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11026 C30

Advanced Features in
MPLAB® C30
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Prerequisites/Goals

You should be familiar with Microchip's 
16-bit architecture and have had 
some basic introduction to MPLAB®

C30

We will provide some advanced 
information that will help you get what 
you need from the tools to use the 
advanced features of the architecture
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Objectives

Today you will learn about…
− Mixing C and assembly
− Allocating many types of memory
− Accessing data in Flash
− CodeGuard™ Security Support
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Agenda

Mixing C & Assembly
− Overview
− Calling assembly functions from C
− Inline Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security Support
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Mixing C and Assembly

Reasons to use assembly:
Architecture requirements:
− precise timing
− to generate specific code sequences
− to generate instructions not supported by 

compiler
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Mixing C and Assembly

Writing complete assembly function
− call an assembly routine from C

or call a C routine from assembly
− key topics:

calling conventions and register usage
stack usage

Writing inline assembly
− how to reference C variables
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Mixing C and Assembly

assembly function
long sequence
call cost is minor
limited references to 
C data
control flow allowed

inline asm
short sequence
call cost too great
refers to C data

no control flow

Which kind should I use?
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External Asm Functions

MPLAB® ASM30 reference: DS51317
− assembler syntax
dsPIC30F/33F Programmer's 
Reference Manual: DS70157
− assembly language instruction set
MPLAB C30 User's Guide: DS51284
− calling convention, chapter 4

i
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External Asm Functions

Basic form of an assembly file:
.section my_code, code

; myfunction is externally visible
; and starts here!
_myfunction:
clr w0
; and so on

.global _myfunction
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External Asm Functions

How can I call it from C?
First, declare the function extern
extern void myfunction(void);

Then call it as a normal function!
void main(void) {

myfunction();

/* and so on */

}
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Calling Convention

Parameters passed in W0 to W7
− parameters are placed in the first 

properly aligned register(s)
− starting from the left-most parameter 
− if there are enough registers to hold the 

entire object
Additional parameters are pushed 
onto the stack
− right-most unallocated parameter is 

pushed first
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Calling Convention

Values returned in W0
− and W1 to W3 if required
A called function can use W0-W7 
without preserving them
− Upon return to the calling function, these 

registers need not hold the same values
− W8-W15 must be preserved
There are no unused registers
ISRs – preserve all used registers!
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Register Alignments

What does properly aligned mean?

Type registers required alignment
char 1 none
short 1 none
int 1 none
data pointer 1 none
long 2 even
float 2 even
long long 4 divisible by 4
long double 4 divisible by 4
structure 1 per 2 bytes none
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Inline Assembly

MPLAB® C30 User's Guide: DS51284
− syntax and guidelines, chapter 8

i
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Inline Assembly

Two forms available
Simple:
asm(“assembly text”);

Complex:
asm( “template” : 

“format”(variable),... : 
“format”(variable),... : 
“clobbers”);
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Inline Assembly

The complex version is, well, 
complex!  Why use it?
− if the assembly instruction uses any

register
− if you need to access any C variable
Failure to understand this will cause 
unpredictable results
− programs will fail under changing 

circumstances
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Inline Assembly

What is the format string for?
− identifies the kind of operand needed
− constrains the variable to the correct 

format
− Examples, “r” – a register or 

“m” – a memory address
asm( “template” :

“format”(variable),... :
“format”(variable),... :
“clobbers”);
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Inline Assembly

A format string can include extra 
information, such as:
− read only operand 
− write only operand 
Output (write) operands are listed 1st

asm( “template” :
“format”(variable),... :// outputs
“format”(variable),... :// inputs
“clobbers”);
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Inline Assembly

What are clobbers?
− Some instructions will implicitly modify 

the value stored in a register
the compiler needs to know when 
this happens

asm( “template” : 
“format”(variable),... : 
“format”(variable),... :
“clobbers”);
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Inline Assembly

What is the template?
− mostly it is assembler text
− special symbols %0,%1,...%n can refer 

to arguments
these can be modified %d1

asm( “template” : 
“format”(variable),... :
“format”(variable),... :
“clobbers”);
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Inline Assembly

Examples:
asm ( “add %1, #%2, %0” :

“=r”(result)      :

