

11095 SPH G.726A and G.711

Agenda

- Speech Coding Overview
- Speech Coding Solutions
- G726A
 - Basic Idea into working of the Algorithm
 - Data Structures and Library API
 - LAB #1 and #2
 - With **ADC/PWM PICtail™ Plus** Daughter Board
 - With dsSPEAK[™] Speech Processing Reference Design Board
- G711
 - Basic Idea into working of the Algorithm
 - Data Structures and Library API
 - LAB #3
 - with ADC/PWM PICtail Plus Daughter Board

Learning Objective

When you finish this class you will:

- Understand features of G711 and G726A speech processing solutions
- Look at some common applications
- Learn how to use the software functions and demos

Speech Coding Overview

- Data compression speech
- Standard PCM encoding of analog signals
 - 8 KHz sampling rate 8-16 bits/sample
 - Requires 64-128 Kbps

Representation of Speech Signal

- Waveform representations are concerned with simply preserving the wave shape of the analog speech.
- Parametric representations are concerned with representing the speech signal as the output of a model for speech production

Waveform Coders

- Waveform coders encode the shape of the waveform
- Faithful reconstruction of the time-domain waveform
- Non-speech specific coders, represent nonspeech sounds (music, background noise).
- Operate at medium-rates
- Examples: PCM,DPCM,ADPCM, Mu/A law

Parametric Coders

- Speech specific Coders (VOCODERS)
- Speech though random, consists of quasi-stationary signals (Voiced Sounds)
- Parameters of the voiced portion sent instead of the whole waveform
- Compression rates as low as 4 Kbps have been achieved
- Examples: CELP, ACELP

Know Your Vocal Apparatus

Know Your Vocal Apparatus

Model Based Coders

Speech Coding Solutions

• Speech Compression (Encoding)

Reduce amount of data required to represent a speech signal, thus reducing communication or storage requirements

• Speech Decompression (Decoding)

 Reconstruct original speech signal from compressed data

• Suite of speech coding solutions

- Speex, G.726A, G.711
- G.711 also supports PIC24H/PIC24F

Speech Coding Solutions

Speech Coding Solutions

Compression Ratio

Why use dsPIC[®] DSC for Speech Processing?

- High processor speed (40 MIPS)
- DSP instructions, bit manipulation and data shifting
- Fast, deterministic interrupts
- Peripherals
 - Codec interface (DCI)
 - ADC and PWM for alternative low-cost speech I/O interfaces
 - Serial Peripheral Interface (SPI) to transmit and receive compressed data

Speech Coding Solutions Resource Requirements

	G.711	G.726A	Speex
MIPS	1	13	20
Flash (KB)	3.5	6	30
RAM (KB)	3.5	4	7

Speech Coding Benefits and Applications

Benefits

- Reduces communication bandwidth
- Reduces storage requirements

Sample Applications

- Communication Systems (full-duplex)
 - Digital radios and walkie-talkies
 - Voice-over-IP phones
- Record-and-Playback Systems (half-duplex)
 - Answering machines and voice recorders
- Playback-only Systems (simplex)
 - Toys, security systems (building evacuation), museum guides

How to Obtain the Libraries?

- Order from *buy.microchip.com*
 - 3-tiered Library Pricing for each library
 - \$2500 for 5,000 unit license
 - \$4950 for 25,000 unit license
 - \$9750 for 100,000 unit license
 - Free Evaluation License, full-feature package
 - G.711 library is Free

Speech Coding Solution #1

G.726A Speech Coding Library

Overview

• Based on Adaptive Differential Pulse Code Modulation (ADPCM)

- ITU-T standard, but no royalties!!
- Similar to G.726, but no G.711 needed
- Very popular for medium data rates

• Mean Opinion Score (MOS):

- 4.5 (40 kbps)
- 4.4 (32 kbps)
- 4.1 (24 kbps)
- 3.4 (16 kbps)

Differential PCM

• Motivation:

- The motivation is that the differenced signal has a smaller amplitude swing compared with the original signal
- Reduces data by encoding a difference signal instead of input signal
- The difference is obtained by subtracting the estimate (Prediction) of the Input signal from the Input Signal

First Order Prediction

$$x_1 x_2 \dots x_N \longrightarrow e_1 e_2 \dots e_N$$

$$e_1 = x_1$$
 $e_n = x_{n-1}$, $n = 2,...,N$

Decoding

$$e_1 e_2 \dots e_N \longrightarrow x_1 x_2 \dots x_N$$

 $x_1 = e_1 \quad x_n = e_n + x_{n-1}, \quad n = 2, \dots, N$

Prediction Meets Quantization

Open-Loop DPCM

- Quantization is located outside the DPCM loop
- Prediction is based on the past unquantized sample

Prediction Meets Quantization

Closed-Loop DPCM

X _n, e_n: unquantized samples and prediction residues \hat{X}_n, \hat{e}_n : decoded samples and quantized prediction residues

- Quantization is located inside the DPCM loop
- Prediction is based on the past decoded sample

