QT60160, QT60240
Preliminary Information
16 and 24 Key QMatrix ${ }^{\text {TM }}$ Touch ICs

- Second generation QMatrix technology
- Keys individually adjustable for sensitivity, response time, and many other critical parameters
- Panel thicknesses to 50 mm through any dielectric
- 100\% autocal for life - no adjustments required
- $1^{2} C$ slave interface or shift register output
- AKS ${ }^{\text {TM }}$ - Patented Adjacent Key Suppression feature
- Spread-spectrum modulation for high noise immunity
- Mix and match key sizes and shapes in one panel
- Low power modes
- Low external component count
- Low cost per key
- +2 to +5 V single supply operation
- 32-pin RoHS compliant MLF package

APPLICATIONS

- Security keypanels
- Appliance controls
- ATM machines
- Automotive panels
- Industrial keyboards
- Outdoor keypads
- Touchscreens
- Machine tools

Abstract

These digital charge-transfer ("QT") QMatrix ${ }^{\text {TM }}$ ICs are designed to detect human touch on up to 16 or 24 keys when used with a scanned, passive $X-Y$ matrix. They will project touch keys through almost any dielectric, e.g. glass, plastic, stone, ceramic, and even wood, up to thicknesses of 5 cm or more. The touch areas are defined as simple two-part interdigitated electrodes of conductive material, like copper or screened silver or carbon deposited on the rear of a control panel. Key sizes, shapes and placement are almost entirely arbitrary; sizes and shapes of keys can be mixed within a single panel of keys and can vary by a factor of 20:1 in surface area. The sensitivity of each key can be set individually via simple functions over the serial port by a host microcontroller. Key setups are stored in an onboard EEPROM and do not need to be reloaded with each powerup. These devices are designed specifically for appliances, electronic kiosks, security pan els, portable instruments, machine tools, or similar products that are subject to environmental influences or even vandalism. They permit the construction of 100% sealed, watertight control panels that are immune to humidity, temperature, dirt accumulation, or the physical deterioration of the panel surface from abrasion, chemicals, or abuse. To this end they contain Quantum-pioneered adaptive auto self-calibration, drift compensation, and digital filtering algorithms that make the sensing function robust and survivable. Common PCB materials or flex circuits can be used as the circuit substrate; the overlying panel can be made of any nonconducting material. External circuitry consists of only a few passive parts. Control and data transfer is via $I^{2} \mathrm{C}$. These devices make use of an important new variant of charge-transfer sensing, transverse charge-transfer, in a matrix format that minimizes the number of required scan lines. Unlike older methods, it does not require one IC per key.

AVAILABLE OPTIONS

Part Number	Keys	\mathbf{T}_{A}
QT60160-ISG	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
QT60240-ISG	24	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Contents

1 Overview 3
1.1 Introduction 3
1.2 Part Differences 3
2 Hardware and Functional 3
2.1 Matrix Scan Sequence 3
2.2 Disabling Keys - Burst Paring 3
2.3 Sample Capacitors - Saturation 3
2.4 Sample Resistors 4
2.5 Signal Levels 4
2.6 Matrix Series Resistors 4
2.7 Key Design 5
2.8 PCB Layout, Construction 5
2.8.1 Overview 5
2.8.2 LED Traces and Other Switching Signals 6
2.8.3 PCB Cleanliness 6
2.9 Power Supply Considerations 6
2.10 Startup / Calibration Times 6
2.11 Reset Input 6
2.12 Spread Spectrum Acquisitions 6
2.13 Detection Integrators 6
2.14 Sleep 7
2.15 Wiring 8
3 Interfaces 10
3.1 Introduction 10
3.2 Shift Register Output 10
3.3 I2C Port 10
4 Control Commands 11
4.1 Introduction 11
4.2 Writing Data to the Device 11
4.3 Reading Data From the Device 11
4.4 Report Detections for All Keys 11
4.5 Raw Data Commands 12
4.6 Cal All - 0x7B 12
4.7 Setups 12
5 I2C Operation 13
5.1 Interface Bus 13
5.2 Transferring Data Bits 13
5.3 START and STOP Conditions 13
5.4 Address Packet Format 13
5.5 Data Packet Format 13
5.6 Combining Address and Data Packets Into a Transmission 14
6 Setups 15
6.1 Introduction 15
6.2 Negative Threshold - NTHR 15
6.3 Positive Threshold - PTHR 15
6.4 Drift Compensation - NDRIFT, PDRIFT 15
6.5 Detect Integrators - NDIL, FDIL 16
6.6 Negative Recal Delay - NRD 16
6.7 Positive Recalibration Delay - PRD 16
6.8 Burst Length - BL 17
6.9 Adjacent Key Suppression - AKS 17
6.10 Oscilloscope Sync - SSYNC 17
6.11 Mains Sync - MSYNC 17
6.12 Sleep Duration - SLEEP 18
6.13 Wake on Key Touch - WAKE 18
6.14 Awake Timeout - AWAKE 18
6.15 Setups Block 19
7 Specifications 22
7.1 Absolute Maximum Electrical Specifications 22
7.2 Recommended Operating Conditions 22
7.3 DC Specifications 22
7.4 Mechanical Dimensions 22
7.5 Marking 23

1 Overview

1.1 Introduction

QT60xx0 devices are digital burst mode charge-transfer (QT) sensors designed specifically for matrix geometry touch controls; they include all signal processing functions necessary to provide stable sensing under a wide variety of changing conditions. Only a few external parts are required for operation. The entire circuit can be built within a few square centimeters of single-sided PCB area. CEM-1 and FR1 punched, single-sided materials can be used for the lowest possible cost. The PCB's rear can be mounted flush on the back of a glass or plastic panel using a conventional adhesive, such as 3 M VHB two-sided adhesive acrylic film.

Figure 1.1 Field Flow Between X and Y Elements

QT60xx0 parts employ transverse charge-transfer ('QT') sensing, a technology that senses changes in electrical charge forced across an electrode by a pulse edge (Figure 1.1). QT60xx0 devices allow a wide range of key sizes and shapes to be mixed together in a single touch panel.
The devices use an $I^{2} \mathrm{C}$ interface to allow key data to be extracted and to permit individual key parameter setup. The command structure is designed to minimize the amount of data traffic while maximizing the amount of information conveyed.
In addition to normal operating and setup functions the device can also report back actual signal strengths.
QmBtn ${ }^{\text {TM }}$ software for the PC can be used to program the operation of the IC, as well as read back key status and signal levels in real time.

1.2 Part Differences

The QT60160 and QT60240 are electrically identical, with the exception of the number of keys which may be sensed.
Versions of the device are capable of a maximum of 16 or 24 keys (QT60160 and QT60240 respectively).
For QT60160, only Y0 and Y1 can be used to determine the placement of a maximum of 16 keys. For QT60240, Y0, Y1 and Y 2 can be used to determine the placement of a maximum 24 keys.
The length of the setup blocks are different:

- 82 bytes on the QT60160
- 122 bytes on the QT60240

Unused keys are always pared from the burst sequence in order to optimize speed. Similarly, in a given part a lesser number of enabled keys will cause any unused acquisition burst timeslots to be pared from the sampling sequence to optimize acquire speed. Thus, if only 14 keys are actually enabled, only 14 timeslots are used for scanning.

2 Hardware and Functional

2.1 Matrix Scan Sequence

The circuit operates by scanning each key sequentially, key by key. Key scanning begins with location $\mathrm{X}=0$ / $\mathrm{Y}=0$ (key \#0). X axis keys are known as rows while Y axis keys are referred to as columns. Keys are scanned sequentially by row, for example the sequence X0Y0 X1Y0 X7Y0, X0Y1, X1Y1... etc. Keys are also numbered from $0 \ldots .24$. Key 0 is located at XOYO. Table 4.3, page 12 shows the key numbering.

