

AVR

EMC Characteristics

An overview on Radiated Emissions and Conducted Immunity for the AVR Microcontroller

Atmel MCU Training - ASIA 2004

- "The extent to which a piece of hardware will tolerate electrical interference from other equipment, and will interfere with other equipment" (<u>http://www.hyperdictionary.com</u>)
- All end-products must comply with the EMC directives, which covers:
 - An upper limit for conducted and radiated emissions
 - A lower limit for conducted and radiated immunity
 - Limits are specified in international standards from IEC, CISPR and others.

• Radiated emissions – RF/ HF noise

- EMC Directives specify upper limit to E and H-fields surrounding a product.
- The Directive covers the frequency band to 1GHz
- In Automotive and Wireless Communication the frequency band are often extended up to 3GHz (or higher)

Conducted emissions – noise on supply lines

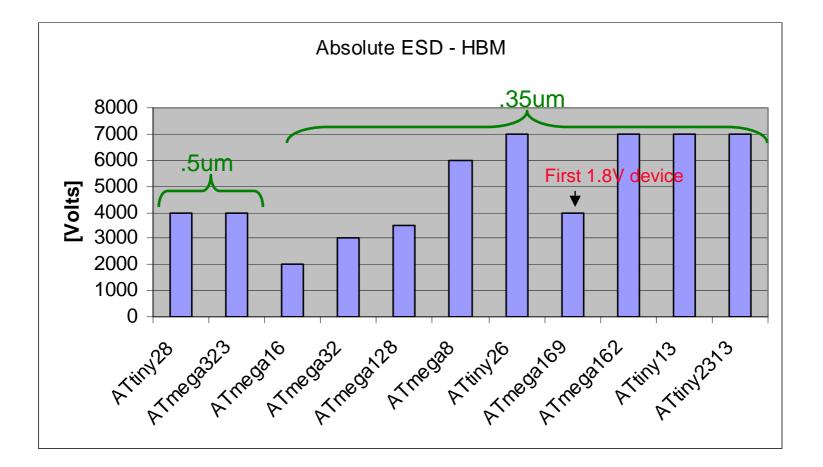
- EMC Directives specify limits to noise introduced on the power lines to which electrical equipment is connected
- The Directive covers the frequency band up to 30MHz

Conducted immunity – ESD and EFT

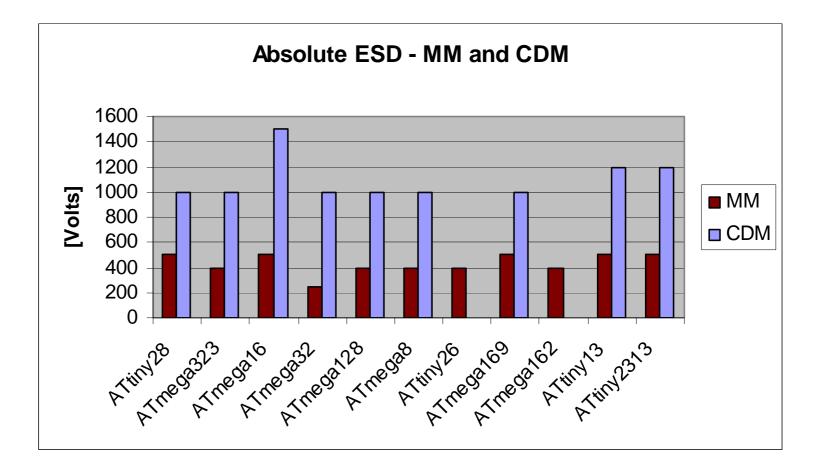
- Immunity to conducted electrical disturbances, such as Electrostatic Discharge (ESD) and Electrical Fast Transients (EFT)
- Operates with failure severities
 - temporary, unrecoverable and destructive failures

Radiated immunity – incoming RF and HF noise

- Immunity to radiated noise in surrounding environment. Originating from e.g. electrical motors and wireless communication.
- Limited the noise frequencies up to 1GHz.


Immunity to conducted disturbance

- Destructive ESD level
 - Human Body Model (HBM), MIL-STD-883E
 - Charged Device Model (CDM) JEDEC JESD22-C101
 - Machine Model (MM), JEDEC JESD22-A115-A
- Latch-up level
 - JEDEC std 17
- Susceptibility to ESD on IO
 - IEC 61000-4-2
- Susceptibility to EFT on supply and IO
 - IEC 61000-4-4


Radiated and conducted emissions

- Radiation emissions from the device (die and package)
 - IEC61967-2
- Conducted emissions from device supply and IO (Not done...)
 - IEC61967-4

• ST Micro

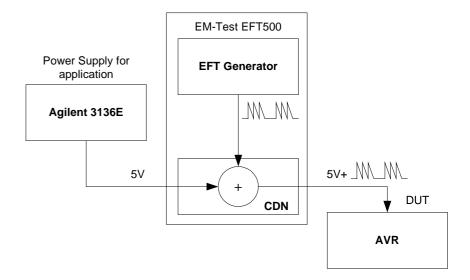
- ST6 and ST7
 - HBM 2000V
 - MM 200V
- ST7Lite2
 - HBM 4000V
 - MM TBD

