
 1

Brushed DC Motor
Handout

Lab 1: Software PWM

Lecture Example Slides 38 – 43

Knowns:
FOSC = 8MHz Pulse Width = 100µs Period = 500 µs
FPWM = 2KHz Duty Cycle = 20% Instruction Clock = 2MHz
Instruction Time = 0.5µs (1 instruction every 0.5 µs)

TMR0 Int. = 50 µs (Thus, the TMR0 interrupt routine will
 execute every 50 µs.)
Knowing that TMR0 is an 8 bit register, therefore it can only do
256 instructions before resetting back to zero.

Calculate TMR0 value at which it will start counting instructions.

TMR0 value = 256 - (number of instructions TMR0 can execute
 in a 50 µs.)
 = 256 -100
TMR0 value = 156
TMR0 value in Hex. = 09CH

Now, we know that the signal period for this example is 500 µs and the
TMR0 interrupt routine will occur every 50 µs, what number value do we
put into the software PWM code to represent this?
500 µs / 50 µs = 10 = PERIOD

 2

This means that in our software PWM code the variable ‘PERIOD’ will
equal 10. Therefore, this variable will count down 10 times, thus executing
the TMR0 interrupt routine 10 time in one signal period(500 µs).

So, now we need the register value of the variable DUTY_CYCLE in our
software PWM code.

DUTY_CYCLE value = 20% of the PERIOD value.
 = (20/100) ● 10
DUTY_CYCLE value = 2
This means that in our code the motor is on 20% of the signal period.

 3

Lab 1: Software PWM Slides 48 – 50 Task 1

Modify the Lab 1 assembly code to create a 1.5 kHz and 30% duty cycle
software PWM.

Knowns:
FOSC = 8MHz Pulse Width = 100µs FPWM = 1.5KHz
Duty Cycle = 30% Instruction Clock = 2MHz

PeriodSIGNAL = 1 / FPWM

Solve for PeriodSIGNAL:_________

Solve for TMR0 value:_________

Solve for PERIOD value:_________

Solve for DUTY_CYCLE value:___________

 4

Lab 1: Software PWM Slides 48 – 50 Task 1

Solution

Modify the Lab 1 assembly code to create a 1.5 kHz and 30% duty cycle
software PWM.

Knowns:
FOSC = 8MHz Pulse Width = 100µs FPWM = 1.5KHz
Duty Cycle = 30% Instruction Clock = 2MHz

PeriodSIGNAL = 1 / FPWM = 1 / (1.5KHz)
 = 1/ (1.5 ● 1000)
PeriodSIGNAL = 667 µs

Instruction Time = 0.5µs (1 instruction every 0.5 µs)

Select a new value for TMR0 Int.
TMR0 Int. = 66.5 µs (Thus, the TMR0 interrupt routine will execute every
 66.5 µs.) (This value was selected through trial/error
 and estimation).
Knowing that TMR0 is an 8 bit register, therefore it can only do
256 instructions before resetting back to zero.

Calculate TMR0 value at which it will start counting instructions.
TMR0 value = 256 - (number of instructions TMR0 can execute
 in a 66.5 µs.)
 = 256 -100
TMR0 value = 156
TMR0 value in Hex. = 09CH

Now, we know that the signal period for this example is 667 µs and the
TMR0 interrupt routine will occur every 66.5 µs, what number value do we
put into the software PWM code to represent this?
667 µs / 66.5 µs = 10 = PERIOD value.

 5

This means that in our software PWM code the variable ‘PERIOD’ will
equal 10. Therefore, this variable will count down 10 times, thus executing
the TMR0 interrupt routine 10 time in one signal period(667 µs).

So, now we need the register value of the variable DUTY_CYCLE in our
software PWM code.
DUTY_CYCLE value = 30% of the PERIOD value.
 = (30/100) ● 10
DUTY_CYCLE value = 3

This means that in our code the motor is on 30% of the signal period.

