative cycle count after the start
- "Pin" stops when the selected pin changes to the selected state



© 2007 Microchip Technology Incorporated. All Rights Reserved.

Testing...

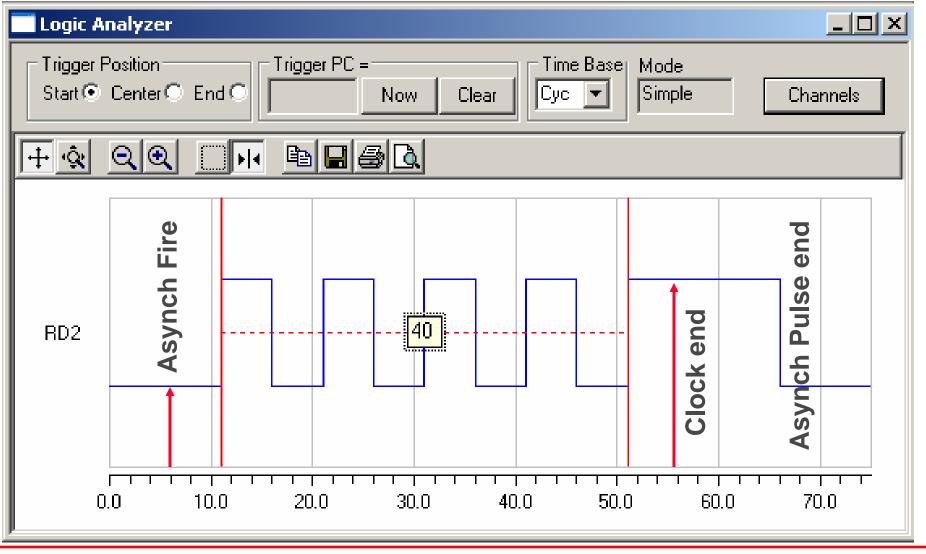
- Do you need code? Sometimes.
 - For animation create simple .asm file
 - First line nop, Second line goto 0
 - Third line end directive
- Use Quick Build (<u>Project>Quickbuild</u>)
- Ensure trace enabled
- Run in animation
- Fire the button

 Halt animation and view the logic analyzer. Select RD2

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Let's do it

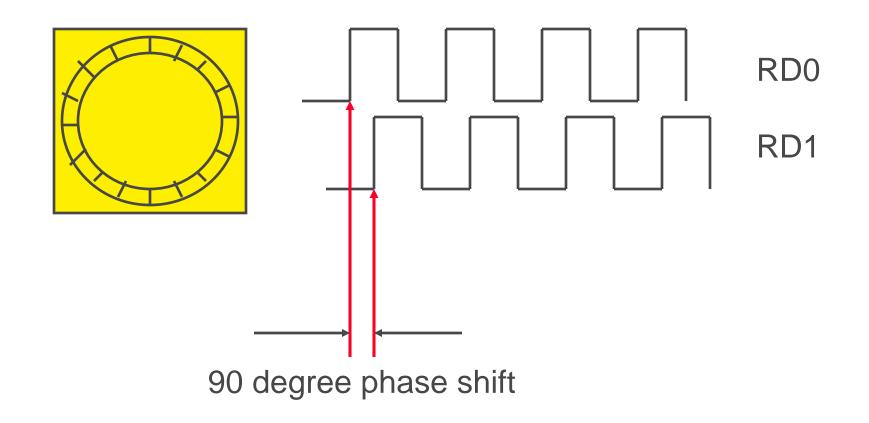
Open Stimulus (Asynch tab)


– Define a high asynch pulse on RD2

Select Clock tab

- Define clock burst
- Apply (click button)
- Test it

Results



© 2007 Microchip Technology Incorporated. All Rights Reserved.

• Two pulse trains

First pulse train

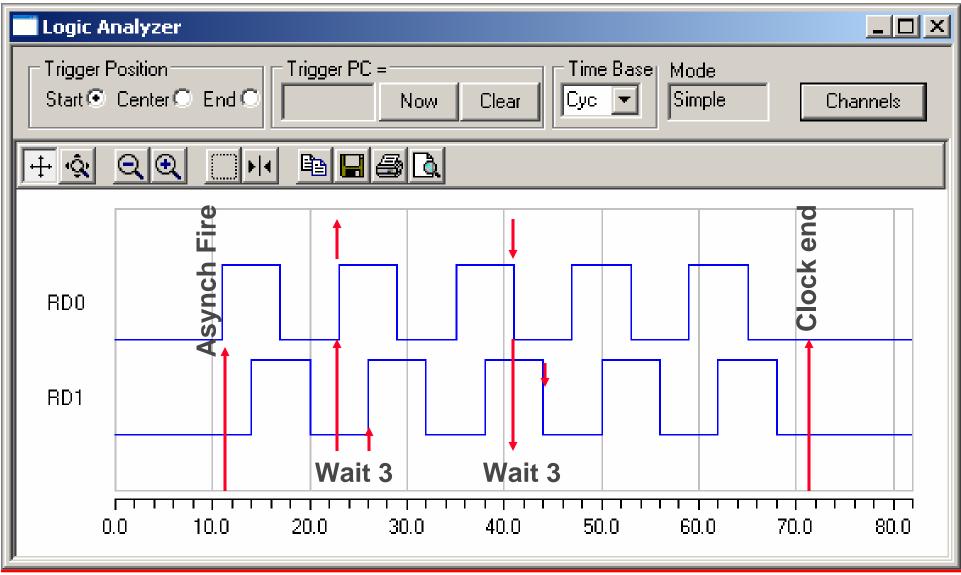
- Identical method to key bounce
- Use "Clock" stimulus (init high 6L 6H)
- Trigger on pin state
- Run for predetermined time

Second pulse train

- Use "Advanced Pin / Register" tab
- Generate a pulse train based on the first pulse train, using conditional statements

Stimulus - [Untitled	I]				
Pin / Register Actions	Advanced Pin / Register	Clock Stimulus	Register Injection	Register Trace	Asynch

Condition		(hen Chi	anged		Wait	Comments	▲
COND1	Pin	RDO)-)	1	3 сус		
CONDS	Pin	RDU	=	Ū	3 сус		
COND4	SFR	ALRM	=	00			
COND5	Bit	AD1C	=	0			



Advanced Pin/Register

Stimulus	- [Untitled	I]								
Pin / Regis	ster Actions	Adva	nced Pin	/ Register	Clock SI	Stimulus Register Injection Register Trace Asynch				
_ Define	Triggers —									
Enable	Condition	Туре	Re-A	rm Delay	RD1	Click here to Add Signals				
	COND1	Cont		0 сус	1					
/	COND3	Cont		0 сус	0)				
	COND1	Cont		5 ms	0)				
	COND3	1x			1					
Pefine	Conditions-									
Conditio	n Whe	en Chan	ged	Wai	it	Comments 🗾				
COND1	Pin f	RDO =	- 1	3	сус					
COND3	Pin f	RDO =	0	3	сус					
COND4	SFR /	LRM =	00							
COND5	Bit /	\D1C =	0							
	Awa									
Advanced	Advanced Apply Remove Delete Row Save Exit Help									

Results

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Let's do it

Open Stimulus (Asynch tab)