DPCM Encoder

Encoder

$$A(z) = \sum_{i=1}^{P} a_i Z^{-i}$$

Digital Filter operating as a Linear Filter

$$\check{S}(n) = \sum_{i=1}^{P} a_i S'(n-i)$$

Current Sample is predicted by a linear combination of 'P' past samples

G.726A Algorithm

Feedback-based ADPCM technique

• Two Adaptive Predictor Structures used

- Sixth order section that models Zeros
- Second order section that models Poles

Adaptive Quantizer used

- 31, 15, 7 or 4 quantization levels (5, 4, 3 or 2 bits per sample)
- Standardized lookup table

ADPCM (G726A)

G.726A Speech Coding Library Overview

• Encoder

- Compression ratio: 3.2:1, 4:1, 5.33:1 or 8:1
- Speech input: 8 kHz, 16-bit mono
- Encoded output: 40/32/24/16 kbps

Decoder

- Decoder input: 40/32/24/16 kbps
- Speech output: 8 kHz, 16-bit mono

Loopback with ADC/PWM

Data Structures

 Structure "sADCChannelHandle" contains user-defined speech buffer pointers and synchronization flags

sADCChannelHandle Structure:

typedef struct sADCChannelHandle {
 int * buffer1;
 int * buffer2;
 volatile int bufferIndicator;
 volatile int isReadBusy;
 } ADCChannelHandle;

Encoder Data Buffers

• Encoder Data Buffer usage

Buffer	Frame 0	Frame 1	Frame 2	Frame 3
	(32 msec)	(32 msec)	(32 msec)	(32 msec)
Buffer1	Filled by	Processed	Filled by	Processed
	DMA	by library	DMA	by library
Buffer2	Idle	Filled by DMA	Processed by library	Filled by DMA

Alternate Sampling Interface

• On-chip ADC

- Reduces system cost
- 12-bit dynamic range
- Good intelligibility

Initialization

- ADCChannellnit ()
 - Initializes DMA0 ,12-bit ADC & Timer3 modules.

ADCChannelInit (ADCChannelHandle * pHandle,int * pBufferInDMA);

Alternate Sampling Interface (cont...)

– ADCChannelStart()

- Enables the ADC, DMA0 and Timer3 modules.
- **ADCChannelStart** (ADCChannelHandle * pHandle);
- AD1CON1bits.ADON = 0x01; //Enable A/D //converter module
- Synchronization
 - ADCChannellsBusy()
 - Polls the *isReadBusy* flag to check if a new frame is available
 - ADCChannellsBusy(ADCChannelHandle * pHandle);

G726A Encoder API

• The G726A Encoder is initialized by calling the G726_encoder_init() function with the desired input bit-rate and the address of the instantiation of G726_state structure.

G726_state encoder_state;

G726_encoder_init (&encoder_state, codecdata.rate);

• Speech Encoding is performed by the G726_encode() function.

G726_encode(codecdata.sampleOpBuffer, codecdata.sampleEncodeIpBuffer, slen, codecdata.rate, &encoder_state);

Encoder Application Flowchart

Data Structures

 Structure "sOCPWMHandle" contains user-defined speech buffer pointers and synchronization flags

SOCPWMHandle Structure:

typedef struct sOCPWMHandle {
 int * buffer1;
 int * buffer2;
 volatile int bufferIndicator;
 volatile int isWriteBusy;
 }OCPWMHandle;

Alternate Playback Interface

On-chip Output Compare

- Reduces system cost
- Pulse-Width Modulation (PWM) mode

Intialization

- OCPWMInit()
 - Initializes DMA1 and Timer2 module.
 - void OCPWMInit(OCPWMHandle * pHandle,int * pBufferInDMA);

Alternate Playback Interface (cont....)

- OCPWMStart()

- Enables **DMA1**, **Output compare** and **Timer2** module.
- void OCPWMStart(OCPWMHandle * pHandle);
- OC1CON= OCCON_WORD; /* Turn module on */

• Synchronization

- OCPWMIIsBusy()
 - Polls the *isWriteBusy* flag to check if a new frame is available
 - **OCPWMIsBusy(**OCPWMHandle * pHandle);

 $\ensuremath{\textcircled{\sc 0}}$ 2007 Microchip Technology Incorporated. All Rights Reserved.

G726A Decoder API

 The G726A Decoder is initialized by calling the G726_decoder_init() function with the desired input bit-rate and the address of the instantiation of G726_state structure.

G726_state decoder_state;

G726_decoder_init (& decoder_state, codecdata.rate);

• G726_decode() function is called to perform decoding.