“r”(input), “i”(CONSTANT) );

asm ( “mul.su %1, #%2, %0 :

“=r”(result)        :

“r”(input), “i”(CONSTANT) );



© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide      22

Inline Assembly
#define CONSTANT 10

int add(int input) {

int result;

asm ( “add %1, #%2, %0” :

“=r”(result)      :

“r”(input), “i”(CONSTANT) );

return result;

}
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Inline Assembly

#define CONSTANT 10

long mulsu(int input) {

long result;

asm ( “mul.su %1, #%2, %0” :

“=r”(result)         :

“r”(input), “i”(CONSTANT) );

return result;

}

#define CONSTANT 10

long mulsu(int input) {

long result;

asm ( “mul.su %1, #%2, %0” :

“=r”(result)         :

“r”(input), “i”(CONSTANT) );

return result;

}
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Agenda

Mixing C & Assembly
Memory Models
− 16-bit architecture review
− Application use
Program Space Visibility
CodeGuard™ Security Support



© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide      25

Memory Architecture

Harvard Architecture
− DATA RAM

16 bits wide
16 bits of address

− PROGRAM Flash
24 bits wide
23 bits of address
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Data Space Memory Map

0x0000

Unused
0x8000

RAM

2K SFR

32K PSV
Tables and
Constants

0xFFFF

X memory

Y memory
Y memory

DMA

X memory
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Program Space Memory
Stores executable instructions
Device configuration fuses
EEPROM Data
Can store DATA also
− accessed via Program Space Visibility 

(PSV) window
− accessed via specialized read 

instructions

Reprogrammable during execution
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Application Use

Why care about memory layout?
− Different data memory requirements:

DSP uses X Memory or Y Memory
DMA uses the DMA memory

− Some instruction sequences are more 
efficient!

Direct ALU access to near memory
Relative branches/calls faster
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Application Use
It’s easy to constrain memory!
C Global memory models
− via command-line options or IDE radio 

buttons
Individual memory settings
− via C or assembly attributes
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Memory Models

MPLAB® ASM30 reference: DS51317
− assembler section directive, chapter 6.3
dsPIC30F Family Reference: DS70046
− hardware information
MPLAB C30 User's Guide: DS51284
− attributes, chapter 2.3
− memory models, chapters 4.6,4.7,4.8i
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0x0000

0xFFFF

Unused

RAM

0x8000

Data Space Memory Map

32K PSV
space(auto_psv)

space(psv)

DMA
space(ymemory)
space(ymemory)

space(xmemory)near

far
space(data)

space(dma)
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Default Memory Models
Data locations
Scalar variables: near data
Aggregate variables: near data
Constants: automatic PSV
Functions
Small code model by default
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Equivalent Model Settings
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Better Model Settings?
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Individual Memory Settings

Global settings cannot place 
variables into X or Y memory!
Add attributes to declarations:
int my_data[256]

__attribute__((space(xmemory)));

int more_data[1024]

__attribute__((space(dma)));
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C Target Memory Attributes
__attribute__((space(area)));
where area is:
− data - general data
− auto_psv - compiler managed PSV
− psv - user managed PSV
− xmemory - data memory (X)
− ymemory - data memory (Y)
− dma - DMA memory
− eedata - EEDATA memory
− prog - program FLASH
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Asm Target Memory Attributes
.section name, area
where area is:
− data - initialized data memory
− bss - zeroed data memory
− psv - user managed PSV
− xmemory - data memory (X)
− ymemory - data memory (Y)
− dma - DMA memory
− eedata - EEDATA memory
− code - program FLASH
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Individual Assembly Settings
.section *,bss,xmemory

.global _my_data

_my_data:

.space 512

.section *,bss,dma

.global _more_data

_more_data:

.space 2048
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Miscellaneous Attributes
aligned() - start align boundary
reverse() - end align boundary
near - near data (1st 8K)
far - far data (anywhere)
address() - start address
persistent - uninitialized on warm reset
section - give a specific section name 

great for grouping (common 
PSV variables)
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Agenda