Define a set high asynch event on RD0

Select Clock tab

 Define clock burst with 12 cycle period on RD0

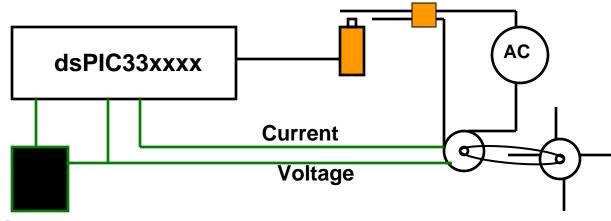
Select Advanced Pin/Register tab

Define 2nd clock on RD1 based on first

ApplyTest it

Circuit Breaker Project with Zero Crossing and Multiple A/D Inputs

Zero Crossing Applications

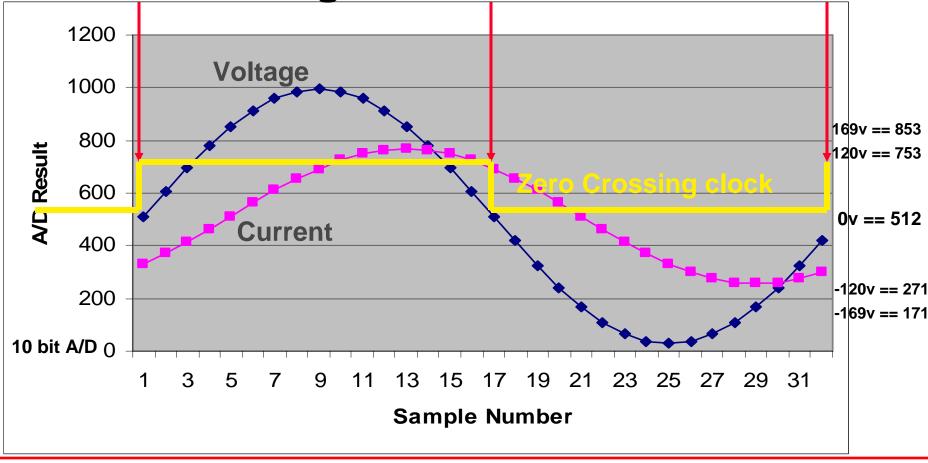

Used in

- AC Power Metering
- Circuit Breaker (Lab 3)
- UPS Systems
- AC Motors
- Appliance Speed Control Applications
- Used to synchronize A/D conversions and calculations with current line cycle
 - Line frequency, phase and A/D timing derived from Zero Crossing

Circuit Breaker Project

- What are we trying to do? What is the end goal?
- Verify the code works and the Breaker trips

Zero Crossing circuit


- What do we need to verify the code
 - Firmware complete (Lab project code is done for you)
 - Input:- Simulated A/D values for voltage and current
 - Input:- Simulated zero crossing clock
 - Output:- Ability to monitor trip output for the circuit breaker
 - Output:- Ability to monitor or extract data to compare results

Stimulus Inputs

Two waveforms Voltage & Current

Zero Crossing

Circuit Breaker Stimulus Requirements Lab 3

- A/D voltage and current values: Register Stimulus one file two data columns inject into AD1BUF0
 - Scaled A/D inputs :- Excel spread sheet
- Zero Crossing 60Hz line frequency clock :- Clock Stimulus inject into IC1
- **Solenoid Trip output**:- Watch window LATD/PORTD [Bit 1]
- Verification:
 - Method A
 - Trace intermediate Power values
 - Verify in Excel spread sheet VoltageCurrent.xls
 - Method B
 - Monitor power readings with DMCI
 - Adjust power level to test breaker with DMCI

General A/D File Data

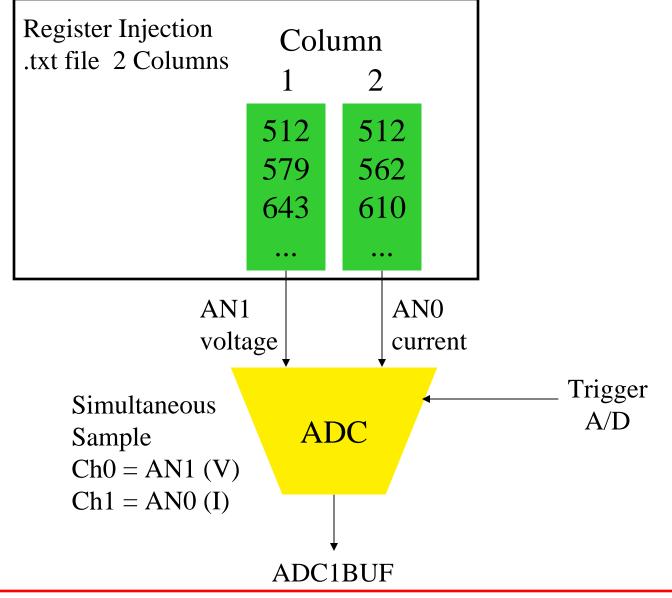
- A/D reads a new value into the result buffer from the file whenever it is requested to perform a conversion
- The format of rows and columns is irrelevant. White space is used as delimiters for each value.
- For 8-bit PIC[®] microcontrollers this is one value each time
- For 16-bit PIC microcontrollers there can be simultaneous samples. In this case the number of samples is the number of values read

A/D Data:- EXCEL Spreadsheet

 Create 2 columns of data, charting results

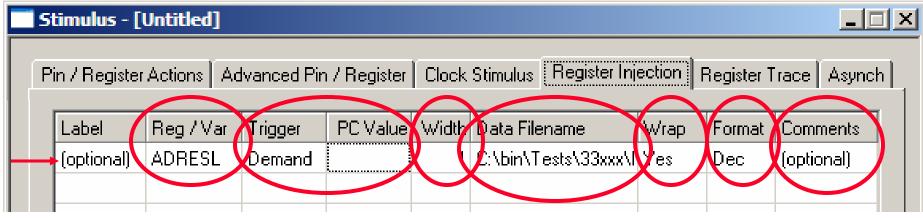
Copy the 2 columns of data and paste into data file xxx.txt

	G8											
2 0												
2 0	A	В	С	D	E	F	G	Н	<u> </u>	J	K	L
	Samples P		32		Offset		512					
	lumber AD		10		Voltage Scale		2.011326					
		ase Degrees	30		Current Scale		18.10193					
	line RMS \		120		Load Current F	Ratio	0.083333					
7 L	ine RMS (Current	10		Real Power		1038					
		Line Voltage	180									
	/lax RMS I	Line Current	20									
10												
		<u>A/D Voltage</u>			<u>Line Voltage</u>							
12	0	512	640	0	0.0	7.07	900					
13	1	579	681	11323	33.1	9.32	800		-	N		
14	2	643	715	26593	64.9	11.22	700		and a second			
15	3	702	742	43700	94.3	12.68						
16	4	753	759	59527	120.0	13.66	😐 600	-				<u>></u>
17	5	796	767	72420	141.1	14.11	600 500 Kes rit	4				<u> </u>
18	6	827	766	80010	156.8	14.02	e			· · · · · · · · · · · · · · · · · · ·		
19	7	847	754	81070	166.4	13.39	0 400				k	
20	8	853	734	75702	169.7	12.25	A 300				X	<u> </u>
21	9	847	704	64320	166.4	10.63	200					and the second sec
22	10	827	668	49140	156.8	8.61					***	**
23	11	796	625	32092	141.1	6.25	100					
24 25	12 13	753 702	578 529	15906	120.0	3.66 0.92	l 0	+				
25 26	13	643	529 479	3230 -4323	94.3 64.9	-1.85		1 3	5791	11 13 15 17 1	9 21 23 25	i 27 29 31
26 27	14	579	479	-4323 -5494	33.1	-1.05						21 20 01
27	15	512	384	-0494	0.0	-4.55				Sample Num	nber	
20	10	445	343	-	-33.1	-7.07						
30	17	381	309	26593	-64.9	-11.22						
31	10	322	282	43700	-94.3	-12.68						
32	20	271	265	59527	-120.0	-13.66						
33	20	228	257	72420	-141.1	-14.11						
34	22	197	258	80010	-156.8	-14.02						
35	23	177	270	81070	-166.4	-13.39						
36	24	171	290	75702	-169.7	-12.25						
37	25	177	320	64320	-166.4	-10.63						
38	26	197	356	49140	-156.8	-8.61						
39	27	228	399	32092	-141.1	-6.25						
40	28	271	446	15906	-120.0	-3.66						
41	29	322	495	3230	-94.3	-0.92						
42	30	381	545	-4323	-64.9	1.85						
43	31	445	594	-5494	-33.1	4.55						


