
© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 1

11026 C30

Advanced Features in
MPLAB® C30

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 2

Prerequisites/Goals

You should be familiar with Microchip's
16-bit architecture and have had
some basic introduction to MPLAB®

C30

We will provide some advanced
information that will help you get what
you need from the tools to use the
advanced features of the architecture

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 3

Objectives

Today you will learn about…
− Mixing C and assembly
− Allocating many types of memory
− Accessing data in Flash
− CodeGuard™ Security Support

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 4

Agenda

Mixing C & Assembly
− Overview
− Calling assembly functions from C
− Inline Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security Support

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 5

Mixing C and Assembly

Reasons to use assembly:
Architecture requirements:
− precise timing
− to generate specific code sequences
− to generate instructions not supported by

compiler

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 6

Mixing C and Assembly

Writing complete assembly function
− call an assembly routine from C

or call a C routine from assembly
− key topics:

calling conventions and register usage
stack usage

Writing inline assembly
− how to reference C variables

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 7

Mixing C and Assembly

assembly function
long sequence
call cost is minor
limited references to
C data
control flow allowed

inline asm
short sequence
call cost too great
refers to C data

no control flow

Which kind should I use?

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 8

External Asm Functions

MPLAB® ASM30 reference: DS51317
− assembler syntax
dsPIC30F/33F Programmer's
Reference Manual: DS70157
− assembly language instruction set
MPLAB C30 User's Guide: DS51284
− calling convention, chapter 4

i

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 9

External Asm Functions

Basic form of an assembly file:
.section my_code, code

; myfunction is externally visible
; and starts here!
_myfunction:
clr w0
; and so on

.global _myfunction

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 10

External Asm Functions

How can I call it from C?
First, declare the function extern
extern void myfunction(void);

Then call it as a normal function!
void main(void) {

myfunction();

/* and so on */

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 11

Calling Convention

Parameters passed in W0 to W7
− parameters are placed in the first

properly aligned register(s)
− starting from the left-most parameter
− if there are enough registers to hold the

entire object
Additional parameters are pushed
onto the stack
− right-most unallocated parameter is

pushed first

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 12

Calling Convention

Values returned in W0
− and W1 to W3 if required
A called function can use W0-W7
without preserving them
− Upon return to the calling function, these

registers need not hold the same values
− W8-W15 must be preserved
There are no unused registers
ISRs – preserve all used registers!

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 13

Register Alignments

What does properly aligned mean?

Type registers required alignment
char 1 none
short 1 none
int 1 none
data pointer 1 none
long 2 even
float 2 even
long long 4 divisible by 4
long double 4 divisible by 4
structure 1 per 2 bytes none

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 14

Inline Assembly

MPLAB® C30 User's Guide: DS51284
− syntax and guidelines, chapter 8

i

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 15

Inline Assembly

Two forms available
Simple:
asm(“assembly text”);

Complex:
asm(“template” :

“format”(variable),... :
“format”(variable),... :
“clobbers”);

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 16

Inline Assembly

The complex version is, well,
complex! Why use it?
− if the assembly instruction uses any

register
− if you need to access any C variable
Failure to understand this will cause
unpredictable results
− programs will fail under changing

circumstances

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 17

Inline Assembly

What is the format string for?
− identifies the kind of operand needed
− constrains the variable to the correct

format
− Examples, “r” – a register or

“m” – a memory address
asm(“template” :

“format”(variable),... :
“format”(variable),... :
“clobbers”);

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 18

Inline Assembly

A format string can include extra
information, such as:
− read only operand
− write only operand
Output (write) operands are listed 1st

asm(“template” :
“format”(variable),... :// outputs
“format”(variable),... :// inputs
“clobbers”);

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 19

Inline Assembly

What are clobbers?
− Some instructions will implicitly modify

the value stored in a register
the compiler needs to know when
this happens

asm(“template” :
“format”(variable),... :
“format”(variable),... :
“clobbers”);

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 20

Inline Assembly

What is the template?
− mostly it is assembler text
− special symbols %0,%1,...%n can refer

to arguments
these can be modified %d1

asm(“template” :
“format”(variable),... :
“format”(variable),... :
“clobbers”);

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 21

Inline Assembly

Examples:
asm (“add %1, #%2, %0” :

“=r”(result) :

