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Abstract

The work presented in this paper deals with the problem of the navigation of a mobile robot either in unknown indoor
environment or in a partially known one.

A navigation method in an unknown environment based on the combination of elementary behaviors has been developed.
Most of these behaviors are achieved by means of fuzzy inference systems. The proposed navigator combines two types of
obstacle avoidance behaviors, one for the convex obstacles and one for the concave ones. The use of zero-order Takagi–Sugeno
fuzzy inference systems to generate the elementary behaviors such as “reaching the middle of the collision-free space” and
“wall-following” is quite simple and natural. However, one can always fear that the rules deduced from a simple human
expertise are more or less sub-optimal. This is why we have tried to obtain these rules automatically. A technique based on a
back-propagation-like algorithm is used which permits the on-line optimization of the parameters of a fuzzy inference system,
through the minimization of a cost function. This last point is particularly important in order to extract a set of rules from the
experimental data without having recourse to any empirical approach.

In the case of a partially known environment, a hybrid method is used in order to exploit the advantages of global and local
navigation strategies. The coordination of these strategies is based on a fuzzy inference system by an on-line comparison
between the real scene and a memorized one. The planning of the itinerary is done by visibility graph and A∗ algorithm. Fuzzy
controllers are achieved, on the one hand, for the following of the planned path by the virtual robot in the theoretical environment
and, on the other hand, for the navigation of the real robot when the real environment is locally identical to the memorized one.

Both the methods have been implemented on the miniature mobile robot Khepera® that is equipped with rough sensors. The
good results obtained illustrate the robustness of a fuzzy logic approach with regard to sensor imperfections. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Various methods for controlling mobile robot
systems have been developed which are generally
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classified into two categories: global planning and
local control. Many works, based on the complete
knowledge of the robot and the environment, use a
global planning method such as artificial potential
fields [11], connectivity graph, cell decomposition
[12], etc. These methods build some paths (set of
sub-goals) which are free of obstacles. Their main
advantages are to prove the existence of a solution
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which permits the robot to reach its destination and
to generate collision-free map-making. Thus, in this
map, a global optimal solution can be achieved with
the assistance of a cost function. The latter is related
to either the global route between a start position to a
goal position due to the A∗ algorithm, e.g., the time
path, or the security of the mission [18]. However,
they have some well-known drawbacks. For example,
an exact model of the environment is needed which
unfortunately cannot be defined in most applications.
Then, it is difficult to handle correctly a modifica-
tion of the environment due to some new or dynamic
objects.

The local methods are mainly used in an unknown
environment. They could be called reactive strategies
and are completely based on sensory information.
Therefore, an absolute localization is not requisite
and only the relative interactions between the robot
and the environment have to be assessed. In these cir-
cumstances, a structural modeling of the environment
is unnecessary, but the robot has to acquire through
its sensory inputs a set of stimulus–response mecha-
nisms. In this scheme, the robot is generally expected
to carry out only simple tasks. Numerous methods
have been proposed [4]. They do not guarantee a
solution for the mission because of the occurrence
of deadlock problems. The reason is that the robot
does not have a high-level map-reading ability. For
more efficiency and safety, perception tools have to
be increased (several types of sensors including, e.g.,
cameras) to get more pertinent information about the
environment. But then it is not easy to process the
data under real time constraints. These constraints
often lead to a degradation of the accuracy and the
richness of the information.

Some constraints are added to the intrinsic draw-
backs of these methods caused by:

• the imprecision or lack of knowledge in understand-
ing all the phenomena contributing to the behavior
of the system and its environment;

• the difficulties to represent correctly the environ-
ment and to locate the robot, due to errors in the
sensors data which are still far from perfect, taking
into account the present day technologies.

In other respects, a set of methodologies, called
qualitative or approximate reasoning, have been devel-
oped to build a decision making approach in systems

where imperfection cannot be completely avoided or
corrected. These methodologies attempt to capture
some aspects of the human behavior in system control.
Their aim is to incorporate implicitly the imperfection
in the information gathering and reasoning process,
rather than to determine them explicitly through nu-
merical calculations or mathematical representations.