A/D Data File

- White space delimited values
- One line per set of A/D results
- N channels of A/D sampling equates to N columns of data

🛃 TextPad - [Do 🖺 File Edit Se	earch View Tools Macros Configure W
<u> </u>	
11 .	
Document1 *	512 512611 412707 316795 228873 150936 87984 391013 101023 11013 10984 39936 87873 150795 228707 316611 412512 512412 611316 707228 795150 87387 93639 98410 10131 102310 10131 102310 10131 102310 10131 102310 10131 102310 10131 102310 101339 98487 936150 873228 795316 707412 611



A/D Value Injection

Register Injection

- Each row provides a separate Register Injection
- Register or Variable to inject the data into
- Trigger type Demand (when read) or PC= 'Label'
- Data width
- File name of data
- Wrap around to start (continues until stopped by user)
- Format

Zero Crossing Clock

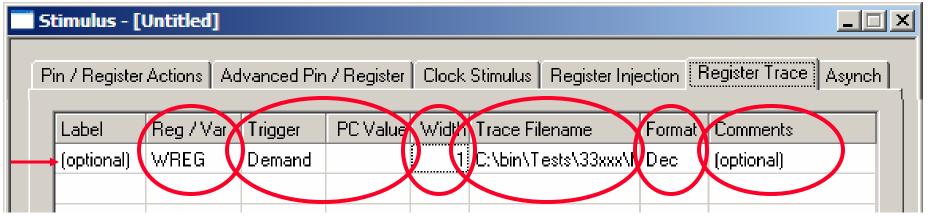
 S	timulus - (Un	titled]							
F	'in / Register Ac	tions	Advance	d Pin / Register	Clock Stimu	lus Regi	ster Injecti	on Register Trace /	Asynch
	Label	Pin	Initial	Low Cycles	High Cycles	Begin	End	Comments	
	ZeroCrossing	IC1	Low	333333	333333	Ø.t Start	Never	60 Hz with 40 MIPs	
									_
									- -
	Begin				End-	1			
	At Start				• • •	lever			
	O PC =			hex/labe	I 0 F	PC = [hex/label	

- Create a clock to simulate the zero crossing detection
- Use clock stimulus start always end never

Let's do it Lab 3a

- Create A/D data file using:- VoltageCurrent.xls
- Use Workspace CircuitBreaker.mcw
- Create 60hz stimulus ZC clock, attach A/D data file within Stimulus dialog
- Apply stimulus
- Build, execute code
- View watch window, shows "Power" Should be equal to real power in spread sheet
- Optionally view file registers, which shows data results in DMA ram

© 2007 Microchip Technology Incorporated. All Rights Reserved.


Verification Method A Register Trace

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11015 MS2

Verification Method A Register Trace

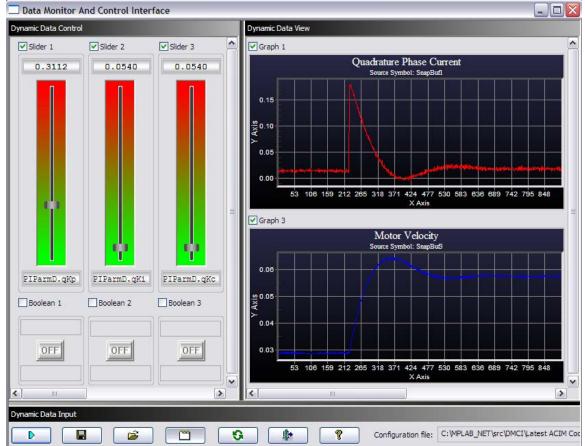
- Each row provides a separate Register trace
- Optional Label

© 2007 Microchin Technology Incorporated. All Rights Reserved.

- Register or Variable to trace data from
- Trigger type Demand (when written) or PC= 'Label'
- Data width

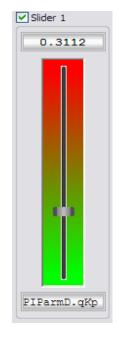
Verification Method A using EXCEL

- Open Excel VoltageCurrent.xls
- Cut and Paste the traced data from file created during execution
- Compare with the computed Power values within the spread sheet


Verification Method B Data Monitor and Control Interface (DMCI)

© 2007 Microchip Technology Incorporated. All Rights Reserved.

DMCI


- Plug-in tool shipped with MPLAB[®] IDE
- Tightly integrated into the IDE
- Use to control application parameters and/or monitor data (graphically)
- Debug tool independent

DMCI Three types of control

- Sliders (9) provide variable control between min/max limits
- Built-in fractional conversion for easy PID control

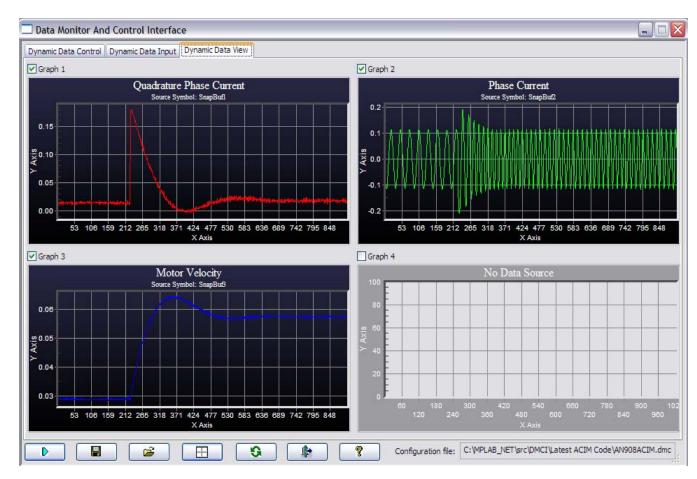
- Booleans (9) provide on/off state control
- Built-in support for bit fields

DMCI Three types of control (continued)

- User defined groups (6) have 5 direct edit entry controls
- Can specify inc/dec steps using spin button
- Can define 'C' Enum style step entries using spin button
- Float input mode (built-in fractional conversion)