Mixing C & Assembly
Memory Models
Program Space Visibility
− Overview
− Three modes of operation
CodeGuard™ Security Support
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Program Space Visibility
PSV offers a single 32K data window 
into Program Flash
When enabled, it is mapped into data 
space from 0x8000 to 0xFFFF
The compiler supports 3 modes of 
usage for the PSV window
− User managed PSV support
− Auto PSV mode
− Compiler managed PSV
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0x0000

0x8000

0xFFFF

Data Space

32K PSV

Program Space Visibility 
Operation

0x7FFFFF
15 023

0x000000

Program Space

0x100000

0x107FFF

PSVPAG

15

8

230x8300 0x100300

0x100000

0x107FFF

0x8300 0x100300903 903

0x20
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PSV Usage

MPLAB® ASM30 reference: DS51317
− special operators, chapter 4.5
dsPIC30F Family Reference: DS70046
− hardware information
MPLAB C30 User's Guide: DS51284
− PSV info, chapter 4.15
− Built-in function info, chapter B.2 i
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User Managed PSV

The tool chain does nothing for you!
You must: 
− Place data into Program Flash

space(psv)

− Enable the PSV window
CORCONbits.PSV = 1;

− Configure the PSV page
PSVPAG = ???;
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User Managed PSV Example
int data[256]

__attribute__((space(psv)));

main() {

CORCONbits.PSV = 1; // enable PSV

PSVPAG = __builtin_psvpage(&data);

// now safe to access data[]

if (data[26] == 3) {

}

}
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Auto PSV
The tool chain does (almost) 
everything for you!
− One 32K PSV page is supported
You must: 
− Place data into Program Flash

space(auto_psv) or
Apply const to declarations 

− Tool chain enables PSV and sets the 
page
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Auto PSV Example
int data[256]

__attribute__((space(auto_psv)));

main() {

// now safe to access data[]

if (data[26] == 3) {

}

}



© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide      48

Managed PSV
The tool chain does (almost) 
everything for you!
− Many 32K PSV pages are supported
You must: 
− Place data into Program Flash

space(psv) or
space(prog)

− Identify declaration as managed
− Tool chain enables PSV 
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Managed PSV Example
__psv__ int data[256]

__attribute__((space(psv)));

main() {

// now safe to access data[]

if (data[26] == 3) {

}

}
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Managed PSV Detail

Two new type qualifiers added:
__psv__  - object can’t cross PSV page
__prog__ - object may cross PSV page

When applied to object, the compiler 
will set the PSV page before access
In pointer declarations, can modify 
the pointed to object (just like 
const)
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Managed PSV Detail

Functions that take a pointer will not
accept a managed PSV pointer!
− They are different

Our libraries do not currently accept 
managed PSV pointers
− printf() will not print a managed PSV 

string
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Managed PSV Examples

Managed PSV object
__psv__ int foo
__attribute__((space(psv)));

Pointer to object in managed PSV
__psv__ int *foo_p = &foo;

− pointer lives in data RAM
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Managed PSV
Summary: 
− Does not remove 32K data item limit
− Pointers are larger to accommodate 

page information
− Accesses are slower (page must be set)
− Interrupt service routines may need 

modification
− Beta support



© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide      54

Agenda

Mixing C & Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security Support
− Boot, Secure Segments
− Execution Control
− Security Model
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CodeGuard™ Security

What is CodeGuard Security?
− A hardware feature that…

Partitions memory into 2 or 3 segments
Controls visibility and execution 
between segments

How is it useful?
− Allows multiple parties to share 

resources on a single chip
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CodeGuard™ Security

What device families have CodeGuard
Security?

− dsPIC33F, PIC24H, and several 
dsPIC30F devices

− But the language extensions are 
useful on any device!
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CodeGuard™ Security

Documentation available at 
www.microchip.com/codeguard:
− Reference Manual
− White Paper
− Web Seminar

i
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Boot & Secure Segments

Memory can be partitioned 
− into 1 or 2 special segments
− plus the general segment

Segment sizes can be small, medium, 
or large (varies by device)

Each segment can be linked 
separately
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On-chip
Flash memory,

SRAM 
&

EEPROM

OEM or
Value-Added 
Reseller

General Segment (GS)
Store Peripheral drivers & ISR, 

Large look-up tables, I/O 
interface code, own IP etc.