“r”(input), “i”(CONSTANT));

asm (“mul.su %1, #%2, %0 :

“=r”(result) :

“r”(input), “i”(CONSTANT));

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 22

Inline Assembly
#define CONSTANT 10

int add(int input) {

int result;

asm (“add %1, #%2, %0” :

“=r”(result) :

“r”(input), “i”(CONSTANT));

return result;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 23

Inline Assembly

#define CONSTANT 10

long mulsu(int input) {

long result;

asm (“mul.su %1, #%2, %0” :

“=r”(result) :

“r”(input), “i”(CONSTANT));

return result;

}

#define CONSTANT 10

long mulsu(int input) {

long result;

asm (“mul.su %1, #%2, %0” :

“=r”(result) :

“r”(input), “i”(CONSTANT));

return result;

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 24

Agenda

Mixing C & Assembly
Memory Models
− 16-bit architecture review
− Application use
Program Space Visibility
CodeGuard™ Security Support

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 25

Memory Architecture

Harvard Architecture
− DATA RAM

16 bits wide
16 bits of address

− PROGRAM Flash
24 bits wide
23 bits of address

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 26

Data Space Memory Map

0x0000

Unused
0x8000

RAM

2K SFR

32K PSV
Tables and
Constants

0xFFFF

X memory

Y memory
Y memory

DMA

X memory

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 27

Program Space Memory
Stores executable instructions
Device configuration fuses
EEPROM Data
Can store DATA also
− accessed via Program Space Visibility

(PSV) window
− accessed via specialized read

instructions

Reprogrammable during execution

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 28

Application Use

Why care about memory layout?
− Different data memory requirements:

DSP uses X Memory or Y Memory
DMA uses the DMA memory

− Some instruction sequences are more
efficient!

Direct ALU access to near memory
Relative branches/calls faster

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 29

Application Use
It’s easy to constrain memory!
C Global memory models
− via command-line options or IDE radio

buttons
Individual memory settings
− via C or assembly attributes

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 30

Memory Models

MPLAB® ASM30 reference: DS51317
− assembler section directive, chapter 6.3
dsPIC30F Family Reference: DS70046
− hardware information
MPLAB C30 User's Guide: DS51284
− attributes, chapter 2.3
− memory models, chapters 4.6,4.7,4.8i

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 31

0x0000

0xFFFF

Unused

RAM

0x8000

Data Space Memory Map

32K PSV
space(auto_psv)

space(psv)

DMA
space(ymemory)
space(ymemory)

space(xmemory)near

far
space(data)

space(dma)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 32

Default Memory Models
Data locations
Scalar variables: near data
Aggregate variables: near data
Constants: automatic PSV
Functions
Small code model by default

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 33

Equivalent Model Settings

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 34

Better Model Settings?

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 35

Individual Memory Settings

Global settings cannot place
variables into X or Y memory!
Add attributes to declarations:
int my_data[256]

__attribute__((space(xmemory)));

int more_data[1024]

__attribute__((space(dma)));

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 36

C Target Memory Attributes
__attribute__((space(area)));
where area is:
− data - general data
− auto_psv - compiler managed PSV
− psv - user managed PSV
− xmemory - data memory (X)
− ymemory - data memory (Y)
− dma - DMA memory
− eedata - EEDATA memory
− prog - program FLASH

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 37

Asm Target Memory Attributes
.section name, area
where area is:
− data - initialized data memory
− bss - zeroed data memory
− psv - user managed PSV
− xmemory - data memory (X)
− ymemory - data memory (Y)
− dma - DMA memory
− eedata - EEDATA memory
− code - program FLASH

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 38

Individual Assembly Settings
.section *,bss,xmemory

.global _my_data

_my_data:

.space 512

.section *,bss,dma

.global _more_data

_more_data:

.space 2048

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 39

Miscellaneous Attributes
aligned() - start align boundary
reverse() - end align boundary
near - near data (1st 8K)
far - far data (anywhere)
address() - start address
persistent - uninitialized on warm reset
section - give a specific section name

great for grouping (common
PSV variables)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 40

Agenda

Mixing C & Assembly
Memory Models
Program Space Visibility
− Overview
− Three modes of operation
CodeGuard™ Security Support