Voltage Limit ✓ nVoltage Limit 50 ✓ ✓ nVoltage Limit 50 ✓ Solt Steps 55 ✓ Solt Steps 55 ✓ Speed Lim Motor Speed Motor Speed ✓ ✓ NSpeedLim Motor Speed ✓ NSpeed 2 ✓ ✓ PIPamD.qKp (PID) Current Proportional 0.3112 ✓ PIPamD.qKp User Description 5	▼ nVoltageLim	User Defined Group 1-
✓ nVoltageLimit ✓ nVoltageLimit ✓ nVoltageLimit 5 Volt Steps 55 ✓ nSpeedLim Motor Speed ✓ nSpeedLim Motor Speed Speed 2 ✓ PIPamD.qKp (PID) Current Proportional 0.3112		✓ nVoltageLim
50 50 50 ▼ ✓ nVoltage Limit 50 ✓ NVoltage Limit Voltage Limit 5 Volt Steps 55 ✓ S5 ✓ Increment/Decrement Value = 5 ✓ ✓ nSpeedLim Motor Speed Motor Speed Speed 2 ✓ PIPamD.qKp (PID) Current Proportional 0.3112 ✓ Input 5 Input 5	Voltage Linit	Voltage Limit
✓ nVoltageLim Voltage Limit 5 Volt Steps 55 Increment/Decrement Value = 5 ✓ nSpeedLim Motor Speed 500 W nSpeedLim Motor Speed 500 Fill Motor Speed Speed 2 ✓ PIPamD.qKp (PID) Current Proportional 0.3112	50	
✓ nVoltageLimit 5 Volt Steps 55 55 55 ✓ Increment/Decrement Value = 5 ✓ ✓ nSpeedLim Motor Speed Motor Speed 500 RPM Steps Speed 2 ✓ Current Enum List Value = 0x03E8 0.3112		50
✓ nVoltage Limit 5 Volt Steps 55 55 55 ✓ Increment/Decrement Value = 5 ✓ ✓ nSpeedLim Motor Speed Motor Speed 500 RPM Steps Speed 2 ✓ Current Enum List Value = 0x03E8 0.3112		
Voltage Limit 5 Volt Steps 55 55 V n SpeedLim Motor Speed 500 RPM Steps Speed 2 Current Enum List Value = 0x03E8 Voltage Limit 5 Volt Steps 55 V n SpeedLim Motor Speed 500 RPM Steps Speed 2 V PIPamD.qKp (PID) Current Proportional 0.3112 Increment 5		✓ nVoltageLim
5 Volt Steps 55 55 55 Increment/Decrement Value = 5 ✓ nSpeedLim Motor Speed Motor Speed 500 RPM Steps Speed 2 Current Enum List Value = 0x03E8		
55 ▼ Increment/Decrement Value = 5 ✓ Increment/Decrement Value = 5 ✓ ✓ nSpeedLim Motor Speed 500 RPM Steps Speed 2 ✓ Current Enum List Value = 0x03E8 0.3112		
Increment/Decrement Value = 5 Increment/Decrement Value = 5 Increment Value = 0x03E8 Increment Part Increment Value = 5 Increment Part Increm		
Increment/Decrement Value = 5 Motor Speed Speed 2 Current Enum List Value = 0x03E8 Motor Speed Speed 2 Unit Speed 2 Decrement Value = 0x03E8	<u> </u>	
Increment value = 3 Image: Speed 2 Speed 2 Current Enum List Value = 0x03E8		
✓ nSpeedLim Motor Speed 500 RPM Steps Speed 2 Current Enum List Value = 0x03E8	Increment/Decrement Value = 5	
✓ nSpeedLim Motor Speed 500 RPM Steps Speed 2 Current Enum List Value = 0x03E8		Speed 2
500 RPM Steps (PID) Current Speed 2 (PID) Current Current Enum List Value = 0x03E8 0.3112 Input 5 (Input 5)	✓ n SpeedLim	
Speed 2 Image: Current Enum List Value = 0x03E8 0.3112 Image: Current Enum List Value = 0x03E8 Image: Current Enum List Value = 0x03E8		PIPamD.qKp
Current Enum List Value = 0x03E8		
Current Enum List Value = 0x03E8	Speed 2	Proportional
Lass Description F	Current Enum List Value = 0x03E8	3112
PIPamD.qKp		Input 5
C in anno dia	PIPamD aKo	User Description 5
(PID) Current		
Proportional 0		
	0.3112	
0 2110	0.3112	

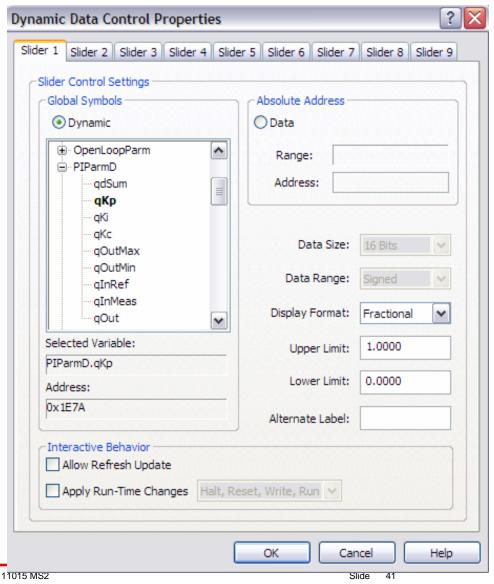
Increment/Decrement Factor = 0.0100, Target Value = 0x27D5



View vector based performance history

 MPLAB[®] SIM Real-Time updates

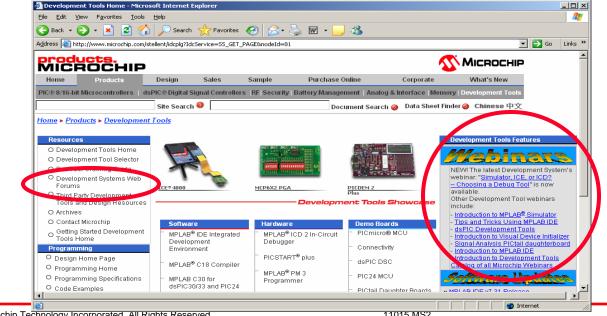
MPLAB REAL ICE™ In-Circuit Emulator


DMCI Four Graphs

DMCI Control configuration

- Context based property dialogs to hook a control to a software variable or memory address
- Global symbols identified as you add them and recompile
- Dynamic selection provides address, data size, and data range automatically
- Data Absolute allows manual entry of Address, data size and range

Let's do it Lab 3b


- Open DMCI from tools menu (*Tools>Data Monitor and Control Interface*)
- Enable 1 slider and 4 graphs
- Right click on slider
- Select parameter to control
 - Load
- Right click on each graph
- Select parameters to monitor
 - Current
 - Voltage
 - Solenoid
 - Power

Run the application and adjust Load using slider

Where to find out more

- MPLAB[®] IDE Help
- Appendix Useful links & Lab Handouts
- Forums / Webinars
 - http://forum.microchip.com
 - http://techtrain.microchip.com/webseminars

Summary

Complex signals

- Key bounce
- Encoder

A/D stimulus on multiple channels

- Verification using DMCI or Log data
- More...

THANK YOU!