Motorola

- MC9S08xx32
 - HBM 2000V
 - MM 200V

• <u>Atmel AVR</u>

- ATmega128
 - HBM 3500V
 - MM 400V
 - CDM 1000V
- ATmega8
 - HBM 6000V
 - MM 400V
 - CDM 1000V
- ATmega169
 - HBM 4000V
 - MM 500V
 - CDM 1000V
- ATtiny13/ ATtiny2313
 - HBM 7000V
 - MM 500V
 - CDM 1200V



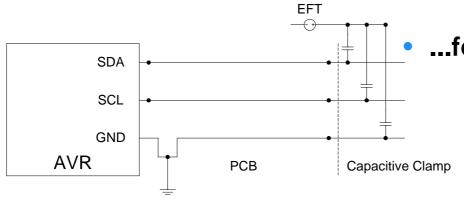
- AVR has superior absolute ESD ratings
 - Good margins to competitor's absolute ESD performance!
 - Few competitors dare present these data
- EMC Directives specify 4kV ESD (HBM) for domestic applications...
 - AVR meets this without any external ESD protection

- - Device is exposed to Electrical Fast Transients (EFT) on supply or IO lines until it fails functionally.
 - Test detects failures that is caused by:
 - Corruption of SRAM
 - Corruption of Registers
 - Corruption of EEPROM
 - Corruption of program execution

EMS - Burst on Supply

- ATmega16
 - Pass up to 2.4kV
- ATmega32 (rev. D)
 - Pass up to 2.4kV
- ATmega8535
 - Pass up to 1.9kV
- ATmega8
 - Pass up to 1.9kV

- Standards define EFT levels according to environment:
 - 500V is protected environment
 - 1kV is typical domestic applications
 - 2kV is industrial environment
 - 4kV is severe industrial environment
- ...for end-products that is!



Burst on IO

- ATmega32
 - Pass up to 1.2kV
- ATmega8
 - Pass up to 1.6kV

• Standards define EFT levels according to environment:

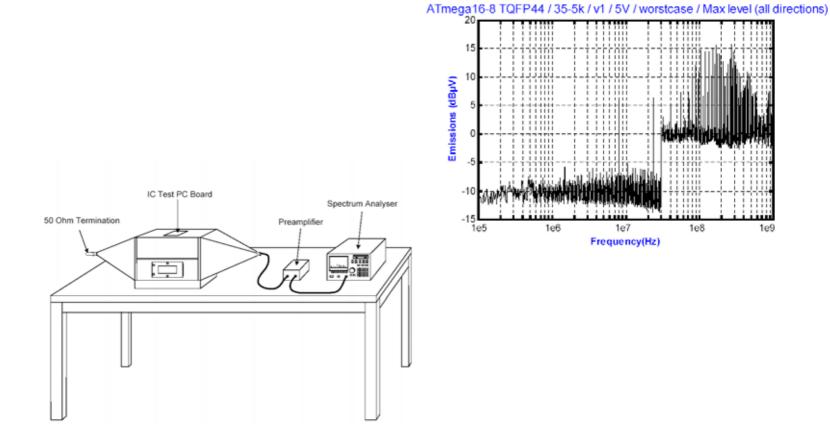
- 250V is protected environment
- 500V is typical domestic applications
- 1kV is industrial environment
- 2kV is severe industrial environment

...for end-products that is!

• <u>ST Micro</u>

- ST620xC
 - -2.5kV/ + 3.0kV
- ST7LITE2
 - -/+1.5kV
- ST7226xG
 - -/+1kV
- ST92Fxxx
 - -/+1.5kV
- The only competitor that dare present EMC in their datasheets....

Atmel AVR


- ATmega8 and ATmega8535
 - Pass up to 1.9kV
- ATmega16 and ATmega32
 - Pass up to 2.4kV

1e9

• Measured in test cell (TEM) according to IEC61967-2

- <u>ST Micro</u> is among the few that provide emission data for microcontrollers
 - Most manufacturers are not able to provide these data...

- <u>Atmel AVR</u> (mega16@8MHz)
 - 0.1MHz to 30MHz : <7dBuV</p>
 - 30MHz to 130MHz: <15dBuV
 - 130MHz to 1GHz: <16dBuV</p>

Emissions data for ST7265x

Monitored	Max vs. [f _{OSC} /f _{CPU}]		Unit
Frequency Band	3MHz	6MHz	
0.1MHz to 30MHz	21	28	
30MHz to 130MHz	16	30	dBμV
130MHz to 1GHz	8	31	
SAE EMI Level	2	4	-

AVR - EMC Characteristics

- Few can present EMC data
- Few have good EMC characteristics
- Compared to ST Micro, which are know to be good devices in EMC sense – AVR performs very well!!!

Good EMC performance does not guarantee that no EMC related problems are encountered!

- Immunity
 - Place it decoupling as close to the device as possible
 - Use decoupling with good EMI characteristics (low ESR)
 - Use line-filters on IO lines
 - Use "clean-IO-gnd" for IO filters
 - External Clock sources must be protected well
- Emissions
 - Limit current and loop sizes
 - Use "clean-IO-gnd" for line decoupling
 - Run from as low operating voltage as possible