Some qualitative reasoning theories have been de-
veloped over the past few years [10] and currently
the most used for application in control systems is the
theory of fuzzy sets [30]. The control based on this
theory [13] provides satisfying results even in cases
where classical control failed. As a fuzzy controller is
built following the knowledge of experts, a complex
or ill-defined system can be described without using
an exact mathematical model. Therefore, the fuzzy
sets theory is a good candidate both to handle impre-
cision and to assign built-in guidance control enabling
the robot to navigate throughout complex environ-
ments. In fact, we know from our own experience of
human motion that it is unnecessary either to know
our own exact location or to have a comprehensive
knowledge of the whole scene. It can be sufficient,
e.g., to know whether there is enough free space to get
around an obstacle and to recognize marks indicat-
ing whether the passageway leads to the goal or not.
Many application works of fuzzy logic in the mobile
robot field have given promising results [23,27,28],
etc.

The finality of our work consists of developing low
cost navigation strategies in indoor environment, e.g.,
the aim is to help disabled people [8]. In this con-
text, the main concern is to build efficient navigation
techniques giving more priority to safety than to op-
timality. Fig. 1 gives a global scheme of the adopted
strategy. It is based on the fact that generally one can
dispose of a building’s map in which some main fixed
elements of the environment are located: walls, doors,
heavy and fixed furniture, etc. But, many unfixed el-
ements, whose positions is a priori unknown, can be
added to the initial map. In this situation, two extreme
cases can happen. If the environment detected by the
robot corresponds to the memorized map, then the
robot should follow with high speed a planed trajec-
tory using a global method. On the contrary, if the
environment is not recognized, a displacement at a
reduced speed has to be generated by a local method
of reactive navigation. Between these two extreme
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Fig. 1. Global scheme of the adopted strategy.

situations, a progressive evolution must be done by
fusing outputs coming from both modules as a func-
tion of a degree of recognition of the memorized
scene.

This paper is organized as follows: first the used
mobile robot is described and some working assump-
tions are given in Section 2. Section 3 presents the
local method for navigation in an unknown environ-
ment. In Section 4 the global method used in known
environment is given and the fusion of both the meth-
ods is developed. Finally, a conclusion is given in
Section 5.

2. Physical implementation and working
assumptions

The experimentation is mainly done on Khepera®

which is a small mobile robot developed at the Ecole
Polytechnic Fédérale de Lausanne (EPFL). Our mo-
tivations to work with such a miniature robot are the
following:

1. Our methodology is based on developing strate-
gies using logical rules independently of a precise
model of the robot. So the transfer of control
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Fig. 2. The miniature mobile robot Khepera®.

algorithms from one robot to another is not a
difficult problem.

2. Nevertheless, to work with a real robot is largely
preferable to use simulations as far as, e.g., dealing
with sensor imperfections or real time constraints
is concerned.

3. Finally it is clear that the easiness to build and
modify the environment of a mini robot is greatly
appreciable.

Khepera® has a circular shape featuring 55 mm in
diameter (2r), 30 mm in height and 70 g in weight
[20]. Two wheels and two small Teflon balls support it.
The robot possesses eight infrared sensors, which are
composed of an emitter and an independent receiver.
These sensors(S0,S1, . . . ,S7) are disposed in a
somewhat circular fashion around its body (Fig. 2) and
allow the measurement of distances in a short range
from about 1 to 5 cm. Its maximum linear speed is
about 40 mm/s.

The robot’s linear and angular speeds are sent from
a host computer via a serial link to an on-board chip,
which is based on a Motorola 68331 micro-controller.
The linear speeds of the right and left wheels are then
calculated.

In this study, we assume the following conditions:

• The robot moves on a flat ground.
• Inertial effects are neglected.
• The used mobile robot has the non-holonomic

characteristic but this later is not constraining.
• The robot moves without sliding and can be

localized when it finds itself in a locally known
scene [22].

Most of the experiments are done on both the real
and a simulated mobile robot. The simulator dedicated
to Khepera® has been written in C++ by Michel
[19] and runs on SUN Sparc station. The experimental
results deduced from the real and simulated mobile
robot are very near.

3. Navigation strategies in unknown environment

3.1. Principle

In a totally unknown environment, the navigation is
done completely in a reactive manner. So a classical
method such as the artificial potential fields [11] could
be used. But it is well known that this method suffers
from local minima problems leading to blocking sit-
uations. A solution has been proposed in a previous
work [14] based on an automatic tuning of attractive
and repulsive force coefficients due to fuzzy rules.
Nevertheless some oscillation problems remain in nar-
row environments and passageways, which are very
constraining for dedicated utilities indoor robotics.