Appendix

Useful Links

- Lab 1
 - Key bounce
- Lab 2
 - Encoder
- Lab 3

CircuitBreaker with Zero Crossing

Where to find out more

• Other useful Links:

- Microchip Change Notification (good way to keep up to date on latest MPLAB[®] IDE and C18/C30 releases, as well as important Dev Tool notifications):
- http://cn.microchip.com/sales/product_change.nsf
- Microchip Dev Tools Getting Started (series of many tutorials and overviews):
- http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=2122
- Microchip archives:
- http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1406&dDo cName=en023073
- Development Tool Selector (to find out tool support, accessories, adapteres, etc.):
- http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1496
- Third Party Development Tools:
- http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1926&typ e=-1&label=A
- MPLAB IDE download page:
- http://www.microchip.com/mplab

11015_MS2 MPLAB® Simulators Advanced Stimulus Lab 1

• Objective: Create pulse train triggered by Asynch stimulus

🗾 Logic A	Analyzer
	Position Trigger PC = Time Base Mode Center O End O Now Clear Cyc Simple Channels
<u></u>	
RD2	

• Open MPLAB[®] IDE

- Select menu item "<u>Configure>Select Device</u>"
- Select a "pic18C442" device "OK"
- Select menu item "<u>Debugger>Select Tool>MPLAB SIM</u>"

• Open Stimulus window. ASYNCH event

- Select "<u>Debugger>Stimulus>New Workbook</u>"
- Select "Asynch" tab
- Select pin with drop down list "RD2" (Port D bit 2)
- Select action "Pulse High"
- Enter pulse width "60" cycles

• Stimulus. SYNCH event

- Select the "Clock Stimulus" tab at the top
- Enter an optional label if desired
- Select the "RD2" pin from drop down under "Pin" column
- Select "Low" from drop down under "Initial" state column
- Set "Low Cycles" to "5". Set "High Cycles" to "5"
- Select the "Begin" box on the stimulus row. By default this will be set to "At Start"
- Move down to the "Begin" dialog edit area (lower left)
- Change from the "At Start" to the "Pin" option (radio button)
- Select "RD2" in drop down list for the "Pin" to use

• Stimulus. SYNCH event cont...

- Select "High" in the adjacent drop down box
- The clock will begin when RD2 goes to a high state and the selections in the Begin area will be reflected within the "Begin" column above
- Select the "End" box on the stimulus row. By default this will be set to "Never"
- Move to the "End" dialog edit area (lower right)
- Select the option to end on "Cycle" (radio button)
- Set cycles to "50"
- Select "from clock start" in the adjacent drop down box
- The clock will end 50 cycles after the starting trigger and the selections in the End area will be reflected within the "End" column above
- Optionally enter a comment within the stimulus row

• Apply Synchronous Stimulus

- Select the "Apply" button at the bottom of the stimulus window
- Select the "Asynch" tab in preparation to fire the asynchronous stimulus.
- You are now ready to test

- Testing. Write code for animation (simple loop)
 - Open a new file, "<u>File>New</u>". No real code needed for testing
 - Enter a tab then a "nop" on the first line
 - Enter a tab then a "goto 0" on the second line
 - Enter a tab then "end" directive on the third line
 - Select "Save", give the file a name with an 'asm' extension
 - Select the menu "<u>Project>Quickbuild</u>" (file must be in focus)

• Testing. Enable trace

- Select "<u>Debugger>Settings</u>" and check the box "Trace All"
- Select the "Animation / Realtime Updates" tab. Set "animate step time" to 100 ms
- Select OK at the bottom to close the settings dialog
- This allows tracing of IO pin data so we can view it in the logic analyzer

• Testing. Execution

- Select reset and then animate (double arrow icon in toolbar)
- Fire the Asynch stimulus "RD2 pulse high 60 cycles" from the Asynch tab in the Stimulus window
- Due to the animate speed being 0.1 seconds per step halt after about 6 seconds to allow the synch clock to complete

• Testing. Verify input pulses

- Open the Logic Display "<u>View>Simulator Logic Analyzer</u>"
- Select the "Channels" button and select the "RD2" signal
- Press the "Add" button to add it to selected signals
- Click OK

Testing. Verify input pulses

- View the output of the RD2 wave form
- If the Logic Analyzer is already open, you will see it update on each step during animation

Extra Objective

- Turn the cursors on within the Logic Analyzer and measure between the first and last rising edges
- Is it what you expect?

Cogic Analyzer	
Trigger Position Trigger PC =	Cursors

11015_MS2 MPLAB® Simulators Advanced Stimulus Lab 2

• Objective: Create 2 pulse trains RD1 based on RD0

Logic Analyzer
Trigger Position Trigger PC = Time Base Mode Start Image: Conter Image: Co
RD1
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

• Open MPLAB[®] IDE

- Select "<u>Configure>Select Device</u>" menu item
- Select a "pic18C442" device
- Select "<u>Debugger>Select Tool>MPLAB SIM</u>"

• Open Stimulus window. ASYNCH event

- Select "<u>Debugger>Stimulus>New Workbook</u>"
- Select pin with drop down list "RD0" (Port D bit 0)
- Select action "Set High" (The Synch clock will drive this low on completion of clock)

• Stimulus. SYNCH clock 1

- Select the "Clock Stimulus" tab at the top
- Enter an optional label if desired
- Select the "RD0" pin from drop down under "Pin" column
- Select "High" from drop down under "Initial" state column
- Set "Low Cycles" to "6". Set "High Cycles" to "6"
- Select the "Begin" box on the stimulus row. By default this will be set to "At Start"
- Move down to the "Begin" dialog edit area (lower left)
- Change from the "At Start" to the "Pin" option (radio button)
- Select "RD0" in drop down list for the "Pin" to use

 $\textcircled{\sc c}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

• Stimulus. SYNCH clock 1

- Select "High" in the adjacent drop down box
- The clock will begin when RD0 goes to a high state and the selections in the Begin area will be reflected within the "Begin" column above
- Select the "End" box on the stimulus row. By default this will be set to "Never"
- Move to the "End" dialog edit area (lower right)
- Select the option to end on "Cycle" (radio button)
- Set cycles to "60"
- Select "from clock start" in the adjacent drop down box
- The clock will end 60 cycles after the starting trigger and the selections in the End area will be reflected within the "End" column above
- Optionally enter a comment within the stimulus row

• Stimulus. SYNCH clock 2

- Select the "Advanced Pin / Register" tab
- Under "Define Conditions"
- Select the first box marked "Any" on COND1. From the drop down list select "Pin"
- Under the next column select "RD0" (The "Pin" the Condition will be based on)
- Leave the "=" comparison, Set the next box value to "1"
- Select the "Wait" column and enter "3"
- Select units to be "cycles"
- Create a "COND2" the same way by doing the following
- Select "Pin", select "RD0" again on the next row
- Leave the "=" comparison, Set the next box value to "0"
- Select the "Wait" column and enter "3"
- Select units to be "cycles"

• Stimulus. SYNCH clock 2

- Under the "Define Triggers", the first row is enabled
- Select the "Condition" column and select COND1
- Select "Type" to be "Continuous"
- Enter "0" in the "Re-Arm Delay"
- Click on the column header "Click here to Add Signals"
- Select "RD1" and click "Add" then "OK". This adds the RD1 signal to allow it to be changed on a condition
- Select the column "RD1" and enter "1"
- Select the "Condition" column on the next row and select COND2
- Select "Type" to be "Continuous"
- Enter "0" in the "Re-Arm Delay"
- Select the column "RD1" and enter "0"
- The enable check will come on as you enter data