Another Solution

Knowns:
FOSC = 8MHz Pulse Width = 100µs FPWM = 1.5KHz
Duty Cycle = 30% Instruction Clock = 2MHz
Instruction Time = 0.5µs (1 instruction every 0.5 µs)

PeriodSIGNAL = 1 / FPWM = 1 / (1.5KHz)
 = 1/ (1.5 ● 1000)
PeriodSIGNAL = 667 µs

Leave this value the same:
TMR0 Int. = 50 µs (Thus, the TMR0 interrupt routine will
 execute every 50 µs.)
Knowing that TMR0 is an 8 bit register, therefore it can only do
256 instructions before resetting back to zero.

Calculate TMR0 value at which it will start counting instructions.

TMR0 value = 256 - (number of instructions TMR0 can execute in a
 50 µs.)
 = 256 -100
TMR0 value = 156
TMR0 value in Hex. = 09CH

 6

Now, we know that the signal period for this example is 667 µs and the
TMR0 interrupt routine will occur every 50 µs, what number value do we
put into the software PWM code to represent this?
667 µs / 50 µs = 13.34 ≈ 13 = PERIOD value.

This means that in our software PWM code the variable ‘PERIOD’ will
equal 13. Therefore, this variable will count down 13 times, thus executing
the TMR0 interrupt routine 13 time in one signal period(667 µs).

So, now we need the register value of the variable DUTY_CYCLE in our
software PWM code.

DUTY_CYCLE value = 30% of the PERIOD value.
 = (30/100) ● 13
DUTY_CYCLE value = 4

This means that in our code the motor is on 30% of the signal period.

 7

Lab 2: Hardware PWM

Equations:

TOSC = 1 / FOSC
PeriodSIGNAL = 1 / FPWM
Pulse Width (PW) = Period ● Duty Cycle

Period PWM (Seconds) = [(PR2) + 1] ● 4 ● TOSC
 ● (TMR2 Prescaler Value)
Pulse Width PWM (PW) = (CCPR1L:CCP1CON<5:4>)
 ● TOSC ● (TMR2 Prescaler Value)
Duty Cycle PWM (Ratio) = (CCPR1L:CCP1CON<5:4>)
 [4 (PR2 + 1)]
Resolution PWM (Bits) = log [4 (PR2 + 1)]
 [log (2)]

100 us 500 us

Signal Period PW

400 us

 8

Lab 2: Hardware PWM

Lecture Example Slides 52 – 56

Determine the PR2 value for a FPWM of 2 kHz and a prescaler of 16;

Knowns:
FOSC = 8MHz FPWM = 2KHz Duty Cycle = 30%
TOSC = 1.25ns TMR2 Prescaler = 16

PeriodSIGNAL = 1 / FPWM = 1 / 2000Hz. = 5e-4s

PeriodPWM (Seconds) = [(PR2) + 1] ● 4 ● TOSC
 ● (TMR2 Prescaler Value)

5e-4s = [(PR2) + 1] ● 4 ● TOSC ● (TMR2 Prescaler Value)
5e-4s = [(PR2) + 1] ● 4 ● 1.25ns ● (16)

Solve for PR2:

PR2 + 1 = (5e-4s) / [4 ● 1.25ns ● (16)]
PR2 = {(5e-4s) / [4 ● 1.25ns ● (16)]} – 1
PR2 = 61.5 ≈ 62 = 03EH
PR2 ≈ 62 = 03EH

See the table below for characteristics of varying the prescaler and FPWM
values and their affects on PR2.

Prescaler setting 1kHz 2kHz 4kHz
1:16 124 62 31
1:4 499 249 124
1:1 1999 999 499

 PR2 values
 (All colored values will work in this example.)

As you can see from the table above, if you set the prescaler to 1:1 you will
have to increase the FPWM until the PR2 value is small enough to fit in an 8

 9

bit register. But if you increase the FPWM too much you will affect the
switching efficiency of the MOSFETs. So in selecting a prescaler, you are
limited by FPWM and the size of the PR2 value, it must fit within an 8 bit
register (thus, the PR2 value must be less than 256). So, as you can see,
there are other values that will work as well. For example, the only
difference between PR2 = 62 at 2kHz, Prescaler = 16 and PR2 = 249 at
2kHz, Prescaler = 4 is that the PR2 = 249 has a greater bit resolution. Is this
necessarily better?, depends on your application.