The described approach (Fig. 1) here is largely
based on fuzzy inference systems (FISs) and inspired
from human behavior, which consists to reach the
free space while seeking the goal (strategy S1). This
allows avoiding local minima by reaching the mid-
dle of the available free space when the robot passes
through a cluttered environment [2]. But some failing
situations are yet encountered in the case on concave
obstacles. That is why coordination of S1 and another
elementary behavior of wall-following type including
the creation of transition sub-goals develop a second
strategy S2. As a matter of fact, the idea is to antic-
ipate in order to avoid a potential blocking situation
rather than to discover it and subsequently react. So,
an obstacle will be in fact qualified asconcave if all
the used exteroceptive sensors give simultaneously
small measurements of distances, since, even if the
obstacle has not really a concave geometric shape, it is
preferable to trigger the S2 strategy instead of taking
the risk to fall in a blocking situation with S1 strategy.

To skirt the two sides of the wall, the detection of
a concave obstacle (Fig. 3) provokes the creation of
an intermediate sub-goal of transition “SG[i]” at the
point of detection and triggers the wall-following be-
havior to act, e.g., on the left side. If the robot goes
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Fig. 3. Concave obstacle skirting.

away from the target and the distance of displacement
is greater than a threshold distanceT; it turns back
to the intermediate sub-goal SG[i] previously memo-
rized, due to the strategy S1. Then, it skirts the obsta-
cle on the other side, with the same threshold distance
T. The wall-following ceases if the two following con-
ditions are filled:

• The three sensors measure big distances.
• The goal is in the right or in the left (depending

on the side of the obstacle followed by the robot)
quadrant with respect to the actual direction of the
robot.

The developed algorithm allows a robot with exte-
roceptive sensors to travel from any start pointS to
any target pointG in a cluttered environment without
any prior knowledge on the location of the obstacles.

3.2. On-line optimization of FISs for reactive
strategies

The reactive strategies of navigation (reaching a
collision-free space, goal-seeking and wall-following)
are completely based on sensory information. Two

Fig. 4. Learning architecture.

of them (reaching a collision-free space and wall-
following) are built due to self-tunable fuzzy inference
systems (STFISs) controlling the angularω and lin-
earv speeds of the mobile robot. The angular speed is
generated first at a given linear speed and, then after
convergence of this later structure, the control rules of
the linear velocity are deduced.

With respect to the use of a classical, manually
tuned FIS to build the reactive behaviors of the robot,
the STFIS has the following two main advantages:

• It avoids the manual tuning of the parameters of
the FIS that can be in some cases quite long and
cumbersome. Moreover, this manual tuning leads
inevitably to a sub-optimal behavior.

• It allows to cope exactly with the physical char-
acteristics of the robot. If either these characteris-
tics evolve with time or the robot is changed (or a
change from a simulator robot to a real one is car-
ried out), the controller will adapt automatically to
the new situation.

The structure of the FIS is as follows. The member-
ship function for the input values are triangular and
fixed. A min operator performs the conjunction of the
inputs and the conclusions of the rules are numeri-
cal valuesWi (so-called weights). They are optimized
through a learning process [1].

The shape of the used membership functions is tri-
angular and fixed in order to extract and represent eas-
ily the knowledge from the final results. So the output
valuey (v or ω) is given by

y =
∑n

i=1Wi × αi∑n
i=1αi

,

whereαi are the truth values of each fired rule.
The learning architecture is presented in Fig. 4.

This architecture is a simplified version of the “distal
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control” method proposed by Jordan and Rumelhart
[9] for neuro-control. In the original method, two neu-
ral networks are used: one for modeling the plant and
another for the controller. In fact, as pointed by Jordan
and Rumelhart it is not necessary to work with an ac-
curate model of the plant to obtain an efficient con-
trol. Saerens [26] and Renders [24] have shown that
the model network can be successfully approximated
by the sign of the terms of the Jacobian matrix of
the plant (in the assumption that these signs are fixed
on the working space, which is valid for a lot of real
systems). These results have been extended by substi-
tuting to the neural controller a fuzzy controller with
adaptive parameters [5], leading to the very simple
architecture as in Fig. 4 for single input single output
(SISO) systems.