• Apply Synchronous Stimulus

- Select the "Apply" button at the bottom of the stimulus window
- Select the "Asynch" tab in preparation to fire the asynchronous stimulus.
- You are now ready to test

- Testing. Write code for animation (simple loop)
 - Open a new file, "<u>File>New</u>". No real code needed for testing
 - Enter a tab then a "nop" on the first line
 - Enter a tab then a "goto 0" on the second line
 - Enter a tab then "end" directive on the third line
 - Select "Save", give the file a name with an 'asm' extension
 - Select the menu "<u>Project>Quickbuild</u>" (file must be in focus)

• Testing. Enable trace

- Select "*Debugger>Settings*" and check the box "Trace All"
- Select the "Animation / Realtime Updates" tab. Set "animate step time" to 100 ms
- Select OK at the bottom to close the settings dialog
- This allows tracing of IO pin data so we can view it in the logic analyzer

• Testing. Execution

- Select "reset" and then "animate" (double arrow icon in toolbar)
- Fire the Asynch stimulus "RD0 Set High" from the Asynch tab in the Stimulus window
- Due to the animate speed being 0.1 seconds per step halt after about 6 seconds to allow the synch clock to complete

• Testing. Verify input pulses

- Open the Logic Display "<u>View>Simulator Logic Analyzer</u>"
- Select the "Channels" button and select the RD0 & RD1 signals
- Press the "Add" button to add it to selected signals

• Testing. Verify input pulses

- View the output of the RD0 and RD1 wave forms
- If the Logic Analyzer is already open, you will see it update on each step during animation

Extra Objective

- Define 2 more Triggers using the existing conditions and make RD1 lead RD0 by 90 deg (switch the pulse train around)
- Use the enable check boxes to turn one set off and the other on

Extra Objective Result

🗾 Logic Ar	nalyzer 📃 🗌 🗙
Trigger P Start 💿	Position Trigger PC = Time Base Mode Center O End O Now Clear Cyc Simple Channels
<u>+ \$</u>	
RD0 RD1	
Г О.	ogy Incorporated. All Rights Reserved. 11015 MSZ Slide 68

11015_MS2 MPLAB® Simulators Advanced Stimulus Lab 3

Circuit Breaker Stimulus Requirements Lab 3

- A/D voltage and current values:- Register Stimulus one file two data columns inject into AD1BUF0
 - AC voltage scaled A/D input:- Excel spread sheet
 - AC current scaled A/D input:- Excel spread sheet
- Zero Crossing 60Hz line frequency clock: Clock Stimulus inject into IC1
- Asynch Test button: Stimulus Controller pulse high RD3
- Asynch Reset button: Stimulus Controller pulse high RD2
- Solenoid Trip output: Watch window LATD [Bit 1]

Circuit Breaker Zero Crossing Lab 3a

• Open MPLAB[®] IDE

- Select menu "*File>Open Workspace…*"
- Select the "11015 MS2 / Lab3 / CircuitBreaker.mcw"
- OR Select menu "*File>Recent Workspaces>CircuitBreaker*"
- Build the project

Preparing stimulus

- Open the Excel spread sheet "VoltageCurrent.xls"
- View the data and graph representations
- Copy the 2 columns of data to be used as A/D readings
- Within the MPLAB[®] IDE, open "*File>New*" and paste them into a new file
- Save and name the file "xxxxxxx.txt"

Circuit Breaker Zero Crossing Lab 3a

• Open Stimulus and attach A/D file

- Select "<u>Debugger>Stimulus>New Workbook</u>"
- Select the "Register Injection" tab at the top
- Enter an optional label if desired
- Select Register "AD1BUF0" to inject data
- Select Trigger type "Demand"
- Width will be "2" bytes
- Add the data file name as specified in the first step
- Select "Yes" for wrap
- Select "Dec" for decimal data type
- Add optional comment

• Stimulus define ZC clock

- Select the "Clock Stimulus" tab at the top
- Enter an optional label if desired
- Select "IC1" from drop down under "Pin" Column for InputCapture 1
- Select "Low" as "Initial" state from drop down
- Set "Low Cycles" to "333333". Set "High Cycles" to "333333" 60hz clock at 40 MIPS (six 3's in each)
- Select the "Begin" box. Leave at default "At Start"
- Select the "End" box. Leave at default "Never"
- Add optional comment

Apply Synchronous Stimulus

- Select the "Apply" button at the bottom of the stimulus window
- You are now ready to test

• Testing. Execution

- Select "Reset" and then "Run"
- Watch the variables in the watch window. Once the "Power" value has changed, stop the program

• Testing. Verify Power

- Verify the Power value is equal to the Power value in the Excel spread sheet for the injected data. (One tab in the spread sheet for different test data)
- View the File Register window at address 0x4780. Note the A/D data is placed here using the DMA and peripheral indirect address mode. (Handled totally by hardware within the silicon)

• Verification using DMCI. Slider setup

- Select "Tools>Data Monitor and Control Interface"
- Click "Tiled window view" button (bottom 4th button)
- Adjust the tiles so you have 4 graphs and 1slider visible
- Enable the slider by setting the check box in upper left
- Right click in colored area of slider to bring up the configuration
- Set the configuration up as displayed on next page

? × Dynamic Data Control Properties Slider configuration Slider 1 Dynamic selection Slider Control Settings Global Symbols Absolute Address C Data Dvnamic "Load" variable + ADCReadings Range: CurrentCapture Display format Decimal Address: DMASampleNumber Load EoadArray Upper limit 150 NewSamplePeriod Data Size: 16 Bits -Power + PowerArray Lower limit 100 Data Range: Ŧ Unsigned PowerTraceValue PreviousCapture Display Format: Decimal Ŧ Allow refresh Solenoid Selected Variable 150 Upper Limit: Load Apply Run-Time Lower Limit: 100 Address: changes as 0x894 Alternate Label: "Halt, Write, Run" Interactive Behavior Allow Refresh Update -Apply Run-Time Changes Halt, Write, Run OK Cancel Help

• Verification using DMCI. Graph Setup

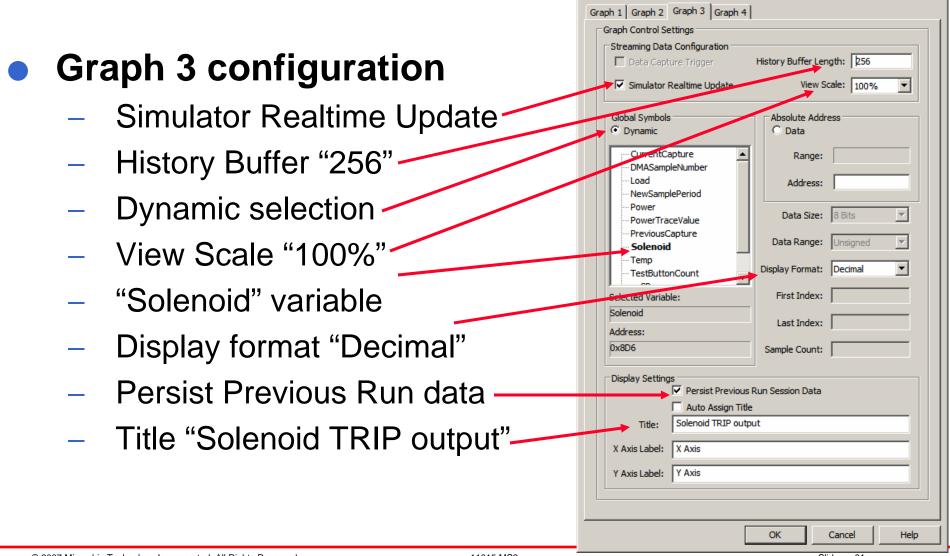
- Enable the 4 graphs by setting the check box in upper left of each.
- Right click in the center of the first graph
- Select the top item "Configure Data Source"
- Go through each tab, one for each graph and set them up as shown on the next 4 pages