G726_decode (codecdata.sampleEncodeOpBuffer, codecdata.sampleDecodeIpBuffer, slen, codecdata.rate,&decoder_state **)**;

Decoder Application Flowchart

Hands-on LAB #1

Loopback with ADC/PWM using G.726A

G726A Loopback Demo with ADC/PWM

dsPIC[®] DSC

• Microphone input:

– ADC

Speaker output: – PWM

MIC/Line PRE-AMP

11095 SPH

PWM Timing Diagram

OC PWM Filter

Hands-on LAB #2

Loopback with dsSPEAK[™] Speech Processing Reference Design Using G.726A

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11095 SPH

G726A Loopback Demo with dsSPEAK[™] Speech Processing Reference Design

dsPIC[®] DSC

- Microphone input:
 - OKI codec (via DCI)
- Speaker output:
 OKI codec (via DCI)

Features of dsSPEAK[™] Speech Processing Reference Design

- 16-bit dual channel voice band codec (OKI MSM7704-01)
- On board voice band filters
- 5 W audio amplifier for external speaker
- Full duplex audio channel for connecting external audio signal

Speech Coding Solution #2

G.711 Speech Coding Library

Overview

Based on A-law and µ-law companding

- ITU-T standard, but no royalties!!
- Standard method for telephony: A-law for Europe, µ-law for USA
- Can interface with A-law/µ-law codecs
- MOS: 4.3 4.5

G.711

Motivation

- Speech signals have the characteristic that small-amplitude samples occur more frequently than large-amplitude ones
- The Amplitude Distribution is non-uniform

 Basic idea: assign smaller quantization step size for smallamplitude regions and larger quantization step size for large-amplitude regions

• Two types of nonlinear compressing functions

- **Mu-law** adopted by North American telecommunications systems
- **A-law** adopted by European telecommunications systems

G.711 Suite - Alaw

• A-law Equation

sign(x) * A |x| / (1 + ln(A)), for 0 < |x| < 1/A

 $sign(x) * (1+ln(A |x|)) / (1+ln(A)), when 1/A \le |x| \le 1$

Typical value for A is **87.56**

Note: A-law is a combination of logarithmic curve for large amplitudes and linear curve for small amplitudes.

G.711 Suite - µlaw

U-law Equation

 $sign(x) * ln(1 + \mu |x|) / ln(1 + (\mu))$

Typical value for **µ** is **256**

Note: *µ*-law is not exactly logarithmic or linear in any range

but is approximately linear for small amplitudes and logarithmic for large amplitudes.

G.711 Algorithm

Piece-wise linear approximation

Piece-wise linear approximation

- µ-law and A law use 8 linear segments on either side of analog zero
- µ law consists of 15 segment with two inner most segments with identical slope
- A-law Consists of 13 segments with four innermost segments having identical slope

G.711 Speech Coding Library

• Encoder – 2:1 compression ratio

- Speech input: 8 kHz, 16-bit mono
- Encoded output: 64 kbps

Decoder

- Decoder input: 64 kbps
- Speech output: 8 kHz, 16-bit mono

Alternate Playback Interface

Intialization

- OCPWMInit()
 - Initializes **Timer2** module.
 - OCPWMInit ();
- OCPWMStart()
 - Enables **Output compare** and **Timer2** module.

Alternate Playback Interface

• Synchronization

– OCPWMIIsBusy ()

Polls the isWriteBusy flag to check if a new frame is available

• OCPWMIsBusy();

G.711 Library API

Encode: G711Lin2Alaw(int * input, char * output, int size)

Decode:

G711Alaw2Lin(char * input, int * output, int size)

• Mu-law API

Encode:

G711Lin2Ulaw(int * input, char * output, int size)

Decode: G711Ulaw2Lin(char * input, int * output, int size)

Hands-on LAB #3

Playback with PWM using G.711

© 2007 Microchip Technology Incorporated. All Rights Reserved.

11095 SPH

Playback Demo PWM

dsPIC[®] DSC

- Decoder input memory source:
 - Program Flash Memory
- Speaker output:
 PWM

Speech Encoding Utility

- Used mainly for making "playback" files
- Generates an encoded data file from PC microphone (live input) or WAV file
- User links encoded file into application project

🛋 dsPIC30F Speech Encoder Utility				
Input Output Target Memory	Options About			
00:00				
(<u>R</u> ecord	<u>S</u> top			
Current Encoder Settings				
Input: Output File: Output Array: Target Memory: VAD:	Online Encoding msg1.spx message1 Data EEPROM Disabled			
Ready				

- Target memory for storing encoded speech array
 - Program Flash
 - Data EEPROM
 - External Flash
 - RAM

Summary

- dsPIC[®] DSC Speech Processing libraries provide computationally efficient software solutions for a wide range of speech and telephony applications
- Self-contained software packages with pre-compiled library functions and demo application

 Easy-to-use Application Programming Interface for integration into user application

Dev Tools used in this class

- Development Boards
- G726A Loopback demo with ADC/PWM
 - Explorer 16 Board (DM240001)
 - Audio PICtail[™] Plus Daughter Board (AC164129)
- G726A Loopback demo with dsSPEAK[™] Speech Processing Reference Design
 - dsSPEAK Speech Processing Reference Design Board (DM300025)
- G711 Playback demo with ADC/PWM
 - Explorer 16 Board (DM240001)
 - Audio PICtail Plus Daughter Board (AC164129)
- Development Tools
 - MPLAB[®] ICD 2 In-Circuit Debugger **OR**
 - MPLAB REAL ICE[™] In-Circuit Emulator

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, KeeLoq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.