Each key is sampled in a burst of acquisition pulses whose length is determined by the Setups parameter BL (page 17), which can be set on a per-key basis. A burst is completed entirely before the next key is sampled; at the end of each burst the resulting signal is converted to digital form and processed. The burst length directly impacts key gain; each key can have a unique burst length in order to allow tailoring of key sensitivity on a key-by-key basis.

2.2 Disabling Keys - Burst Paring

Keys that are disabled by setting NDIL $=0$ (Section 6.5, page 16) have their bursts pared from the scan sequence to save time. This has the consequence of affecting the scan rate of the entire matrix as well as the time required for initial matrix calibration.

Reducing the number of enabled keys also reduces the time required to calibrate an individual key once the matrix is initially calibrated after power-up or reset, since the total cycle time is proportional to the number of enabled keys.

2.3 Sample Capacitors - Saturation

The charge sampler capacitors on the Y pins should be the values shown (Figure 2.7, page 9). They should be X7R or NP0 ceramics or PPS film. The value of these capacitors is not critical but 4.7 nF is recommended for most cases.

Cs voltage saturation is shown in Figure 2.1. This nonlinearity is caused by excessive negative voltage on Cs inducing conduction in the pin protection diodes. This badly saturated signal destroys key gain and introduces a strong thermal coefficient which can cause 'phantom' detection. The cause of this is usually from the burst length being too long, the Cs value being too small, or the $\mathrm{X}-\mathrm{Y}$ coupling being too large. Solutions include loosening up the interdigitation of key structures, separating X and Y lines on the PCB more, increasing Cs , and decreasing the burst length.
Increasing Cs will make the part slower; decreasing burst length will make it less sensitive. A better PCB layout and a looser key structure (up to a point) have no negative effects.
Cs voltages should be observed on an oscilloscope with the matrix layer bonded to the panel material; if the Rs side of any Cs ramps more negative than -0.25 volts during any burst (not counting overshoot spikes which are probe artifacts), there is a potential saturation problem.

Figure 2.2 shows a defective waveform similar to that of 2.1, but in this case the distortion is caused by excessive stray capacitance coupling from the Y line to AC ground. For example, from running too near and too far alongside a ground trace, ground plane, or other traces. The excess coupling causes the charge-transfer effect to dissipate a significant portion of the received charge from a key into the stray capacitance. This phenomenon is more subtle; it can be best detected by increasing BL to a high count and watching what the waveform does as it descends towards and below -0.25 V . The waveform will appear deceptively straight, but it will slowly start to flatten even before the -0.25 V level is reached.

A correct waveform is shown in Figure 2.3. Note that the bottom edge of the bottom trace is substantially straight (ignoring the downward spikes).
Unlike other QT circuits, the Cs capacitor values on QT60xx0 devices have no effect on conversion gain. However, they do affect conversion time.
Unused Y lines should be left open.

2.4 Sample Resistors

There are three sample resistors (Rs) (two on the QT60160) used to perform single-slope ADC conversion of the acquired charge on each Cs capacitor. These resistors directly control acquisition gain; larger values of Rs will proportionately increase signal gain. Values of Rs can range from $380 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega .470 \mathrm{~K} \Omega$ is a reasonable value for most purposes.
Unused Y lines do not require an Rs resistor.

2.5 Signal Levels

Quantum's QmBtn software makes it is easy to observe the absolute level of signal received by the sensor on each key. The signal values should normally be in the range of 250 to 750 counts with properly designed key shapes and values of Rs. However, long adjacent runs of X and Y lines can also artificially boost the signal values, and induce signal saturation; this is to be avoided. The X-to- Y coupling should come mostly from intra-key electrode coupling, not from stray X-to-Y trace coupling.
QmBtn software is available free of charge on Quantum's website www.qprox.com.
The signal swing from the smallest finger touch should preferably exceed 10 counts, with 15 being a reasonable target. The signal threshold setting (NTHR) should be set to a value guaranteed to be less than the signal swing caused by the smallest touch.

Increasing the burst length (BL) parameter will increase the signal strengths as will increasing the sampling resistor (Rs) values.

Figure 2.1 VCs - Non-Linear During Burst
(Burst too long, or Cs too small, or X-Y capacitance too large)

Figure 2.2 VCs - Poor Gain, Non-Linear During Burst
(Excess capacitance from Y line to Gnd)

Figure 2.3 Vcs - Correct

Figure 2.4 X-Drive Pulse Roll-off and Dwell Time

2.6 Matrix Series Resistors

The X and Y matrix scan lines should use series resistors (referred to as Rx and Ry respectively) for improved EMI performance (Figure 2.7, page 9).
X drive lines require them in most cases to reduce edge rates and thus reduce RF emissions. Typical values range from $1 \mathrm{~K} \Omega$ to $20 \mathrm{~K} \Omega$.

Figure 2.5 Probing X-Drive Waveforms With a Coin

Y lines need them to reduce EMC susceptibility problems and in some extreme cases, ESD. Typical Y values are about $1 \mathrm{~K} \Omega$. Y resistors act to reduce noise susceptibility problems by forming a natural low-pass filter with the Cs capacitors.
It is essential that the Rx and Ry resistors and Cs capacitors be placed very close to the chip. Placing these parts more than a few millimeters away opens the circuit up for high frequency interference problems (above 20MHz) as the trace lengths between the components and the chip start to act as RF antennae.
The upper limits of $R x$ and Ry are reached when the signal level and hence key sensitivity are clearly reduced. The limits of Rx and Ry will depend on key geometry and stray capacitance, and thus an oscilloscope is required to determine optimum values of both.

Dwell time is the duration in which charge coupled from X to Y is captured. Increasing $R x$ values will cause the leading edge of the X pulses to increasingly roll off, causing the loss of captured charge (and hence loss of signal strength) from the keys.
The dwell time of these parts is fixed at 375 ns . If the X pulses have not settled within 375 ns , key gain will be reduced; if this happens, either the stray capacitance on the X line(s) should be reduced (by a layout change, for example by reducing X line exposure to nearby ground planes or traces), or, the Rx resistor needs to be reduced in value (or a combination of both approaches).

Figure 2.6 Recommended Key Structure
' T ' should ideally be similar to the complete thickness the fields need to penetrate to the touch surface. Smaller dimensions will also work but will give less signal strength. If in doubt, make the pattern coarser.

One way to determine X line settling time is to monitor the fields using a patch of metal foil or a small coin over the key (Figure 2.5). Only one key along a particular X line needs to be observed, as each of the keys along that X line will be identical. The 375 ns dwell time should exceed the observed 95% settling of the X-pulse by 25% or more.
In almost all case, Ry should be set equal to $R x$, which will ensure that the charge on the Y line is fully captured into the Cs capacitor.

2.7 Key Design

Circuits can be constructed out of a variety of materials including flex circuits, FR4, and even inexpensive single-sided CEM-1.
The actual internal pattern style is not as important as the need to achieve regular X and Y widths and spacings of sufficient size to cover the desired graphical key area or a little bit more; $\sim 3 \mathrm{~mm}$ oversize is acceptable in most cases, since the key's electric fields drop off near the edges anyway. The overall key size can range from $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ up to $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ but these are not hard limits. The keys can be any shape including round, rectangular, square, etc. The internal pattern can be as simple as a single bar of Y within a solid perimeter of X, or (preferably) interdigitated as shown in Figure 2.6.
For better surface moisture suppression, the outer perimeter of X should be as wide as possible, and there should be no ground planes near the keys. The variable ' T ' in this drawing represents the total thickness of all materials that the keys must penetrate.

2.8 PCB Layout, Construction

2.8.1 Overview

It is best to place the chip near the touch keys on the same PCB so as to reduce X and Y trace lengths, thereby reducing the chances for EMC problems. Long connection traces act as RF antennae. The Y (receive) lines are much more susceptible to noise pickup than the X (drive) lines.

Even more importantly, all signal related discrete parts (resistors and capacitors) should be very close to the body of the chip. Wiring between the chip and the various resistors and capacitors should be as short and direct as possible to suppress noise pickup.