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 41

Program Space Visibility
PSV offers a single 32K data window
into Program Flash
When enabled, it is mapped into data
space from 0x8000 to 0xFFFF
The compiler supports 3 modes of
usage for the PSV window
− User managed PSV support
− Auto PSV mode
− Compiler managed PSV

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 42

0x0000

0x8000

0xFFFF

Data Space

32K PSV

Program Space Visibility
Operation

0x7FFFFF
15 023

0x000000

Program Space

0x100000

0x107FFF

PSVPAG

15

8

230x8300 0x100300

0x100000

0x107FFF

0x8300 0x100300903 903

0x20

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 43

PSV Usage

MPLAB® ASM30 reference: DS51317
− special operators, chapter 4.5
dsPIC30F Family Reference: DS70046
− hardware information
MPLAB C30 User's Guide: DS51284
− PSV info, chapter 4.15
− Built-in function info, chapter B.2 i

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 44

User Managed PSV

The tool chain does nothing for you!
You must:
− Place data into Program Flash

space(psv)

− Enable the PSV window
CORCONbits.PSV = 1;

− Configure the PSV page
PSVPAG = ???;

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 45

User Managed PSV Example
int data[256]

__attribute__((space(psv)));

main() {

CORCONbits.PSV = 1; // enable PSV

PSVPAG = __builtin_psvpage(&data);

// now safe to access data[]

if (data[26] == 3) {

}

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 46

Auto PSV
The tool chain does (almost)
everything for you!
− One 32K PSV page is supported
You must:
− Place data into Program Flash

space(auto_psv) or
Apply const to declarations

− Tool chain enables PSV and sets the
page

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 47

Auto PSV Example
int data[256]

__attribute__((space(auto_psv)));

main() {

// now safe to access data[]

if (data[26] == 3) {

}

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 48

Managed PSV
The tool chain does (almost)
everything for you!
− Many 32K PSV pages are supported
You must:
− Place data into Program Flash

space(psv) or
space(prog)

− Identify declaration as managed
− Tool chain enables PSV

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 49

Managed PSV Example
__psv__ int data[256]

__attribute__((space(psv)));

main() {

// now safe to access data[]

if (data[26] == 3) {

}

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 50

Managed PSV Detail

Two new type qualifiers added:
__psv__ - object can’t cross PSV page
__prog__ - object may cross PSV page

When applied to object, the compiler
will set the PSV page before access
In pointer declarations, can modify
the pointed to object (just like
const)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 51

Managed PSV Detail

Functions that take a pointer will not
accept a managed PSV pointer!
− They are different

Our libraries do not currently accept
managed PSV pointers
− printf() will not print a managed PSV

string

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 52

Managed PSV Examples

Managed PSV object
__psv__ int foo
__attribute__((space(psv)));

Pointer to object in managed PSV
__psv__ int *foo_p = &foo;

− pointer lives in data RAM

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 53

Managed PSV
Summary:
− Does not remove 32K data item limit
− Pointers are larger to accommodate

page information
− Accesses are slower (page must be set)
− Interrupt service routines may need

modification
− Beta support

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 54

Agenda

Mixing C & Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security Support
− Boot, Secure Segments
− Execution Control
− Security Model

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 55

CodeGuard™ Security

What is CodeGuard Security?
− A hardware feature that…

Partitions memory into 2 or 3 segments
Controls visibility and execution
between segments

How is it useful?
− Allows multiple parties to share

resources on a single chip

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 56

CodeGuard™ Security

What device families have CodeGuard
Security?

− dsPIC33F, PIC24H, and several
dsPIC30F devices

− But the language extensions are
useful on any device!

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 57

CodeGuard™ Security

Documentation available at
www.microchip.com/codeguard:
− Reference Manual
− White Paper
− Web Seminar

i

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 58

Boot & Secure Segments

Memory can be partitioned
− into 1 or 2 special segments
− plus the general segment

Segment sizes can be small, medium,
or large (varies by device)

Each segment can be linked
separately

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 59

On-chip
Flash memory,

SRAM
&

EEPROM

OEM or
Value-Added
Reseller

General Segment (GS)
Store Peripheral drivers & ISR,

Large look-up tables, I/O
interface code, own IP etc.

Boot & Secure Segments

ODM / OEM

Secure Segment (SS)
Store special algorithm code,
restricted third-party IP, small

look-up tables, secure ISR

DS DSC or PIC24H
Single-Chip Solution

Software / IP
Vendor*

Microchip

Boot Segment (BS)
Store Secure Bootloader, Boot

ISR, Authentication / Encryption
/ Decryption Utilities, Keys etc.