Boot & Secure Segments

ODM / OEM

Secure Segment (SS)
Store special algorithm code, 
restricted third-party IP, small 

look-up tables, secure ISR

DS DSC or PIC24H
Single-Chip Solution

Software / IP
Vendor*

Microchip

Boot Segment (BS)
Store Secure Bootloader, Boot 

ISR, Authentication / Encryption 
/ Decryption Utilities, Keys etc.

Lowest Privileges

Configurable
Memory Segment 
Size and code 
protection 
options for each 
Segment

Highest Privileges
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Segments in Data Space

0x0000

0x8000

32K PSV

0xFFFF

aligned to high 
address

general

boot
RAM secure

SFR

DMA
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Segments in Program Space

0x000000

0x7FFFFF

aligned to low 
address

general

boot

secure

IVT

FLASH

Unused
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Execution Control

Higher privilege segments can always 
call lower segments

Standard Security
− Calls to higher segment are permitted

High Security 
− Calls to higher segment must be vectored 

through access area
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Execution Control: Standard 
Security

call to lower 
segment

general

boot

IVT

call to higher 
segment

0x000000
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Execution Control: High 
Security

call to lower 
segment

general

boot

IVT

branch within 
segment

call to higher 
segment

Access Area

0x000000
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Access Area

With high security:
− only the first 32 locations are accessible 

to a lower privilege segment

− tools create access area and manage 
references automatically

− implemented as a branch table
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Access Area

Transfer of control by slot number is 
the key to separately linked program 
segments

Use these constructs on any device
− even without CodeGuard™ Security in 

hardware
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Access Area Example: C

How can I call an access slot?
First, declare the function
extern void __attribute__((boot(4))) 

myfunction(void);

Then call it as a normal function!
void main(void) {

myfunction();

/* and so on */

}
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C Example, cont.

How can I define an access slot?
Use the boot or secure attribute
void __attribute__((boot(4))) 
entry4(void)
{
/* insert code here */

}
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Access Area Example: Asm

How can I call an access slot?
Use the boot or secure operator
call  boot(4)
rcall secure(2)

bra   cc,boot(8)

mov #boot(5),w0 ; 16-bit address

call  w0
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Asm Example, cont.

How can I define an access slot?
Use the boot or secure attribute

.section *,code,boot(4)

.global _entry4
_entry4:

; do something
return
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Boot & Secure Interrupts

While executing in a boot or secure 
segment, all interrupts vectored 
through access area

All interrupt sources use a single 
access entry slot (16)
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Interrupt Example: C

How can I define a boot interrupt 
handler?
void __attribute__((interrupt,boot)) 

my_boot_isr(void) {

/* insert code here */

}
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Interrupt Example: Asm

How can I define a boot interrupt 
handler?
.section *,code,boot(isr)

.global _my_boot_isr

_my_boot_isr:

; do something

retfie
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Security Model

Segment sizes and options are 
encoded into 3 config words:
− FBS: boot segment
− FSS: secure segment
− FGS: general segment

Together, these settings comprise the 
‘Security Model’
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Security Model Example: C

Define in source code
#include <p33Fxxxx.h>

_FBS(BSS_SMALL_FLASH_HIGH & 
BRWP_WRPROTECT_ON);

_FSS(SSS_MEDIUM_FLASH_STD);

_FGS(GWRP_OFF);

Or use the IDE
− Build Options:LINK30:Code Guard



© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide      76

Security Model Example: ASM

Define in source code
.include “p33Fxxxx.inc”

config _FBS, BSS_SMALL_FLASH_HIGH & 
BRWP_WRPROTECT_ON

config _FSS, SSS_MEDIUM_FLASH_STD

config _FGS, GWRP_OFF

Or use the IDE
− Build Options:LINK30:Code Guard
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User-Defined Security Model

For devices without CodeGuard™
Security in hardware
Use linker command options
--boot flash_size=128

--boot ram_size=64

--secure flash_size=256

--secure ram_size=64:flash_size=256
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Class Summary

Mixing C and Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security
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Additional Resources

Microchip Web Site
− Student Edition version of tool suite
− C30 README file
− 16-Bit reference material
− Development boards
− Silicon
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Q & A

Questions?
More questions?
− Go to “Ask the Experts”
− Visit the online forum!
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