Ground planes and traces should NOT be used around the keys and the Y lines from the keys. Ground areas, traces, and other adjacent signal conductors that act as AC ground (such as Vdd and LED drive lines etc) will absorb the received key signals and reduce signal-to-noise ratio (SNR) and thus will be counterproductive. Ground planes around keys will also make water film effects worse.

Ground planes, if used, should be placed under or around the QT chip itself and the associated resistors and capacitors in the circuit, under or around the power supply, and back to a connector, but nowhere else.

2.8.2 LED Traces and Other Switching Signals

Digital switching signals near the Y lines will induce transients into the acquired signals, deteriorating the SNR perfomance of the device. Such signals should be routed away from the Y lines, or the design should be such that these lines are not switched during the course of signal acquisition (bursts).
LED terminals which are multiplexed or switched into a floating state and which are within or physically very near a key structure (even if on another nearby PCB) should be bypassed to either Vss or Vdd with at least a 10 nF capacitor of any type, to suppress capacitive coupling effects which can induce false signal shifts. LED terminals which are constantly connected to Vss or Vdd do not need further bypassing.

2.8.3 PCB Cleanliness

All capacitive sensors should be treated as highly sensitive circuits which can be influenced by stray conductive leakage paths. QT devices have a basic resolution in the femtofarad range; in this region, there is no such thing as 'no clean flux'. Flux absorbs moisture and becomes conductive between solder joints, causing signal drift and resultant false detections or transient losses of sensitivity or instability. Conformal coatings will trap in existing amounts of moisture which will then become highly temperature sensitive.
The designer should specify ultrasonic cleaning as part of the manufacturing process, and in cases where a high level of humidity is anticipated, the use of conformal coatings after cleaning to keep out moisture.

2.9 Power Supply Considerations

As these devices use the power supply itself as an analog reference, the power should be very clean and come from a separate regulator. A standard inexpensive Low Dropout (LDO) type regulator should be used that is not also used to power other loads such as LEDs, relays, or other high current devices. Load shifts on the output of the LDO can cause Vdd to fluctuate enough to cause false detection or sensitivity shifts.

A single ceramic 0.1 uF bypass capacitor should be placed very close to supply pins $3,4,5$ and 6 of the IC. Pins 18,20 , and 21 do not require bypassing.
Vdd can range from +2 V to +5 V nominal. The device enters reset below 1.8 V via an internal LVD circuit.
See Section 2.11.

2.10 Startup / Calibration Times

The devices require initialization times of $<1 \mathrm{~ms}$. A calibration takes one matrix scan.
Disabled keys are subtracted from the burst sequence and thus the cal time is shortened. The scan time should be measured on an oscilloscope.

2.11 Reset Input

The /RST pin can be used to reset the device to simulate a power down cycle, in order to bring the part up into a known state should communications with the part be lost. The pin is active low, and a low pulse lasting at least $10 \mu \mathrm{~s}$ must be applied to this pin to cause a reset.
To provide for proper operation during power transitions the devices have an internal LVD set to 1.8 volts.

The reset pin has an internal $30 \mathrm{~K} \Omega-60 \mathrm{~K} \Omega$ resistor. A $2.2 \mu \mathrm{~F}$ capacitor plus a diode to Vdd can be connected to this pin as a traditional reset circuit, but this is not required.
If an external hardware reset is not used, the reset pin may be connected to Vdd or left floating.

2.12 Spread Spectrum Acquisitions

QT60xx0 devices use spread-spectrum burst modulation. This has the effect of drastically reducing the possibility of EMI effects on the sensor keys, while simultaneously spreading RF emissions. This feature is hard-wired into the device and cannot be disabled or modified.
Spread spectrum is configured as a frequency chirp over a wide range of frequencies for robust operation.

2.13 Detection Integrators
 See also Section 6.5, page 16.

The devices feature a detection integration mechanism, which acts to confirm a detection in a robust fashion. The basic idea is to increment a per-key counter each time the key has crossed its threshold. When this counter reaches a preset limit the key is finally declared to be touched.
For example, if the limit value is 10 , then the device has to detect a threshold crossing 10 times in succession without interruption, before the key is declared to be touched. If on any sample the signal is not seen to cross the threshold level, the counter is cleared and the process has to start over from the beginning.
The QT60xx0 uses a two-tier confirmation mechanism having two such counters for each key. These can be thought of as 'inner loop' and 'outer loop' confirmation counters.
The 'inner' counter is referred to as the 'fast-DI'; this acts to attempt to confirm a detection via rapid successive acquisition bursts, at the expense of delaying the sampling of the next key. Each key has its own fast-DI counter and limit value; these limits can be changed via the Setups block on a per-key basis.

The 'outer' counter is referred to as the 'normal-DI'; this DI counter increments whenever the fast-DI counter has reached its limit value. If a fast-DI counter failed to reach its terminal count, the corresponding normal-DI counter is also reset. The normal-DI counter also has a limit value which is settable on a per-key basis. If a normal-DI counter reaches its terminal count, the corresponding key is declared to be touched and becomes 'active'. Note that the normal-DI can only be incremented once per complete keyscan cycle, i .e. more slowly, whereas the fast-DI is incremented 'on the spot' without interruption.
The net effect of this mechanism is a multiplication of the inner and outer counters and hence a highly noise-resistance sensing method. If the inner limit is set to 5 , and the outer to 3 , the net effect is $5 \times 3=15$ successive threshold crossings to declare a key as active.

2.14 Sleep

The device will sleep whenever possible to conserve power. Periodically, the part will wake automatically, scan the matrix, and return to sleep unless there is activity which demands further attention. The part will always return to sleep automatically once all activity has ceased. The time for which the part will sleep before automatically awakening can be configured.

A new communication with the device while it is asleep will cause it to wake up, service the communication and scan the matrix. At least one full matrix scan is always performed after waking up and before returning to sleep.

At the end of each matrix scan, the part will return to sleep unless recent activity demands further attention. If there has been recent activity, the part will perform another complete matrix scan and then attempt to sleep once again. This process is repeated indefinitely until the activity stops and the part returns to sleep.

Key touch activity will prevent the part from sleeping, as will recent communications by the host. The part will not sleep if any touch events were detected at any key in the most recent scan of the key matrix.

A recent communication from the host will also prevent the part from sleeping. The device tracks the time elapsed since the last host communication and prevents the part from sleeping while the elapsed time is less than the 'Awake Timeout'; this helps prevent the part from falling asleep part way through a host communication. The 'Awake Timeout' can be configured.

2.15 Wiring

Table 2.1 Pin Listing

Pin	Function	I/O	Comments	If Unused, Connect To...
1	M_SYNC	1	Mains Sync input	Vdd
2	DETECT	O	Detect output	Leave open
3	Vss	P	Supply ground	-
4	Vdd	P	Power, +2V to +5V	-
5	Vss	P	Supply ground	-
6	Vdd	P	Power, +2 V to +5 V	-
7	X6	O	X matrix drive line	Leave open
8	X7	O	X matrix drive line	Leave open
9	LATCH	O	Shift Register Latch Output	Leave open
10	Vref	1	0.05 V nominal $\pm 10 \%$ via external divider	-
11	S_SYNC	O	Scope Sync: Synchronization test signal	Leave open
12	X0	O	X matrix drive line	Leave open
13	X1	0	X matrix drive line	Leave open
14	X2	O	X matrix drive line	Leave open
15	X3	O	X matrix drive line	Leave open
16	X4	0	X matrix drive line	Leave open
17	X5	O	X matrix drive line	Leave open
18	Vdd	P	Power, +2V to +5V	-
19	A1	I	Com port address 1	-
20	Vdd	P	Power, +2V to +5V	-
21	Vss	P	Supply ground	-
22	A0	I	Com port address 0	-
23	YOB	I	Y line connection	Leave open
24	Y1B	1	Y line connection	Leave open
25	Y2B	I	Y line connection (QT60240 only)	Leave open
26	SMP	O	Sample output.	-
27	SDA	I/O	Serial Interface Data	-
28	SCL	I/O	Serial Interface Clock	-
29	/RST	I	Reset low; has internal 20K - 100K pullup	Leave open or Vdd
30	YOA	I	Y line connection	Leave open
31	Y1A	1	Y line connection	Leave open
32	Y2A	1	Y line connection (QT60240 only)	Leave open

Figure 2.7 Wiring Diagram
See Table 2.1 for further connection information.