• Graph 1 configuration

- Dynamic selection
- "ADCReadings.AN0" variable
- Display format "Decimal"
- Sample count "32"
- Persist Previous Run data
- Title "Voltage"

Graph 1 Graph 2 Graph 3 Graph	4
Graph Control Settings	
Streaming Data Configuration	
Data Capture Irigger	History Buffer Length: 256
Simulator Realtime Update	View Scale; 100% 💌
Global Symbols	Absolute Address
Oynamic	C Data
- ADCReadings	Range:
.	
	Address:
DMASampleNumber	
Load	Data Size: 16 Bits 💌
LoadArray	Data Range: Unsigned 🔻
NewSamplePeriod	
	Display Format: Decimal 🔄
Selected Variable:	First Index: 0
ADCReadings AN0	
	Last Index: 32
Address: 0x4780	
0X4700	Sample Count: 32
Display Settings	
	us Run Session Data
🗌 Auto Assign T	itle
Title: Voltage	
X Axis Label: X Axis	
Y Axis Label: Y Axis	

Help


• Graph 2 configuration

- Dynamic selection
- "ADCReadings.AN1" variable
- Display format "Decimal"
- Sample count "32"
- Persist Previous Run data
- Title "Current"

h 1 Graph 2 Graph 3 Graph	4		
raph Control Settings			
Streaming Data Configuration —			
🔲 Data Capture Trigger	History Buffer Ler	ngth: 256	
Simulator Realtime Update	View S	icale: 100%	
		,	
Global Symbols	Absolute Addr	ress	
Oynamic	C Data		
	Range:		
• AN1 CurrentCapture	Address:		
Load	Data Size:	16 Bits	T
LoadArray	Data Range:	Unsigned	-
NewSamplePeriod Power			
	Display Format:	Decimal	-
Selected Variable:	First Index:	0	
ADCReadings, AN1	-		
Address:	Last Index:	32	
0x47C0	Sample Count:	22	
	Sample Count.	1.32	
Display Settings			
	us Run Session Data		
Auto Assign Ti	itle		
Title: Current			
X Axis Label: X Axis			
Y Axis Label: Y Axis			

Dynamic Data View Properties

? X

• Graph 4 configuration

- Dynamic selection
- "PowerArray" variable ____
- Display format "Decimal"
- Sample count "32"
- Persist Previous Run data
- Title "Power"

	amic Data View Properties aph 1 Graph 2 Graph 3 Graph 4	1		?
	Graph Control Settings	1		
	Streaming Data Configuration			
	Data Capture Trigger History Buffer Length: 256			
	Simulator Realtime Update	Viev	v Scale: 1009	~ <u>▼</u>
	Global Symbols	Absolute A	ddress	
	Oynamic	C Data		
	NewSamplePeriod	Rang	e:	
	PowerArray	Addres	s:	
	····PreviousCapture ····Solenoid	Data Siz	e: 32 Bits	v
	Temp TestButtonSeunt	Data Rang	e: Signed	7
	SP SP_init	Display Forma	it: Decimal	•
	Selected Variable:	First Inde	x: 0	
	PowerAney Address:	Last Inde	x: 32	
	0x806	Sample Cour	it: 32	
	Display Settings			
	Persist Previous		ta	
	Auto Assign Tit	e		
	Title: Power			
	X Axis Label: X Axis			
	Y Axis Label: Y Axis			
l				
	r			

• Testing using the DMCI

- Reset the application
- Start execution
- Select the slider control button with left mouse button
- Adjust the slider keeping the mouse button down until you have the desired value.
- Release the mouse and the selected value will be applied into the Load variable
- When you raise the value above 116% the trip will occur
- Set an Asynch stimulus to reset the breaker after you lower the Load percentage

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Circuit Breaker Extended reach Lab 3b

• Verify by tracing data

- Focus on Stimulus workbook
- Select the "Register Trace" tab at the top
- Enter an optional label if desired
- Select Register "PowerTraceValue" to monitor
- Trigger type "PC=" will be the default for data variables
- Select the label "TracePower" for the PC value
- Set width to "4" as the variable is a long (4 bytes)
- Provide the file name to log the data into
- Select "Dec" for decimal data type
- Add optional comment

Circuit Breaker <u>Extended reach</u> Lab 3b

Apply updated Stimulus

 Select the "Apply" button at the bottom of the stimulus window

• Testing. Execution

- Clear the "Power" value in the watch window
- Select "Reset" and then "Run"
- Watch the variables in the watch window. Once the "Power" value has changed, stop the program
- Select the "Remove" button at the bottom of the stimulus window to allow the trace file to be closed

 $\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

Circuit Breaker Extended reach Lab 3b

- Open the trace data file. "Select All" data within the file and "Copy"
- Open the Excel spread sheet "VoltageCurrent.xls"
- Highlight an empty cell in a free column next to the highest cell of calculated power values, that you will compare the data to
- "Paste" the data. This will fill the column adjacent to the column you are going to compare the data with
- Verify at each row (one set of A/D data) that the power traced out, matches the spread sheet calculations

Circuit Breaker Extended reach Lab 3b

• Additional Extra Objective

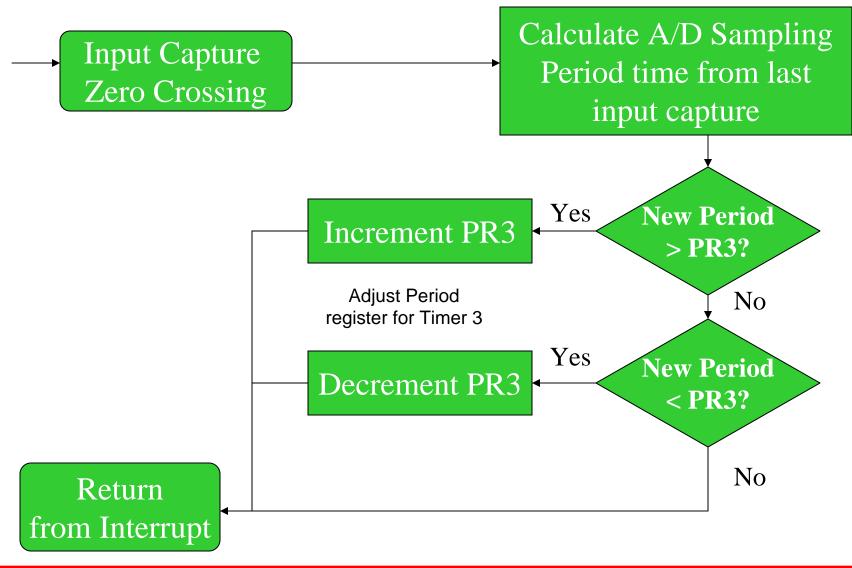
- Create different A/D input files using the different tabs within the EXCEL spread sheet, and test each set of data.
- Use "Over Current" and "Over Voltage" and check if the "Trip" output is triggered.
- The "Trip" pin is RD1, shown as "LATD [Bit 1]" in watch window
- Create asynch button for "Test" (RD3) and test
- Create asynch button for "Reset" (RD2) and test