The learning is entirely done on-line on the
actual robot. The table of rules (weightsWi) is initially
empty. The robot acquires by its sensors the distances
to the environment, calculates the error to be back
propagated, updates the triggered rules in real time,
begins to move and so on, etc. The weights of the
table of decision are then adjusted locally and pro-
gressively. As the learning progresses, the mobile is
more and more able to cope with new situations.

The back-propagation training technique [25]
updates weights according to:

W(k + 1) = W(k)+ η

(−∂J
∂W

)
,

wherek is the training iteration,J is the cost function
used in the learning algorithm,η is the learning rate
and�W(k) = W(k)−W(k − 1).

If the classical quadratic error is used as a cost
function,J = 1

2ε
2 whereε depends on the task; the

back-propagation minimizes effectively the value of
J, leaning rapidly to a good reactive navigation. But,
if the learning is prolonged, the weights increase con-
tinuously with time and, progressively, the quality of
the control decreases. To overcome this difficulty, a
technique known as “weight decay” in classification
methods [6] and having a strong relation with ridge
regression and regularization theory [3] is used. So
a second term is included in the cost function that
becomes

J = 1

2
ε2 + λ

∑
W2

i ,

whereλ is a coefficient proportional toαi/
∑

αi . It
is chosen so that the output value does not exceed
the maximum angular speed of each wheel of the
robot (1.58 rad/s). By applying this method, a satura-
tion of the growth of the weights is obtained without
any degradation of the residual quadratic error and
the quality of the control is maintained even under
prolonged learning.

3.3. Avoidance of convex obstacles

This navigator is built by fusing two elementary
behaviors: a self-tunable fuzzy controller to reach the
middle of the free space and a crisp one to track the
current sub-goal.

3.3.1. Reaching the middle of the collision-free
space behavior

When the vehicle is moving towards the target and
the sensors detect an obstacle, an avoiding strategy is
necessary. The method consists of reaching the middle
of a collision-free space. This behavior is obtained by
means of an STFIS.

The input variables are respectively the normalized
measured distance on the right (R), on the left (L) and
in front (F) such as

Rn = R

R + L
, Ln = L

R + L
, Fn = F

σ
,

where front dataF = min(S0,S7); right dataR =
min(S6,S7); left dataL = min(S1,S2) and σ is a
distance beyond which the obstacles are not taken into
account. Due to this normalization, the universes of
discourse evolved automatically with the sensor data
(Fig. 5).

The shape of the membership function is triangular
and the sum of the membership degrees for each vari-
able is always equal to 1. The universes of discourse
are normalized between 0 and 1.

For this behavior and to generate first the control
rules for the angular speedωa, the error used in the
cost function is given byεω = Y − 1

2(Y + Fn) where
Y is eitherRn or Ln. After a few rounds at a constant
linear speed on a learning track, the navigation of the
robot is satisfying.

The weights of the controller converge to the values
given in Table 1, where the linguistic labels for the in-
puts are defined as: Z (zero), S (small), M (medium),
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Fig. 5. Evolution of the universe of discourse with the width of
the environment.

B (big) and VB (very big). These numerical values
could be eventually translated in symbolic values to
verify the logical meaning of the rules. We can assign
to them a linguistic interpretation by substituting the
symbolic concept PB (positive big) for the values
greater than 0.7, PS (positive small) for the values
between 0.2 and 0.7, Z (approximately zero) for the
values between−0.2 and 0.2, NS (negative small) for
the values between−0.2 and−0.7, and NB (negative
big) for the values lesser than−0.7. We obtain the
linguistic table for the angular speed from Table 2. It
is interesting to compare this later with a table written

Table 1
Angular speed coefficient rules

Table 2
Linguistic table for the angular speed

empirically from experience of a human driver, and
following the very usual diagonal structure known as
McVicar–Whelan’s [17] controller (Table 3). We can
observe that the two linguistic sets of rules are very
near. Only three cases (noted with∗) are different
and they differ from only one linguistic concept (PS
instead of PB and Z instead of PS and NS). So, we
can claim that the extracted rules are quite logical and
coherent. Moreover, the use of STFISs allows the op-
timization of the controller with respect to the actual
characteristics of the robot. This means that the rough
and manual tuning of the parameters of the fuzzy con-
troller is replaced by a fine local automatic tuning and

Table 3
Linguistic table deduced by human expertise
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this can improve very significantly the performances,
e.g., a given way is traveled more quickly with the
STFIS controller than with the classical controller by
taking into account the actual maximum speed of the
robot’s wheels.