3 Interfaces

3.1 Introduction

The QT60xx0 can be configured to communicate either over an $I^{2} \mathrm{C}$ bus or a shift register type SPI. See Table 3.1 for interface details.

Table 3.1 Interface Details

A1	A0	Interface
Vss	Vss	Shift Register
Vss	Vdd	$I^{2} \mathrm{C}$ Address 7
Vdd	Vss	$1^{2} \mathrm{C}$ Address 17
Vdd	Vdd	$I^{2} \mathrm{C}$ Address 117

Pin 2 (DETECT) is a push-pull output and can be used in conjunction with the $I^{2} \mathrm{C}$ interface to alert the host to key touches. Every key can be configured to wake the host. This output is set active when any key configured so confirms a touch. The device will also set this output active to keep the host advised of touch changes on any key if the host is keeping the device awake by communicating. Pin 2 is set inactive when the host performs a read from any location. Pin 2 is active high (Vdd) to alert the host. This output is useful with the $1^{2} \mathrm{C}$ interface only and should be ignored if the Shift Register interface is selected.

3.2 Shift Register Output

When the option jumpers are both set at Vss, the device disables the $I^{2} \mathrm{C}$ interface and instead generates output suitable for driving a shift register.
The shift register data is output at pin 27 (SDA). The clock is output at pin 28 (SCL). The data is clocked on the positive-going transition of SCL. Data is transferred from the shift registers to the latched outputs on the positive-going transition of LATCH. An example shift register connection is shown in Figure 3.1.

Table 3.2 Shift Register

Parameter	Units
SCL clock frequency	4 MHz max
SCL pulse width	250 ns min
LATCH pulse width	250 ns min
SDA data to SCL clock hold time	250 ns min

3.3 I $^{2} \mathrm{C}$ Port

These devices use $I^{2} \mathrm{C}$ communications, in slave mode only.
The QT60160/60240 will only respond to the correct address match. $I^{2} \mathrm{C}$ operating parameters are as follows:

Max Data Transfer:	400 KHz
Address:	7-bit

The match address is selected via pins A0 and A1. Table 3.1 shows the address map.
The QT60160/60240 allows multiple byte transmissions to provide a more efficient communication. This is particularly useful to retrieve several information bytes at once. Every time the host retrieves data from the QT60160/60240, the internal address is incremented.
Therefore, the host only needs to write the initial address of interest (the lowest address), followed by read cycles for as many bytes as required.

Figure 3.1 Shift Register Output

4 Control Commands

4.1 Introduction

The devices feature a set of commands which are used for control and status reporting.

As well as Tables 4.1 and 4.2, refer to Table 6.1, page 19 and Table 6.2, page 20 for further details.

Table 4.1 Memory Map for QT60160

Address	Use	Access
0	Part Revision	Read
1	Detect status for keys 0 to 7, one bit per key	Read
2	Detect status for keys 8 to 15, one bit per key	Read
4 to 84	Data for keys 0 to 15, in sequence. Refer to Table 4.4 for details.	Read
124	Recalibrate all keys. Write 0x55 immediately after 0x7B	Write
130	Setups write-unlock. Write 0x55 immediately before writing setups	Write
131 to	Setups - refer to Table 5.1 for details.	Read/Write

Table 4.2 Memory Map for QT60240

Address	Use	Access
0	Part Revision	Read
1	Detect status for keys 0 to 7, one bit per key	Read
2	Detect status for keys 8 to 15, one bit per key	Read
3	Detect status for keys 16 to 23, one bit per key	Read
4 to 124	Data for keys 0 to 23, in sequence. Refer to Table 4.4 for details.	Read
124	Recalibrate all keys. Write 0x55 immediately after 0x7B	Write
130	Setups write-unlock. Write 0x55 immediately before writing setups	Write
131 to	Setups - refer to Table 5.2 for details.	Read/Write
252		

4.2 Writing Data to the Device

The sequence of events required to write data to the device is shown next.

S	SLA+W	A	MemAddress	A	Data	A	P

Key	
S	Start condition
SLA+W	Slave address plus write bit
A	Acknowledge bit
MemAddress	Target memory address within device
Data	Data to be written
P	Stop condition

The host initiates the transfer by sending the START condition, and follows this by sending the slave address of the device together with the Write-bit. The device sends an ACK. The host then sends the memory address within the device it wishes to write to. The device sends an ACK. The host transmits one or more data bytes; each will be acknowledged by the device.

If the host sends more than one data byte, they will be written to consecutive memory addresses. The device automatically increments the target memory address after writing each data byte. After writing the last data byte, the host should send the STOP condition.

The host should not try to write beyond address 255 because the device will not increment the internal memory address beyond this. The host must not attempt to write to any address other than those indicated because this would corrupt data within the device.

4.3 Reading Data From the Device

The sequence of events required to read data from the device is shown next.

Host to Device
Device Tx to Host

S	SLA+W	A	MemAddress	A	Rs	SLA+R	A	Data	A

Key	
S	Start condition
SLA+W	Slave address plus write bit
A	Acknowledge bit
MemAddress	Target memory address within device
Data	Data from device
P	Stop condition
Rs	Repeated start condition
SLA+R	Slave address plus read bit
IA	Not Acknowledge bit/indicates last byte transmission

The host initiates the transfer by sending the START condition, and follows this by sending the slave address of the device together with the Write-bit. The device sends an ACK. The host then sends the memory address within the device it wishes to read from. The device sends an ACK.

The host must then send a Repeated START condition followed by the slave address again but this time accompanied by the Read-bit. The device will return an ACK, followed by a data byte. The host must return either an ACK or NACK. If the host returns an ACK, the device will subsequently transmit the data byte from the next address. Each time a data byte is transmitted, the device automatically increments the internal address. The device will continue to return data bytes until the host responds with a NACK. The host should terminate the transfer by issuing the STOP condition.

4.4 Report Detections for All Keys

Address 1: detect status for keys 0 to 7
Address 2: detect status for keys 8 to 15
Address 3: detect status for keys 16 to 23 (QT60240 only)
Each location indicates all keys in detection, if any, as a bitfield; active keys report as 1's, disabled keys report as inactive (0).

Table 4.3 Bits for Key Reporting and Numbering

Address	Bit Number								
	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	7	6	5	4	3	2	1	0	
$\mathbf{2}$	15	14	13	12	11	10	9	8	
$\mathbf{3}$	23	22	21	20	19	18	17	16	

4.5 Raw Data Commands

Addresses 4 to 84 inclusive for the QT60160 and 4 to 124 for the QT60240 allow data to be read for each key. The QT60160 has a total of 16 keys and 5 bytes of data per key, yielding a total of 80 addresses. The QT60240 has a total of 24 keys and 5 bytes of data per key, yielding a total of 120 addresses. These addresses are read-only.
The data for the keys is mapped in sequence, starting with key 0 at addresses 4 to 8 . The data for key 15 is located at addresses 80 to 84 , and that for key 23 is located at addresses 120 to 124 . Table 4.4 summarizes this.
There are five bytes of data for each key. The first two are the key's 16-bit signal, and the second two are the key's 16-bit reference. These are followed by the Detect Integrator Count, which is a 4-bit value stored in the lower nibble. In the case of both the signal and reference, the 16-bit values are accessed as two 8-bit bytes, stored LSB first.