Lowest Privileges

Configurable
Memory Segment
Size and code
protection
options for each
Segment

Highest Privileges

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 60

Segments in Data Space

0x0000

0x8000

32K PSV

0xFFFF

aligned to high
address

general

boot
RAM secure

SFR

DMA

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 61

Segments in Program Space

0x000000

0x7FFFFF

aligned to low
address

general

boot

secure

IVT

FLASH

Unused

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 62

Execution Control

Higher privilege segments can always
call lower segments

Standard Security
− Calls to higher segment are permitted

High Security
− Calls to higher segment must be vectored

through access area

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 63

Execution Control: Standard
Security

call to lower
segment

general

boot

IVT

call to higher
segment

0x000000

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 64

Execution Control: High
Security

call to lower
segment

general

boot

IVT

branch within
segment

call to higher
segment

Access Area

0x000000

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 65

Access Area

With high security:
− only the first 32 locations are accessible

to a lower privilege segment

− tools create access area and manage
references automatically

− implemented as a branch table

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 66

Access Area

Transfer of control by slot number is
the key to separately linked program
segments

Use these constructs on any device
− even without CodeGuard™ Security in

hardware

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 67

Access Area Example: C

How can I call an access slot?
First, declare the function
extern void __attribute__((boot(4)))

myfunction(void);

Then call it as a normal function!
void main(void) {

myfunction();

/* and so on */

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 68

C Example, cont.

How can I define an access slot?
Use the boot or secure attribute
void __attribute__((boot(4)))
entry4(void)
{
/* insert code here */

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 69

Access Area Example: Asm

How can I call an access slot?
Use the boot or secure operator
call boot(4)
rcall secure(2)

bra cc,boot(8)

mov #boot(5),w0 ; 16-bit address

call w0

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 70

Asm Example, cont.

How can I define an access slot?
Use the boot or secure attribute

.section *,code,boot(4)

.global _entry4
_entry4:

; do something
return

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 71

Boot & Secure Interrupts

While executing in a boot or secure
segment, all interrupts vectored
through access area

All interrupt sources use a single
access entry slot (16)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 72

Interrupt Example: C

How can I define a boot interrupt
handler?
void __attribute__((interrupt,boot))

my_boot_isr(void) {

/* insert code here */

}

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 73

Interrupt Example: Asm

How can I define a boot interrupt
handler?
.section *,code,boot(isr)

.global _my_boot_isr

_my_boot_isr:

; do something

retfie

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 74

Security Model

Segment sizes and options are
encoded into 3 config words:
− FBS: boot segment
− FSS: secure segment
− FGS: general segment

Together, these settings comprise the
‘Security Model’

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 75

Security Model Example: C

Define in source code
#include <p33Fxxxx.h>

_FBS(BSS_SMALL_FLASH_HIGH &
BRWP_WRPROTECT_ON);

_FSS(SSS_MEDIUM_FLASH_STD);

_FGS(GWRP_OFF);

Or use the IDE
− Build Options:LINK30:Code Guard

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 76

Security Model Example: ASM

Define in source code
.include “p33Fxxxx.inc”

config _FBS, BSS_SMALL_FLASH_HIGH &
BRWP_WRPROTECT_ON

config _FSS, SSS_MEDIUM_FLASH_STD

config _FGS, GWRP_OFF

Or use the IDE
− Build Options:LINK30:Code Guard

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 77

User-Defined Security Model

For devices without CodeGuard™
Security in hardware
Use linker command options
--boot flash_size=128

--boot ram_size=64

--secure flash_size=256

--secure ram_size=64:flash_size=256

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 78

Class Summary

Mixing C and Assembly
Memory Models
Program Space Visibility
CodeGuard™ Security

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 79

Additional Resources

Microchip Web Site
− Student Edition version of tool suite
− C30 README file
− 16-Bit reference material
− Development boards
− Silicon

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 80

Q & A

Questions?
More questions?
− Go to “Ask the Experts”
− Visit the online forum!

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11026 C30 Slide 81

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, KeeLoq logo, microID, MPLAB,

PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor

and The Embedded Control Solutions Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,

ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi,

MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,

PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total

Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.

and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