A structure of the same type is used to generate the
control rules for the linear speedva as a function of
the angular speedωα and the front distanceF. The
cost function is realized with

εv = 40− max(|va + rωα|, |va − rωα|)
−(1 − 1

5F) · 40.

This allows to attain the maximum speed (40 mm/s)
and to decrease the speed as a function ofF.

The linguistic labels forω are defined as N (nega-
tive), Z (approximately zero) and P (positive) and for
F they are Z (approximately zero), S (medium) and B
(big). The output weights of the controller after learn-
ing are given in Table 4.

It is easy to verify that these weights correspond
rules expressing that the more the robot has to turn
and the closer a frontal obstacle is, the greater is the
reduction of the linear speed. Fig. 6 presents an ex-
ample of navigation in a real cluttered environment.
The self-tunable fuzzy controller shows its efficiency
to realize the task. But in order to reach its goal the
robot has to be provided with a goal-seeking behavior.

3.3.2. Goal-seeking behavior
The basic scheme is given in Fig. 7. The goalG

produces an attractive forceFa that guides the robot to
its destination. The actions (Cωg andCvg) generated by
this force are modulated by the inverse of the distance

Table 4
Linear speed coefficient rules

Fig. 6. “Reaching the middle of the collision-free space” behavior:
experimentation with the simulator.

PG between the center of the robot and the goal.θg
is the angular deviation needed to reach the goal.D
is the distance of influence of the goal. It is supposed
that no obstacle exists in the circle of diameterD.

When the robot is far enough from the sub-goal
(PG > D) the angular speed coefficient is given by

Cωg = Cg

PG

D

π
θg.

The coefficientCg is chosen in such a way that the
robot reaches a maximum angular speed forθg < π .
So it does not deviate too much from thePG direc-
tion. As soon as the robot reaches the influence zone
of the goal(PG < D) the angular speed coefficient

Fig. 7. Goal-seeking scheme.
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becomes

Cωg = Cg

π
θg.

In both the casesCωg is normalized so that |Cωg| can-
not exceed 1. Moreover, the goal-seeking linear speed
coefficient is determined in relation toCωg by the
equation

Cvg = 1 − |Cωg|.
This expresses the following rule: the more the robot
is pointed towards the goal direction or the further the
robot is from the goal, the faster it can move (knowing
that the speed is bounded by a maximal value either
by the user or by the hardware).

3.3.3. Fusion of “reaching of the middle” and
“goal-seeking” behaviors

In reactive navigation, the safety of the robot is
essential. For this reason, we distinguish two cases:

• If an obstacle is detected very close to the robot,
on only one side or in the front, then the obstacle
avoidance has priority and the attraction is cancelled
(Cωg = 0).

• Else, the angular speed set-pointωr applied to the
robot results from a linear combination between the
obstacle avoidance and the sub-goal attraction:

ωr = αωa + βCωgωmax,

whereα andβ are coefficients adjusted by experi-
mentation to get the best trajectory generation and
ωmax is the maximum chosen angular speed. The
linear speedVr set-point is given by

Vr = min(Va, CvgVmax),

if the robot is outside the zone ofD radius. Else, it
is reduced so that

Vr = min(Va, CvgVmin),

whereVmax andVmin are the maximum and mini-
mum chosen linear speed, respectively.

An example of implementation of this fusion rule
on the robot Khepera® is shown in Fig. 8. The task
consists in getting through a doorway in an environ-
ment like a flat. For more visual clarity, the obstacle
is drawn on the screen in accordance with the sensor

Fig. 8. Avoidance of convex obstacles: experimentation with
Khepera®.

impacts. The robot avoids the obstacle while seeking
the goals (G1, then G2).

3.4. Avoidance of concave obstacles

In an environment composed with concave obsta-
cles and in order to avoid blocking situations, we use
an additional behavior, inspired of the myopic method,
which consists of following the contour of the obsta-
cle in order to skirt round it. This behavior is built by
means of an STFIS. The goal is to follow the walls
surrounding the robot at a “dsetpoint” distance, with
regard to the sensor measurements:F (front) andL
(left) or F andR (right) (Fig. 9).