Table 4.4 Key Data

Address	Key \#	Use
4	0	Signal LSB
5	0	Signal MSB
6	0	Reference LSB
7	0	Reference MSB
8	0	DetectCount (lower nibble)
9	1	Signal LSB
10	1	Signal MSB
11	1	Reference LSB
12	1	Reference MSB
13	1	DetectCount (lower nibble)
14	2	Signal LSB
15	2	Signal MSB
16	2	Reference LSB
17	2	Reference MSB
18	2	DetectCount (lower nibble)
19 to 119	3 to 22	Range of values
120	23	Signal LSB
121	23	Signal MSB
122	23	Reference LSB
123	23	Reference MSB
124	23	DetectCount (lower nibble)

4.6 Cal All - 0x7B

A value of 0×55 must be written to this location immediately after $0 \times 7 \mathrm{~B}$. Upon receiving this command the QT60xx0 will recalibrate all of the keys. Recalibration will start at the beginning of the next full matrix scan. The device will not sleep during the calibration period.

4.7 Setups

The location "Setups write-unlock", address 130, allows write access to the setups. Normally the setups are write-protected; the write protection is engaged as soon as a read operation is performed at any address. By writing a value of 0×55 to this address, the write-protection is disengaged. This address is located conveniently immediately before the setups so that the write protection may be disengaged and the setups written in a single $I^{2} \mathrm{C}$ communication sequence. Reading this address is undefined.
Addresses 131 to 212 on the QT60160 and addresses 131 to 252 on the QT60240 provide read/write access to the setups. Details of different setups can be found in Section 5.

When the host is writing a new setup block the values are being recorded into EEPROM as they arrive from the host.

$5 I^{2} \mathbf{C}$ Operation

5.1 Interface Bus

More detailed information about $I^{2} \mathrm{C}$ is available from www.i2C-bus.org. Devices are connected onto the $I^{2} \mathrm{C}$ bus as shown in Figure 5.1. Both bus lines are connected to Vdd via pull-up resistors. The bus drivers of all $I^{2} \mathrm{C}$ devices must be open-drain type. This implements a wired-AND function which allows any and all devices to drive the bus, one at a time. A low level on the bus is generated when a device outputs a zero.

Figure 5.1 $\mathrm{I}^{2} \mathrm{C}$ Interface Bus

Table 5.1 $I^{2} \mathrm{C}$ Bus Specifications

Parameter	Unit
Address space	7 -bit
Maximum bus speed (SCL)	400 kHz
Hold time (repeated) START condition	4us min.
Setup time for a repeated START condition	4.7 us min.
Setup time for STOP condition	4us min.
Bus free time between a STOP and START condition	4.7 us min.

5.2 Transferring Data Bits

Each data bit transferred on the bus is accompanied by a pulse on the clock line. The level of the data line must be stable when the clock line is high; The only exception to this rule is for generating start and stop conditions.

Figure 5.2 Data Transfer

5.3 START and STOP Conditions

The host initiates and terminates a data transmission. The transmission is initiated when the host issues a START condition on the bus, and is terminated when the host issues a STOP condition. Between START and STOP conditions, the bus is considered busy. A special case occurs when a new START condition is issued between a START and STOP. This is referred to as a REPEATED START, and is issued when the host wishes to initiate a new transfer without relinquishing control of the bus. As shown below, START and STOP conditions are signaled by changing the level of the SDA line when the SCL line is high.

Figure 5.3 START and STOP Conditions

5.4 Address Packet Format

All address packets are 9 bits long, consisting of 7 address bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is performed, otherwise a write operation is performed. When the device recognizes that it is being addressed, it will acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. An address packet consisting of a slave address and a READ or a WRITE bit is called SLA + R or SLA+W, respectively.

The most significant bit of the address byte is transmitted first. The address sent by the host must be consistent with that selected with the option jumpers.

Figure 5.4 Address Packet Format

5.5 Data Packet Format

All data packets are 9 bits long, consisting of one data byte and an acknowledge bit. During a data transfer, the host generates the clock and the START and STOP conditions, while the Receiver is responsible for acknowledging the reception. An acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

5.6 Combining Address and Data Packets Into a Transmission

A transmission consists of a START condition, an SLA+R/W, one or more data packets and a STOP condition. The wired-ANDing of the SCL line is used to implement handshaking between the host and the device. The device extends the SCL low period by pulling the SCL line low whenever it needs extra time for processing between the data transmissions.

Figure 5.6 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA +R/W and the STOP.

Figure 5.5 Data Packet Format

Figure 5.6 Packet Transmission

6 Setups

6.1 Introduction

The devices calibrate and process all signals using a number of algorithms specifically designed to provide for high survivability in the face of adverse environmental challenges. They provide a large number of processing options which can be user-selected to implement very flexible, robust keypanel solutions.
User-defined Setups are employed to alter these algorithms to suit each application. These setups are loaded into the device over the $I^{2} \mathrm{C}$ serial interfaces. The Setups are stored in an onboard EEPROM array.
Many setups employ lookup-table value translation. Table 6.3, the Setups Lookup Table on page 21 shows all translation values. The default values are the factory defaults.

Refer to Table 6.1, page 19 and Table 6.2, page 20 for all Setups.

6.2 Negative Threshold - NTHR

The negative threshold value is established relative to a key's signal reference value. The threshold is used to determine key touch when crossed by a negative-going signal swing after having been filtered by the detection integrator. Larger absolute values of threshold desensitize keys since the signal must travel farther in order to cross the threshold level. Conversely, lower thresholds make keys more sensitive.
As Cx and Cs drift, the reference point drift-compensates for these changes at a user-settable rate; the threshold level is recomputed whenever the reference point moves, and thus it also is drift compen sated.
The amount of NTHR required depends on the amount of signal swing that occurs when a key is touched. Thicker panels or smaller key geometries reduce 'key gain', i.e. signal swing from touch, thus requiring smaller NTHR values to detect touch.

The negative threshold is programmed on a per-key basis using the Setup process. See Table 6.3, page 21.

Negative hysteresis: NHYST is fixed at 12.5% of the negative threshold value and cannot be altered.

Typical values:
 3 to 8

(7 to 12 counts of threshold; 4 is internally added to NTHR to generate the threshold).

Default value:

6

(10 counts of threshold)

6.3 Positive Threshold - PTHR

The positive threshold is used to provide a mechanism for recalibration of the reference point when a key's signal moves abruptly to the positive. This condition is not normal, and usually occurs only after a recalibration when an object is touching the key and is subsequently removed. The desire is normally to recover from these events quickly.

Positive hysteresis: PHYST is fixed at 12.5% of the positive threshold value and cannot be altered.
Positive threshold levels are all fixed at 6 counts of signal and cannot be modified.

6.4 Drift Compensation - NDRIFT, PDRIFT

Signals can drift because of changes in Cx and Cs over time and temperature. It is crucial that such drift be compensated, else false detections and sensitivity shifts can occur.

Drift compensation (Figure 6.1) is performed by making the reference level track the raw signal at a slow rate, but only while there is no detection in effect. The rate of adjustment must be performed slowly, otherwise legitimate detections could be ignored. The devices drift compensate using a slew-rate limited change to the reference level; the threshold and hysteresis values are slaved to this reference.

When a finger is sensed, the signal falls since the human body acts to absorb charge from the cross-coupling between X and Y lines. An isolated, untouched foreign object (a coin, or a water film) will cause the signal to rise very slightly due to an enhancement of coupling. This is contrary to the way most capacitive sensors operate.

Once a finger is sensed, the drift compensation mechanism ceases since the signal is legitimately detecting an object. Drift compensation only works when the signal in question has not crossed the neg ative threshold level.
The drift compensation mechanism can be asymmetric; the drift-compensation can be made to occur in one direction faster than it does in the other simply by changing the NDRIFT and PDRIFT Setup parameters. This can be done on a per-key basis.

Figure 6.1 Thresholds and Drift Compensation

Specifically, drift compensation should be set to compensate faster for increasing signals than for decreasing signals. Decreasing signals should not be compensated quickly, since an approaching finger could be compensated for partially or entirely before even touching the touch pad. However, an obstruction over the sense pad, for which the sensor has already made full allowance, could suddenly be removed leaving the sensor with an artificially suppressed reference level and thus become insensitive to touch. In this latter case, the sensor should compensate for the object's removal by raising the reference level relatively quickly.
Drift compensation and the detection time-outs work together to provide for robust, adaptive sensing. The time-outs provide abrupt changes in reference calibration depending on the duration of the signal 'event'.