Calculate the ResolutionPWM:

ResolutionPWM (Bits) = log [4 (PR2 + 1)]
 [log (2)]
 = log [4 (62 + 1)]
 [log (2)]
ResolutionPWM = 7.96 bits

So, knowing that the ResolutionPWM is 7.96 bit, then How many discrete
pulse widths to you have?

2ResolutionPWM = 27.96 ≈ 250 discrete pulse widths.

Now you need to know what goes into the CCPR1L and CCP1CON <5:4>
registers.
Thus, with a 30% duty cycle;

250 ● 30% = X
250 ● (30 / 100) = X

X = 75

75 = B‘01001011’

So, CCPR1L = B‘00010010’ and CCP1CON<5:4> = B‘00111100’

 10

Lab 2: Hardware PWM Slides 60 – 61 Task 1

Modify the Lab 2 assembly code to create a 3 kHz 40% duty cycle PWM
using the CCP module.

Knowns:
FOSC = 8MHz FPWM = 3KHz Duty Cycle = 40%
TOSC = 1.25ns TMR2 Prescaler = 16

PeriodSIGNAL = 1 / FPWM

Calculate PeriodSIGNAL :___________

Calculate PeriodPWM :_____________

Calculate PR2:_________________

Calculate ResolutionPWM :___________________

How many discrete pulse widths? _______________

What value goes into the CCPR1L and CCP1CON <5:4> registers?

 CCPR1L (Binary):_______________________

 CCP1CON <5:4> (Binary):______________________

 11

Lab 2: Hardware PWM Slides 60 – 61 Task 1

Solution

Modify the Lab 2 assembly code to create a 3 kHz 40% duty cycle PWM
using the CCP module.

Knowns:
FOSC = 8MHz FPWM = 3KHz Duty Cycle = 40%
TOSC = 1.25ns TMR2 Prescaler = 16

PeriodSIGNAL = 1 / FPWM = 1 / 3000Hz. = 3.33e-4s

PeriodPWM (Seconds) = [(PR2) + 1] ● 4 ● TOSC
 ● (TMR2 Prescaler Value)

3.33e-4s = [(PR2) + 1] ● 4 ● TOSC ● (TMR2 Prescaler Value)
3.33e-4s = [(PR2) + 1] ● 4 ● 1.25ns ● (16)

Solve for PR2:

PR2 + 1 = (3.33e-4s) / [4 ● 1.25ns ● (16)]
PR2 = {(3.33e-4s) / [4 ● 1.25ns ● (16)]} – 1
PR2 = 40.7 ≈ 41 = 029H
PR2 ≈ 41 = 029H

Calculate the ResolutionPWM:

ResolutionPWM (Bits) = log [4 (PR2 + 1)]
 [log (2)]
 = log [4 (41 + 1)]
 [log (2)]
ResolutionPWM = 7.39 bits

So, knowing that the ResolutionPWM is 7.39 bit, then How many discrete
pulse widths to you have?

2ResolutionPWM = 27.39 ≈ 168 discrete pulse widths.

 12

Now you need to know what goes into the CCPR1L and CCP1CON <5:4>
registers.
Thus, with a 30% duty cycle;

168 ● 40% = X
168 ● (40 / 100) = X

X = 67

67 = B‘01000011’

So, CCPR1L = B‘00010000’ and CCP1CON<5:4> = B‘00111100’

 13

Start Here

= IR LED Sensor

Oval Track Layout

Section 1

Section 3

Section 2 Section 4
= Section Marker

 14

Complex Track Layout

Start Here
1

2

5

6

6

77

8

9
Top

10 10

11

11

12
12

1
Bottom

= IR LED Sensor
= Section Marker

3
4

3