The shape of the membership functions is triangu-
lar and the universes of discourse are defined between
0 andσ (5 cm for Khepera®) for the inputs. For this
behavior, the error used in the cost function for the an-
gular speed is given byεω = min(Y, F )− d setpoint,
whereY is eitherR (wall-following on the right side)
or L (wall-following on the left side) and dsetpoint
is a given set-point distance. On the beginning of
the learning the robot is near a wall in an unknown

Fig. 9. Wall-following strategy.
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Fig. 10. Wall-following learning track: experimentation with the
simulator.

environment. After a few rounds at a constant linear
speed on the learning track (Fig. 10), the robot is able
to follow all the walls of the track at the given distance.

At this time, the output weights of the controller
have converged to the values given in Table 5 where
the linguistic labels for the inputs are defined as: Z
(zero), S (small), M (medium), B (big) and VB (very
big). For the linear speed, the structure is the same one
as for the “reaching the middle of the collision-free
space” behavior. After convergence, the obtained nu-
merical values are given in decision Table 6. The
logical meaning of the rules is obvious since they ver-
ify that the more the angular speed increases and the
closer a frontal obstacle is, the greater the reduction of
the linear speed is. The blocks marked with the sym-

Table 5
Decision table for angular speed (rad/s)

Table 6
Decision table for linear speed

bol X are never triggered because, if the robot turns
on the right, that’s means there is no wall in front.

The robot is now able to follow correctly over the
walls of the any shape at the given set-point distance
with a smooth and continuous trajectory (Fig. 11).
The whole algorithm for concave obstacle avoidance
has been tested on the robot Khepera®. In Fig. 12(a),
only one sub-goal is created, because the value of the
threshold of displacementT is quite big(T = 1 m).
In Fig. 12(b), the thresholdT is smaller(T = 0.5 m):
three intermediate sub-goals are created now before
the robot converges towards the final goal. Besides,
T is chosen depending on the environment size and
constraints of the mission. As a general rule, too low a

Fig. 11. Wall-following generalization track.
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Fig. 12. Experiments of concave obstacles skirting with Khepera®.

value ofT provokes many direction changes, increas-
ing the imprecision of the localization. In the opposite
case, too high a value mainly leads to sub-optimal
trajectories.

3.5. Coordination of behaviors

Now the whole strategy of reactive navigation (as
described in Fig. 1 and Section 3.1) in a complex
environment, using all the developed reactive agents,
can be applied. An example of result is shown in
Fig. 13 where the robot avoids and skirts success-

Fig. 13. Coordination of behaviors.

fully obstacles of various shapes before to attain its
goal. In fact, the S2 strategy is activated in “Z1” and
“Z3” zones by coordination of the S1 strategy and the
wall-following behavior due to the creation of an in-
termediate sub-goal. In “Z2” and “Z4” zones only the
S1 strategy is triggered.

4. Navigation in a partially known environment

In the case of indoor robotics field, one has to ex-
ploit the a priori knowledge of the environment that
takes the form of the map containing the main charac-
teristic features (walls, doors, fixed furniture, etc). So
it obvious that an efficient control of the mobile robot
needs:

• a local level based completely on the information
of different sensors covering the close circle of the
vehicle;

• a high-level for path planning using a global des-
cription of the world with possibly incomplete
and/or imperfect knowledge.

The original idea is to keep in memory this
pre-acquired knowledge contrary of most works done
in this field [12], where the a priori knowledge is used
only to generate sub-goals. This allows having a safe
navigation, to modulate continuously the speed and
eventually to update the map.

The approach exploits that the a priori knowledge
on the environment (scene called “memorized” in
which a virtual robot moves) which is susceptible to
local variations by modification and/or by addition of
obstacles (scene called “real”) (Fig. 14).

4.1. Planned path following in a real known
environment

For the planning of a path, the visibility graph and
the A∗ algorithm are used. The visibility graph [12] is a
set of straight lines connecting the source, the goal and
obstacle vertices. Each point is connected to all viewed
points without intersecting obstacles (Fig. 15). Then,
an optimal path is searched with an A∗ algorithm in
the generated graph, using the Euclidean distance as a
cost function. This path is a polygonal line connecting
the source to the goal; it is the shortest collision-free
path from source to goal.
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Fig. 14. Comparison between real and memorized scenes.