NDRIFT Typical values:

9 to 11
(2 to 3.3 seconds per count of drift compensation)
NDRIFT Default value: 10
(2.5 s / count of drift compensation)
PDRIFT Typical values: 3 to 5
(0.4 to 0.8 seconds per count of drift compensation; translation via LUT, page)
PDRIFT Default value: 4
($0.6 \mathrm{~s} /$ count of drift compensation)

6.5 Detect Integrators - NDIL, FDIL

NDIL is used to enable or disable keys and to provide signal filtering. To enable a key, its NDIL parameter should be non-zero (ie NDIL=0 disables a key). See Section 2.2.
To suppress false detections caused by spurious events like electrical noise, the device incorporates a 'detection integrator' or DI counter mechanism that acts to confirm a detection by consensus (all detections in sequence must agree). The DI mechanism counts sequential detections of a key that appears to be touched, after each burst for the key. For a key to be declared touched, the DI mechanism must count to completion without even one detection failure.

The DI mechanism uses two counters. The first is the 'fast DI' counter FDIL. When a key's signal is first noted to be below the negative threshold, the key enters 'fast burst' mode. In this mode the burst is rapidly repeated for up to the specified limit count of the fast DI counter. Each key has its own counter and its own specified fast-DI limit (FDIL), which can range from 1 to 15 . When fast-burst is entered the QT device locks onto the key and repeats the acquire burst until the fast-DI counter reaches FDIL, or, the detection fails beforehand. After this the device resumes normal keyscanning and goes on to the next key.

The 'Normal Dl' counter counts the number of times the fast-DI counter reached its FDIL value. The Normal DI counter can only increment once per complete scan of all keys. Only when the Normal DI counter reaches NDIL does the key become formally 'active'.
The net effect of this is that the sensor can rapidly lock onto and confirm a detection with many confirmations, while still scanning other keys. The ratio of 'fast' to 'normal' counts is completely user-settable via the Setups process. The total number of required confirmations is equal to FDIL times NDIL.

If FDIL $=5$ and NDIL $=2$, the total detection confirmations required is 10 , even though the device only scanned through all keys only twice.
The DI is extremely effective at reducing false detections at the expense of slower reaction times. In some applications a slow reaction time is desirable. The DI can be used to intentionally slow down touch response in order to require the user to touch longer to operate the key.

If FDIL $=1$, the device functions conventionally. Each channel acquires only once in rotation, and the normal detect integrator counter (NDIL) operates to confirm a detection. Fast-DI is in essence not operational.

If FDIL ≥ 2, then the fast-DI counter also operates in addition to the NDIL counter.
If Signal \leq NTHR: The fast-DI counter is incremented towards FDIL due to touch.
If Signal $>$ NTHR then the fast-DI counter is cleared due to lack of touch.
Disabling a key: If NDIL $=0$, the key becomes disabled. Keys disabled in this way are pared from the burst sequence in order to improve sampling rates and thus response time. See Section 2.2, page 3 .

NDIL Typical values:	2,3
NDIL Default value:	2
FDIL Typical values:	4 to 6
FDIL Default value:	5

6.6 Negative Recal Delay - NRD

If an object unintentionally contacts a key resulting in a detection for a prolonged interval it is usually desirable to recalibrate the key in order to restore its function, perhaps after a time delay of some seconds.
The Negative Recal Delay timer monitors such detections; if a detection event exceeds the timer's setting, the key will be automatically recalibrated. After a recalibration has taken place, the affected key will once again function normally even if it is still being contacted by the foreign object. This feature is set on a per-key basis using the NRD setup parameter.

NRD can be disabled by setting it to zero (infinite timeout) in which case the key will never auto-recalibrate during a continuous detection (but the host could still command it).

NRD is set using one byte per key, which can range in value from 0 ...254. NRD above 0 is expressed in 0.5 s increments. Thus if NRD $=120$, the timeout value will actually be 60 seconds. 255 is not a legal number to use.
NRD Typical values: 20 to 60 (10 to 30 seconds)
NRD Default value: 20 (10 seconds)
NRD Range:
NRD Accuracy:
$0 . .254(\infty, 0.5 . . .127 \mathrm{~s})$
to within $\pm 250 \mathrm{~ms}$

6.7 Positive Recalibration Delay - PRD

A recalibration occurs automatically if the signal swings more positive than the positive threshold level. This condition can occur if there is positive drift but insufficient positive drift compensation, or, if the reference moved negative due to a NRD auto-recalibration, and thereafter the signal rapidly returned to normal (positive excursion).

As an example of the latter, if a foreign object or a finger contacts a key for period longer than the Negative Recal Delay (NRD), the key is by recalibrated to a new lower reference level. Then, when the condition causing the negative swing ceases to exist (e.g. the object is removed) the signal suddenly swings positive to its normal reference.

It is almost always desirable in these cases to cause the key to recalibrate quickly so as to restore normal touch operation. The time required to do this is governed by PRD. In order for this to work, the signal must rise through the positive threshold level PTHR continuously for the PRD period.
After the PRD interval has expired and the autorecalibration has taken place, the affected key will once again function normally. PRD is fixed at 1 second for all keys, and cannot be altered.

PRD Accuracy: to within $\pm 50 \mathrm{~ms}$

6.8 Burst Length - BL

The signal gain for each key is controlled by circuit parameters as well as the burst length.
The burst length is simply the number of times the charge-transfer ('QT') process is performed on a given key. Each QT process is simply the pulsing of an X line once, with a corresponding Y line enabled to capture the resulting charge passed through the key's capacitance Cx.
QT60xx0 devices use a fixed number of QT cycles which are executed in burst mode. There can be up to 64 QT cycles in a burst, in accordance with the list of permitted values shown in Table 6.3, page 21.
Increasing burst length directly affects key sensitivity. This occurs because the accumulation of charge in the charge integrator is directly linked to the burst length. The burst length of each key can be set individually, allowing for direct digital control over the signal gains of each key individually.
Apparent touch sensitivity is also controlled by the Negative Threshold level (NTHR). Burst length and NTHR interact; normally burst lengths should be kept as short as possible to limit RF emissions, but NTHR should be kept above 6 to reduce false detections due to external noise.
The detection integrator mechanism also helps to prevent false detections.

```
BL Typical values: 2,3 (48,64 pulses / burst)
BL Default value: 2 (48 pulses / burst)
BL Possible values: 0, 1, 2, 3 (16, 32, 48,64
pulses/burst)
```


6.9 Adjacent Key Suppression - AKS

These devices incorporate adjacent key suppression ('AKS' - patent pending) that can be selected on a per-key basis. AKS permits the suppression of multiple key presses based on relative signal strength. This feature assists in solving the problem of surface moisture which can bridge a key touch to an adjacent key, causing multiple key presses. This feature is also useful for panels with tightly spaced keys, where a fingertip might in advertently activate an adjacent key.

AKS works for keys that are AKS-enabled anywhere in the matrix and is not restricted to physically adjacent keys; the device has no knowledge of which keys are actually physically adjacent. When enabled for a key, adjacent key suppression causes detections on that key to be suppressed if any other AKS-enabled key in the panel has a more negative signal deviation from its reference.
This feature does not account for varying key gains (burst length) but ignores the actual negative detection threshold setting for the key. If AKS-enabled keys in a panel have different sizes, it may be necessary to reduce the gains of larger keys relative to smaller ones to equalize the effects of AKS. The signal threshold of the larger keys can be altered to compensate for this without causing problems with key suppression.
Adjacent key suppression works to augment the natural moisture suppression of narrow gated transfer switches creating a more robust sensing method.