Circuit Breaker

- Following are block diagrams to explain how the application has been designed and how the peripherals are operating within the application
 - Overall block diagram
 - ZC Input Capture block diagram
 - Timer 3 block diagram
 - ADC block diagram
 - DMAC block diagram

Circuit Breaker Hardware Configuration Lab 3

• Input Capture

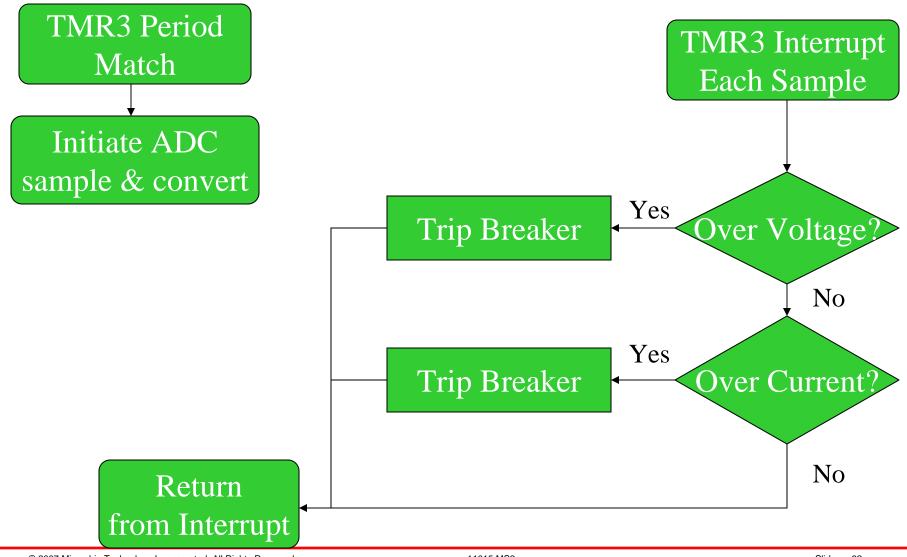

- AC Zero Crossing voltage triggers IC1 on rising edge
- Uses TMR2 as time base, free running 16-bit mode period is 1/16 of TMR3 rate, no interrupts
- IC1 Interrupts firmware to re-calculate A/D sampling period (TMR3 Period value)
- Maintains phase lock with AC line

• Timer 3 configuration

- Period is set to 1/32 of AC line period
- Creates 32 identically spaced samples per line cycle
- Period is adjusted by IC1 to compensate for Phase and line frequency shifts
- Triggers ADC conversions for both voltage and current

© 2007 Microchip Technology Incorporated. All Rights Reserved.

UNIVERSITY OF MICROCHIP **Circuit Breaker Input Capture Interrupt Lab 3**



© 2007 Microchip Technology Incorporated. All Rights Reserved.

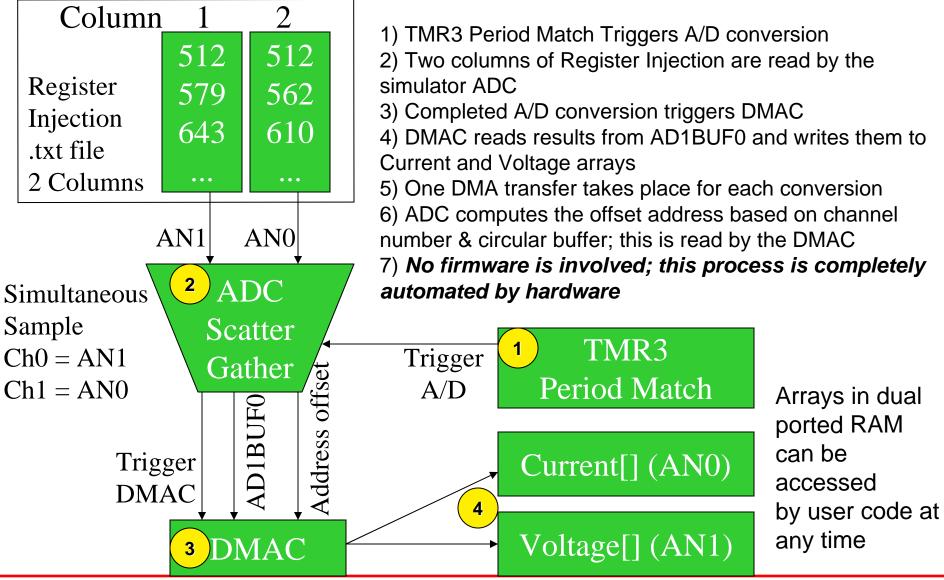
OF MASTERs 2007

Circuit Breaker TMR3 Interrupt Lab 3

Circuit Breaker Hardware Configuration Lab 3

• A/D configuration

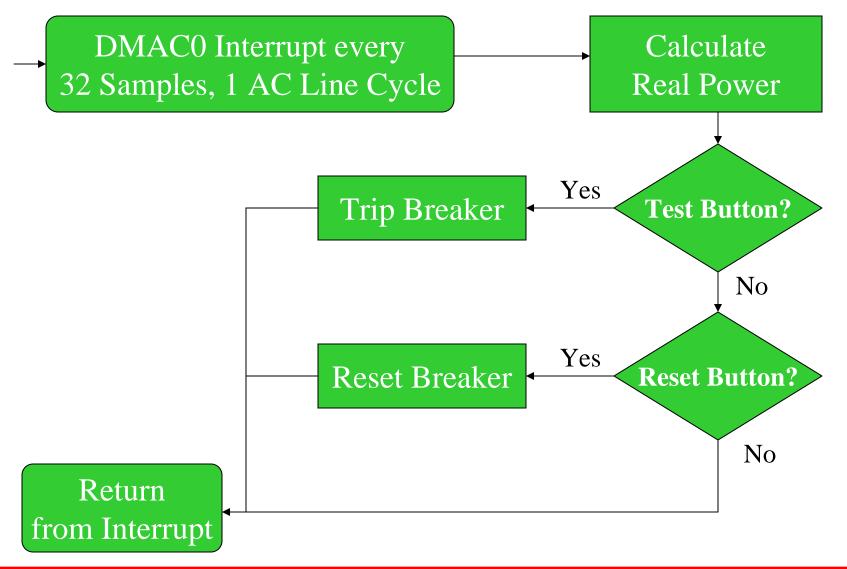
- Simultaneous sampling CH0=AN1 and CH1=AN0
- Conversion Triggered by TMR3 period match
- Uses scatter / gather offset address generation for DMAC use, maintaining circular buffer computations
- Interrupt detected and handled by DMAC hardware


• DMAC configuration

- Services ADC conversion completion
- Computes final destination address for ADC results
- Moves data from AD1BUF0 to either Current[] or Voltage[] dual port RAM array
- Interrupts firmware when both arrays are completely full with 32 A/D samples (64 transfers)

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Circuit Breaker Simulator ADC Lab 3



© 2007 Microchip Technology Incorporated. All Rights Reserved.

11015 MS2

Circuit Breaker DMAC Interrupt Lab 3

© 2007 Microchip Technology Incorporated. All Rights Reserved.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, KeeLoq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.