This method is well adapted to generate a path (set
of sub-goals) for a robot represented by a point. In
order to consider the whole ground space occupied by
the robot, we need to extend the area of the obstacles.
In our case the used robots have circular shape. Then,
the obstacles are dilated by a distance equal to the
diameter of the robot with a revolution symmetry such
as the arcs of the circle are approximated by some
segments.

In Fig. 16 we show an example of environment
for the mini robot Khepera®. The obstacles are the
shaded polygons. They are surrounded by a dotted

Fig. 15. Optimal path.

line representing the dilatation. The optimal path
obtained by the A∗ algorithm is the dashed line join-
ing the source point to the goal point through some
sub-goals indicated by the black points.

The path to follow is the segments joining the
successive sub-goals. In order to assure the control

Fig. 16. Path planning in a real environment.
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Fig. 17. Control architecture for the path tracking.

of the robot between these sub-goals, various meth-
ods can be used. These methods can use classical
[7,29], etc. or fuzzy control [21,31], etc. The mod-
ule of control developed here to generate the path
between the sub-goals is based on a classical fuzzy
control (Fig. 17). It provides the angular speed (ωp)
of the robot which is supposed to evolve at a given
linear speed(vp). The angular speed of the robot is
determined from its current position with regard to
the path and is achieved by the relative variation of
angular speeds of driving wheels. Since the robot is
an indeformable solid, the knowledge of the distance
E (between the center pointM of the robot and the
segment joining the sub-goalsD andA (Fig. 18)) and
of the variation of this distance is sufficient to achieve
the task.

The co-ordinates (XM , YM , θM ) of the robot are
given by odometry. The signed distanceE is given by

MH = E = DM sin(
%

ADM) = P

DA
,

with

P = (XM−XD)(YA−YD)− (XA−XD)(YM − YD).

The controller is constituted of a set of fuzzy rules is
given in Table 7. The signification of the used linguis-
tics terms is the same as in Section 3.3.

Fig. 18. Position of the robot with regard to the path.

Table 7
Rules of the path tracking fuzzy controller

The membership functions are of triangular shape,
on a normalized universe of discourse between−1
and 1. The operators used in the FIS are similar to
those appearing in a Mamdani controller [16]: min
for the composition of the input variables and for the
fuzzy implication and max for the aggregation of the
rules. The center of gravity method is used for the
defuzzification, in order to determine the crisp output
actions.

Fig. 19 represents an example of experimental
result with the whole previously described method
(path planning by visibility graph and A∗ algorithm
and path tracking by the fuzzy controller) when the
real scene is identical to the memorized one.

Fig. 19. Displacement of the robot in a known scene.
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Fig. 20. Comparison of sensors data.

4.2. Fusion of reactive and planed navigation

The aim of this procedure is to navigate the robot
from the initial point till the target point by follow-
ing as nearly as possible the optimal way without tak-
ing into account the missing obstacles and avoiding
the unexpected obstacles. For this, a virtual robot dis-
placing in the memorized scene and equipped with
two lateral virtual sensors is used. An index of prefer-
ence, indicating which command is the best to apply,
strategies fusion index (SFI), is generated by a fuzzy
decision making module, the inputs of which are the
difference between (Fig. 20):

1. Each sensor data in the memorized scene (modeled
as perfect sensor) and the corresponding one in the
real scene (data with error) (�L,�R). One can note
that the comparison of the two lateral sensor data
is sufficient to accomplish the task.

2. Absolute positions of the mobile robot in the mem-
orized and the real environments (�p), knowing
that the virtual robot moves along with the orthog-
onal projection on the planned path of the center
point M of the real robot.

Fig. 21. Fuzzy subsets for the variables�R, �L, �p and SFI.