AKS Default value:

0 (Off)

6.10 Oscilloscope Sync - SSYNC

Pin 11 (S_SYNC) can output a positive pulse oscilloscope sync that brackets the burst of a selected key. More than one burst can output a sync pulse as determined by the Setups parameter SSYNC for each key.
This feature is invaluable for diagnostics; without it, observing signals clearly on an oscilloscope for a particular burst is very difficult.
This function is supported in Quantum's QmBtn PC software.
SSYNC Default value:
0 (Off)

6.11 Mains Sync - MSYNC

The Mains Sync feature uses M_SYNC pin 1.
External fields can cause interference leading to false detections or sensitivity shifts. Most fields come from AC power sources. RFI noise sources are heavily suppressed by the low impedance nature of the QT circuitry itself.
Noise such as from 50 Hz or 60 Hz fields becomes a problem if it is uncorrelated with acquisition signal sampling; uncorrelated noise can cause aliasing effects in the key signals. To suppress this problem the M_SYNC input allows bursts to synchronize to the noise source.

The noise synchronization operating mode is set by parameter MSYNC in Setups.

The synchronization occurs only at the burst for the lowest numbered enabled key in the matrix. The device waits for the synchronization signal for up to 100 ms after the end of a preceding full matrix scan, then when a negative synchronization edge is received, the matrix is scanned in its entirety again.
The sync signal drive should be a buffered logic signal, or perhaps a diode-clamped signal, but never a raw AC signal from the mains. The device will synchronize to the falling edge.

Since Noise synchronization is highly effective and inexpensive to implement, it is strongly advised to take advantage of it anywhere there is a possibility of encountering low frequency (i.e. $50 / 60 \mathrm{~Hz}$) electric fields. Quantum's QmBtn software can show such noise effects on signals, and will hence assist in determining the need to make use of this feature.
If the synchronization feature is enabled but no synchronization signal exists, the sensor will continue to operate but with a delay of 100 ms before the start of each matrix scan, and hence will have a slow response time. All synchronization signals are ignored during sleep.

```
SYNC Default value: 0 (Off)
SYNC Possible range: 0,1 (Off, On)
```


6.12 Sleep Duration - SLEEP

The QT60xx0 is designed to sleep as much as possible to conserve power. Periodically, the part wakes automatically scans the keyboard matrix and then returns to sleep. The length of time the part sleeps before automatically waking up can be configured to one of eight different values, via a look-up table. The look-up table index must be written to the setups (see Table 6.3, page 21).

SLEEP default value: 3 (125 ms)
SLEEP range: $\quad 0 . .7(16 \mathrm{~ms} . . .2 \mathrm{~s})$

6.13 Wake on Key Touch - WAKE

The device can be configured for wakeup when specific keys are touched. Each key has its own configuration bit so that any combination of keys can be configured for this purpose. The behavior is different depending on the selected interface.
When the $I^{2} \mathrm{C}$ interface is selected, the part will set the detect output when a key with WAKE option enabled confirms a touch.

With the shift register interface selected, touches on keys with WAKE option enabled prolong the period the part remains awake before automatically returning to sleep. This results in a fast response time to subsequent key touches once the part has detected the first key touch after waking up.

The time the part will remain awake after each key touch can be configured (see 6.14. All keys prolong the time the part remains awake once a key configured with the WAKE option has confirmed detect.
WAKE Default value:
1 (On)
WAKE Possible range: 0,1 (Off, On)

6.14 Awake Timeout - AWAKE

After each matrix scan, the part will automatically go to sleep whenever possible, to conserve power, but the awake timeout can be used to force the part to stay awake.
If the $I^{2} \mathrm{C}$ interface is selected, a recent communication from the host will prevent the part from sleeping. The device tracks the time elapsed since the last host communication and prevents the part from sleeping while the elapsed time is less than the 'Awake Timeout'; this helps prevent the part from falling asleep partway through a host communication. In other words, the Awake Timeout interval defines the minimum period since the last communication before the part will automatically return to sleep.

A touch on a key marked to self-wake will cause the part to remain awake for a longer period than would otherwise be the case. The part then has a much faster key response time because it continually scans the matrix rather than returning to sleep immediately after the key touch has finished. Subsequent key touches further prolong the awake time. In other words, once the part has been woken by touching a wake key, the key response time will be fast while the keyboard is in use. Once key touches have finished and there have been no key touches for the Awake Timeout, the part will return to sleep.
The awake period can be configured to a value between 100 ms and 25.5 s , in increments of 100 ms .

AWAKE default value:	$255(25.5 \mathrm{~s})$
AWAKE range:	$1 \ldots 255(100 \mathrm{~ms} . . .25 .5 \mathrm{~s})$

AWAKE range:
1... 255 (100ms...25.5s)

AWAKE Timeout accuracy: to within $\pm 50 \mathrm{~ms}$

6.15 Setups Block

Setups data is sent from the host to the QT using the $I^{2} \mathrm{C}$ interface. The setups block is memory mapped onto this interface. Thus each setup can be accessed by reading/writing the appropriate address. Setups can be accessed individually or as a block. Before writing to any setup, an unlock code (value 0×55) must be written to the setups write unlock address. Refer also to Table 6.3, page 21 for further details, and all of Section 6.

Table 6.1 QT60160 Setups Table
(see next page for QT60240)

Item	Address	Bytes	Parameter	Symbol	Valid Range	Bits	Key Scope	Default Value	Description	Page
1	131... 146	16	Neg thresh Neg Drift Comp	NTHR NDRIFT	$\begin{aligned} & \text { NTHR = } 0 \ldots 15 \\ & \text { NDRIFT }=0 \ldots . .15 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$	Lower nibble $=$ Neg Threshold - take operand and add 4 to get value Upper nibble $=$ Neg Drift comp - via LUT (Table 6.3, page 21)	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
2	147... 162	16	Pos Drift Comp	PDRIFT	PDRIFT = 0... 15	4	1	4	Upper nibble $=$ Pos Drift comp - via LUT (Table 6.3, page 21)	15
3	163... 178	16	Normal DI Limit Fast DI Limit	NDIL FDIL	$\begin{aligned} & \text { NDIL }=0 \ldots 15 \\ & \text { FDIL }=0 \ldots . .15 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	Lower nibble $=$ Normal DI Limit, values same as operand ($0=$ disabled burst) Upper nibble $=$ Fast DI Limit, values same as operand (0 invalid)	16
4	179... 194	16	Neg recal delay	NRD	0... 254	8	1	20	Range is in 0.5 sec increments; $0=$ infinite; default $=10 \mathrm{~s}$ Range is $\{$ infinite, 0.5...127s \}; 255 is illegal to use	16
5	195... 210	16	Wake On Touch Burst Length AKS Scope Sync	WAKE BL AKS SSYNC	$\begin{aligned} & \text { WAKE }=0,1 \\ & \text { BL }=0 . .3 \\ & \text { AKS }=0,1 \\ & \text { SSYNC }=0,1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	Bit 3 = WAKE, 1 - enabled Bits 5, 4: = BL, via LUT (Table 6.3, page 21), default $=48$ Bit 6 = AKS, 1 = enabled Bit 7 = Scope sync, 1 = enabled	$\begin{aligned} & 18 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$
6	211	1	Sleep Duration Mains Sync	SLEEP MSYNC	$\begin{aligned} & \text { SLEEP = 0...7 } \\ & \text { MSYNC }=0,1 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	Bits $2,1,0=$ Sleep Duration, via LUT (Table 6.3, page 21), default $=125 \mathrm{~ms}$ Bits $6=$ Mains sync, negative edge, 1 = enabled; default = off	$\begin{aligned} & 18 \\ & 17 \end{aligned}$
7	212	1	Awake Timeout	AWAKE	1... 255	8	16	255	Range is in 100 ms increments; $1=100 \mathrm{~ms}$. Default $=25.5 \mathrm{~s}$. 0 is illegal to use	18

Table 6.2 QT60240 Setups Table
(see prior page for QT60160)