The SFI value reflects the situation of the robot
with respect to the known environment. By exploiting
it, the two strategies (global and local) are fused, by
weighting of the orders such as

ω = ωp × SFI+ ωr × (1 − SFI),

v = vp × SFI+ vr × (1 − SFI),

whereω andv are the orders to apply to the robot.
Thus, if the sensor data in the two scenes are very

close, the navigation in the real scene will be made
by tracking the planned path. If they are completely

Table 8
Rules table for SFI
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Fig. 22. Examples of experimental results: (a) memorized environment; (b) real environment (identical to the memorized one); (c) real
environment (a known obstacle is removed); (d) real environment (added obstacle).
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different a strategy of local navigation is triggered. The
variable SFI is the output of a fuzzy module and is
shared in two fuzzy subsets labeled Sp for releasing the
planned path following and Sr for starting the reactive
navigation. The universes of discourse of the input
variables�R,�L and�p are composed of three fuzzy
subsets (Fig. 21). The used labels are N (negative), Z
(zero), P (positive), M (medium) and B (big).

The fuzzy rules have the following form:

• If �R, �L and�p are zero then the planned path
following strategy is activated (Sp).

• If �R and�L are negative and�p is big then the
local navigation is triggered (Sr).

A rules table (Table 8) is then defined. This table
shows the set of possible combination between�R,
�L and �p. Fig. 22 shows some experimental re-
sults by using this method implemented on the robot
Khepera®.

When the actual environment is either the same as
the memorized one (Fig. 22(b)) or not constraining
(Fig. 22(c)), the robot navigation is done at high speed
by following the planned path. If not (Fig. 22(d)),
reactive modules are triggered (from P1 point). The
speed is strongly reduced when an obstacle is detected.
Then, it increases gradually until the vehicle reaches
the sub-goal P2 where the memorized scene is again
recognized.

It is possible to verify that the trajectory followed
in presence of unknown obstacles (Fig. 22(d)) is very
close to the one obtained after including the unknown
obstacle in the data base and starting again the plan-
ning [15]. In fact the main penalization due to un-
known obstacles is the decreasing of the linear speed
of the robot.

5. Conclusion

We are interested in the navigation of a mobile robot
in partially known environment such as inside an of-
fice or a flat. In such cases, a plan of the evolution
zone of the robot containing most of its fixed features
can be drawn, but numerous undrawn or displaced lo-
cal obstacles can also been encountered by the robot.
So a natural way to obtain an efficient and safe nav-
igation in such an environment is to integrate global
planning and local reactive control. The solution we

propose here is basically founded on human behavior
and mainly implemented through FISs.

The navigation method in an unknown environment
is based on the combination of two types of obstacle
avoidance behaviors, one for the convex obstacles and
one for the concave ones. In the case of convex obsta-
cles, a behavioral agent fusing a “reaching the mid-
dle of the collision-free space” behavior achieved by
means of STFISs and a goal-seeking behavior, is suf-
ficient. However, the navigation using these strategies
can fail if a concave obstacle separates the robot from
its goal. In order to solve this problem, a third elemen-
tary behavior, of wall-following type, has been devel-
oped using another STFIS. Associated to the creation
of sub-goals of transition, it permits the robot to skirt
round the concave obstacles, before heading again for
its goal. The use of FISs to generate elementary be-
haviors deduced from human being is quite simple and
natural. However, one can always fear that the rules
deduced from a simple human expertise are more or
less sub-optimal. That is why we have tried to obtain
these rules automatically. A gradient technique is used
which permits the optimization of the output parame-
ters of an FIS through the minimization of a cost func-
tion. However, the use of a classical quadratic error as
a cost function leads to weight drifting and progres-
sive deterioration of the performances. This problem
is solved by a method of weight decay that limits the
growing of the weights and allows an efficient on-line
learning. Due to the proposed technique, the tedious
manual tuning of parameters of an FIS is avoided and
the control law is optimized with respect to the actual
physical characteristics of the robot.

The a priori knowledge on the environment is
memorized and compared to the real scene detected
by the robot sensors. If the sensors data in both scenes
(memorized and real) are nearly the same, the nav-
igation is done following the planned path at high
velocity. If not, it is done under the control of reactive
methods. A module, based on fuzzy logic and inte-
grating sensor data, allows going progressively from
one of these strategies to the other.

We have used here as a test-bed a real mini robot
to prove the effectiveness of the proposed navigation
method in spite of very limited calculation resources
and a low cost and quite inaccurate sensor system. The
implementation of this method on various robots of
realistic size for inside works is now in progress and
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should be quite easy due to the fact that no explicit
model of the robot is needed.
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