Item	Address	Bytes	Parameter	Symbol	Valid Range	Bits	Key Scope	Default Value	Description	Page
1	131... 154	24	Neg thresh Neg Drift Comp	$\begin{gathered} \text { NTHR } \\ \text { NDRIFT } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { NThr }=0 \ldots . .15 \\ \text { NDrift }=0 . . .15 \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$	Lower nibble $=$ Neg Threshold - take operand and add 4 to get value Upper nibble $=$ Neg Drift comp - via LUT (Table 6.3, page 21)	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
2	155... 178	24	Pos Drift Comp	PDRIFT	PDrift $=0 . . .15$	4	1	4	Upper nibble $=$ Pos Drift comp - via LUT (Table 6.3, page 21)	15
3	179... 202	24	Normal DI Limit Fast DI Limit	NDIL FDIL	$\begin{aligned} & \text { Ndil }=0 \ldots 15 \\ & \text { FDil }=0 . . .15 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	Lower nibble $=$ Normal DI Limit, values same as operand ($0=$ disabled burst) Upper nibble = Fast DI Limit, values same as operand (0 does not work)	16
4	203... 226	24	Neg recal delay	NRD	0... 254	8	1	20	Range is in 0.5 sec increments; $0=$ infinite; default $=10$ s (operand $=20$) Range is $\{$ infinite, 0.5 ... 127 s \}; 255 is illegal to use	16
5	227... 250	24	Wake On Touch Burst Length AKS Scope Sync	$\begin{gathered} \text { WAKE } \\ \text { BL } \\ \text { AKS } \\ \text { SSYNC } \end{gathered}$	$\begin{aligned} & \text { WAKE }=0,1 \\ & \text { BL }=0 \ldots 3 \\ & \text { AKS }=0,1 \\ & \text { SSYNC }=0,1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	Bit 3 = WAKE, 1 - enabled Bits 5, 4: = BL, via LUT (Table 6.3, page 210), default $=48$ (setting $=2$) Bit $6=$ AKS, 1 - enabled Bit $7=$ Scope sync, $1=$ enabled	$\begin{aligned} & 18 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$
6	251	1	Sleep Duration Mains Sync	SLEEP MSYNC	$\begin{aligned} & \text { SLEEP }=0 \ldots 7 \\ & \text { Msync }=0,1 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	Bits $2,1,0=$ Sleep Duration, 7 values via LUT, default $=125 \mathrm{~ms}$ Bits 6 = Mains sync, negative edge, 1 = enabled; default $=0$ (off)	$\begin{aligned} & 18 \\ & 17 \end{aligned}$
7	252	1	Awake Timeout	AWAKE	1... 255	8	24	255	Range is in 100 ms increments; $1=100 \mathrm{~ms}$. Default $=25.5 \mathrm{~s} .0$ is illegal to use	18

Table 6.3 Setups Lookup Table
Applies to both QT60160 and QT60240

Typical values: For most touch applications, use the values shown in the outlined cells. Bold text items indicate default settings. The number to send to the QT is the number in the leftmost column (0..15), not numbers from within the table. The QT uses lookup tables to translate the $0 . . .15$ to the parameters for each function.
NRD is an exception: it can range from $0 . . .254$ which is translated from $1=0.5$ s to $254=127$ s with zero $=$ infinity. 255 is illegal.
AWAKE is an exception: it can range from $0 . . .255$ which is translated from $1=0.1 \mathrm{~s}$ to $255 \mathrm{~s}=25.5 \mathrm{~s}$. Zero is illegal

Index Number	Parameter												
	NTHR counts	NDRIFT secs	PDRIFT secs	NDIL counts	FDIL counts	NRD secs	WAKE	BL pulses	AKS	SSYNC	SLEEP ms	MSYNC	AWAKE secs
	Per key	Global	Global	Global									
0	4	0.1	0.1	Key off	unused	0 (Infinite)	Off	16	- Off -	- Off -	16	- Off -	unused
1	5	0.2	0.2	1	1	0.5 .. 127s	- On -	32	On	On	32	On	0.1...25.5s
2	6	0.3	0.3	-2-	2	Default=		-48-			64		Default=
3	7	0.4	0.4	3	3	10s		64			-125-		$25.5 \mathrm{~s}$
4	8	0.6	- 0.6 -	4	4						250		
5	9	0.8	0.8	5	-5-						500		
6	-10-	1	1	6	6						1,000		
7	11	1.2	1.2	7	7						2,000		
8	12	1.5	1.5	8	8								
9	13	2	2	9	9								
10	14	-2.5-	-2.5-	10	10								
11	15	3.3	3.3	11	11								
12	16	4.5	4.5	12	12								
13	17	6	6	13	13								
14	18	7.5	7.5	14	14								
15	19	10	10	15	15								

7 Specifications

7.1 Absolute Maximum Electrical Specifications
Operating temp $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temp $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vdd 0.5 to +5.5 V
Max continuous pin current, any control or drive pin. $\pm 10 \mathrm{~mA}$
Short circuit duration to ground, any pin. infinite
Short circuit duration to Vdd, any pin infinite
Voltage forced onto any pin -0.6 V to (Vdd + 0.6) Volts
... . 100,000 write cycles
7.2 Recommended Operating Conditions
Vdd +2.0 V to 5.25 V
Supply ripple+noise. 5 mV p-p max
Cx transverse load capacitance per key 0 to 20 pF

7.3 DC Specifications

$\mathrm{Vdd}=5.0 \mathrm{~V}, \mathrm{Cs}=4.7 \mathrm{nF}, \mathrm{Rs}=470 \mathrm{~K} ; \mathrm{Ta}=$ recommended range, unless otherwise noted

Parameter	Description	Min	Typ	Max	Units	Notes
Iddr	Supply current, running				mA	
Vr	Vdd internal reset voltage		1.8		V	
Vil	Low input logic level			0.2 Vdd	V	$2 \mathrm{~V}<\mathrm{Vdd}<5 \mathrm{~V}$
Vhl	High input logic level	0.6 Vdd			V	$2 \mathrm{~V}<\mathrm{Vdd}<5 \mathrm{~V}$
Vol	Low output voltage			0.2	V	
Voh	High output voltage	4.2			V	
lil	Input leakage current			1	$\mu \mathrm{~A}$	
Ar	Acquisition resolution		10		bits	
Rrst	Internal /RST pullup resistor			60	$\mathrm{k} \Omega$	

7.4 Mechanical Dimensions

Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
A	0.80	0.90	1.00
A1	0.20 REF		
A2	5.00 BSC		
A3	5.00 BSC		
B			
C	0.02		
D	0.18	0.23	0.30
E	0.30	0.40	0.50
F	2.95	3.10	3.25
G	2.95	3.10	3.25
e			

7.5 Marking

$\mathbf{T}_{\mathbf{A}}$	MLF Part Number	Keys	Marking
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QT60160-ISG	16	TBD
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QT60240-ISG	24	TBD

Corporate Headquarters

1 Mitchell Point
Ensign Way, Hamble SO31 4RF
Great Britain
Tel: +44 (0)23 80565600 Fax: +44 (0)23 80453939
www.qprox.com
North America
651 Holiday Drive Bldg. 5/300
Pittsburgh, PA 15220 USA
Tel: 412-391-7367 Fax: 412-291-1015

This device covered under one or more of the following United States and international patents: 5,730,165, 6,288,707, 6,377,009, 6,452,514, $6,457,355,6,466,036,6,535,200$. Numerous further patents are pending which may apply to this device or the applications thereof.

The specifications set out in this document are subject to change without notice. All products sold and services supplied by QRG are subject to our Terms and Conditions of sale and supply of services which are available online at www.qprox.com and are supplied with every order acknowledgement. QProx, QTouch, QMatrix, QLevel, QSlide, and QWheel are trademarks of QRG. QRG products are not suitable for medical (including lifesaving equipment), safety or mission critical applications or other similar purposes. Except as expressly set out in QRG's Terms and Conditions, no licenses to patents or other intellectual property of QRG (express or implied) are granted by QRG in connection with the sale of QRG products or provision of QRG services. QRG will not be liable for customer product design and customers are entirely responsible for their products and applications which incorporate QRG's products.

